Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.316
1.
Methods Mol Biol ; 2799: 139-150, 2024.
Article En | MEDLINE | ID: mdl-38727906

Epilepsy is one of the most represented neurological diseases worldwide. However, in many cases, the precise molecular mechanisms of epileptogenesis and ictiogenesis are unknown. Because of their important role in synaptic function and neuronal excitability, NMDA receptors are implicated in various epileptogenic mechanisms. Most of these are subunit specific and require a precise analysis of the subunit composition of the NMDARs implicated. Here, we describe an express electrophysiological method to analyze the contribution of NMDAR subunits to spontaneous postsynaptic activity in identified cells in brain slices using patch clamp whole cell recordings.


Patch-Clamp Techniques , Receptors, N-Methyl-D-Aspartate , Synapses , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Patch-Clamp Techniques/methods , Synapses/metabolism , Synapses/physiology , Brain/metabolism , Brain/cytology , Neurons/metabolism , Mice , Rats , Protein Subunits/metabolism
2.
CNS Neurosci Ther ; 30(5): e14744, 2024 05.
Article En | MEDLINE | ID: mdl-38727249

BACKGROUND: Stroke is an acute cerebrovascular disease in which brain tissue is damaged due to sudden obstruction of blood flow to the brain or the rupture of blood vessels in the brain, which can prompt ischemic or hemorrhagic stroke. After stroke onset, ischemia, hypoxia, infiltration of blood components into the brain parenchyma, and lysed cell fragments, among other factors, invariably increase blood-brain barrier (BBB) permeability, the inflammatory response, and brain edema. These changes lead to neuronal cell death and synaptic dysfunction, the latter of which poses a significant challenge to stroke treatment. RESULTS: Synaptic dysfunction occurs in various ways after stroke and includes the following: damage to neuronal structures, accumulation of pathologic proteins in the cell body, decreased fluidity and release of synaptic vesicles, disruption of mitochondrial transport in synapses, activation of synaptic phagocytosis by microglia/macrophages and astrocytes, and a reduction in synapse formation. CONCLUSIONS: This review summarizes the cellular and molecular mechanisms related to synapses and the protective effects of drugs or compounds and rehabilitation therapy on synapses in stroke according to recent research. Such an exploration will help to elucidate the relationship between stroke and synaptic damage and provide new insights into protecting synapses and restoring neurologic function.


Stroke , Synapses , Humans , Animals , Synapses/pathology , Synapses/metabolism , Stroke/metabolism , Stroke/pathology , Stroke/complications , Stroke/physiopathology
3.
Article En | MEDLINE | ID: mdl-38697654

A coordinated and complex interplay of signals between motor neurons, skeletal muscle cells, and Schwann cells controls the formation and maintenance of neuromuscular synapses. Deficits in the signaling pathway for building synapses, caused by mutations in critical genes or autoantibodies against key proteins, are responsible for several neuromuscular diseases, which cause muscle weakness and fatigue. Here, we describe the role that four key genes, Agrin, Lrp4, MuSK, and Dok7, play in this signaling pathway, how an understanding of their mechanisms of action has led to an understanding of several neuromuscular diseases, and how this knowledge has contributed to emerging therapies for treating neuromuscular diseases.


Neuromuscular Junction , Signal Transduction , Humans , Animals , Agrin/metabolism , LDL-Receptor Related Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Muscle Proteins/metabolism , Neuromuscular Diseases , Receptors, Cholinergic/metabolism , Synapses/physiology , Synapses/metabolism , Motor Neurons/physiology , Motor Neurons/metabolism
4.
Cereb Cortex ; 34(13): 161-171, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696595

Autism spectrum disorder (ASD) is a developmental disorder with a rising prevalence and unknown etiology presenting with deficits in cognition and abnormal behavior. We hypothesized that the investigation of the synaptic component of prefrontal cortex may provide proteomic signatures that may identify the biological underpinnings of cognitive deficits in childhood ASD. Subcellular fractions of synaptosomes from prefrontal cortices of age-, brain area-, and postmortem-interval-matched samples from children and adults with idiopathic ASD vs. controls were subjected to HPLC-tandem mass spectrometry. Analysis of data revealed the enrichment of ASD risk genes that participate in slow maturation of the postsynaptic density (PSD) structure and function during early brain development. Proteomic analysis revealed down regulation of PSD-related proteins including AMPA and NMDA receptors, GRM3, DLG4, olfactomedins, Shank1-3, Homer1, CaMK2α, NRXN1, NLGN2, Drebrin1, ARHGAP32, and Dock9 in children with autism (FDR-adjusted P < 0.05). In contrast, PSD-related alterations were less severe or unchanged in adult individuals with ASD. Network analyses revealed glutamate receptor abnormalities. Overall, the proteomic data support the concept that idiopathic autism is a synaptopathy involving PSD-related ASD risk genes. Interruption in evolutionarily conserved slow maturation of the PSD complex in prefrontal cortex may lead to the development of ASD in a susceptible individual.


Dorsolateral Prefrontal Cortex , Proteomics , Humans , Child , Male , Female , Adult , Dorsolateral Prefrontal Cortex/metabolism , Child, Preschool , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/genetics , Synapses/metabolism , Adolescent , Young Adult , Autistic Disorder/metabolism , Autistic Disorder/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Synaptosomes/metabolism , Prefrontal Cortex/metabolism , Post-Synaptic Density/metabolism
5.
Methods Cell Biol ; 187: 139-174, 2024.
Article En | MEDLINE | ID: mdl-38705623

Array tomography (AT) allows one to localize sub-cellular components within the structural context of cells in 3D through the imaging of serial sections. Using this technique, the z-resolution can be improved physically by cutting ultra-thin sections. Nevertheless, conventional immunofluorescence staining of those sections is time consuming and requires relatively large amounts of costly antibody solutions. Moreover, epitopes are only readily accessible at the section's surface, leaving the volume of the serial sections unlabeled. Localization of receptors at neuronal synapses in 3D in their native cellular ultrastructural context is important for understanding signaling processes. Here, we present in vivo labeling of receptors via fluorophore-coupled tags in combination with super-resolution AT. We present two workflows where we label receptors at the plasma membrane: first, in vivo labeling via microinjection with a setup consisting of readily available components and self-manufactured microscope table equipment and second, live receptor labeling by using a cell-permeable tag. To take advantage of a near-to-native preservation of tissues for subsequent scanning electron microscopy (SEM), we also apply high-pressure freezing and freeze substitution. The advantages and disadvantages of our workflows are discussed.


Synapses , Tomography , Animals , Synapses/metabolism , Synapses/ultrastructure , Tomography/methods , Imaging, Three-Dimensional/methods , Staining and Labeling/methods , Mice , Microscopy, Electron, Scanning/methods , Fluorescent Dyes/chemistry , Microinjections/methods , Neurons/metabolism , Rats
6.
Methods Cell Biol ; 187: 57-72, 2024.
Article En | MEDLINE | ID: mdl-38705630

Correlative light and electron microscopy (CLEM) can provide valuable information about a biological sample by giving information on the specific localization of a molecule of interest within an ultrastructural context. In this work, we describe a simple CLEM method to obtain high-resolution images of neurotransmitter receptor distribution in synapses by electron microscopy (EM). We use hippocampal organotypic slices from a previously reported mouse model expressing a modified AMPA receptor (AMPAR) subunit that binds biotin at the surface (Getz et al., 2022). This tag can be recognized by StreptAvidin-Fluoronanogold™ conjugates (SA-FNG), which reach receptors at synapses (synaptic cleft is 50-100nm thick). By using pre-embedding labeling, we found that SA-FNG reliably bind synaptic receptors and penetrate around 10-15µm in depth in live tissue. However, the silver enhancement was only reaching the surface of the slices. We show that permeabilization with triton is highly effective at increasing the in depth-gold amplification and that the membrane integrity is well preserved. Finally, we also apply high-resolution electron tomography, thus providing important information about the 3D organization of surface AMPA receptors in synapses at the nanoscale.


Hippocampus , Receptors, AMPA , Synapses , Animals , Mice , Hippocampus/metabolism , Hippocampus/cytology , Receptors, AMPA/metabolism , Synapses/metabolism , Synapses/ultrastructure , Membrane Proteins/metabolism , Gold/chemistry , Microscopy, Electron/methods , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism
7.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38695719

Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.


Microglia , Receptors, GABA-A , Sleep, Slow-Wave , Synapses , Tumor Necrosis Factor-alpha , Animals , Male , Mice , Memory Consolidation , Mice, Inbred C57BL , Microglia/metabolism , Neuronal Plasticity/physiology , Receptors, GABA-A/metabolism , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Signal Transduction , Sleep/physiology , Synapses/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Cereb Cortex ; 34(13): 121-128, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696601

Previous studies in autism spectrum disorder demonstrated an increased number of excitatory pyramidal cells and a decreased number of inhibitory parvalbumin+ chandelier interneurons in the prefrontal cortex of postmortem brains. How these changes in cellular composition affect the overall abundance of excitatory and inhibitory synapses in the cortex is not known. Herein, we quantified the number of excitatory and inhibitory synapses in the prefrontal cortex of 10 postmortem autism spectrum disorder brains and 10 control cases. To identify excitatory synapses, we used VGlut1 as a marker of the presynaptic component and postsynaptic density protein-95 as marker of the postsynaptic component. To identify inhibitory synapses, we used the vesicular gamma-aminobutyric acid transporter as a marker of the presynaptic component and gephyrin as a marker of the postsynaptic component. We used Puncta Analyzer to quantify the number of co-localized pre- and postsynaptic synaptic components in each area of interest. We found an increase in the number of excitatory synapses in upper cortical layers and a decrease in inhibitory synapses in all cortical layers in autism spectrum disorder brains compared with control cases. The alteration in the number of excitatory and inhibitory synapses could lead to neuronal dysfunction and disturbed network connectivity in the prefrontal cortex in autism spectrum disorder.


Membrane Proteins , Prefrontal Cortex , Synapses , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Humans , Male , Female , Synapses/pathology , Synapses/metabolism , Adult , Middle Aged , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Young Adult , Adolescent , Child , Autistic Disorder/metabolism , Autistic Disorder/pathology , Neural Inhibition/physiology , Vesicular Glutamate Transport Protein 1/metabolism
9.
Science ; 384(6698): eadg5136, 2024 May 24.
Article En | MEDLINE | ID: mdl-38781388

The complexity and heterogeneity of schizophrenia have hindered mechanistic elucidation and the development of more effective therapies. Here, we performed single-cell dissection of schizophrenia-associated transcriptomic changes in the human prefrontal cortex across 140 individuals in two independent cohorts. Excitatory neurons were the most affected cell group, with transcriptional changes converging on neurodevelopment and synapse-related molecular pathways. Transcriptional alterations included known genetic risk factors, suggesting convergence of rare and common genomic variants on neuronal population-specific alterations in schizophrenia. Based on the magnitude of schizophrenia-associated transcriptional change, we identified two populations of individuals with schizophrenia marked by expression of specific excitatory and inhibitory neuronal cell states. This single-cell atlas links transcriptomic changes to etiological genetic risk factors, contextualizing established knowledge within the human cortical cytoarchitecture and facilitating mechanistic understanding of schizophrenia pathophysiology and heterogeneity.


Neurons , Prefrontal Cortex , Schizophrenia , Single-Cell Analysis , Transcriptome , Schizophrenia/genetics , Humans , Prefrontal Cortex/metabolism , Neurons/metabolism , Cohort Studies , Male , Female , Genetic Predisposition to Disease , Adult , Synapses/metabolism , Risk Factors
10.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791143

In all cell types, small EVs, very abundant extracellular vesicles, are generated and accumulated within MVB endocytic cisternae. Upon MVB fusion and exocytosis with the plasma membrane, the EVs are released to the extracellular space. In the central nervous system, the release of neuronal EVs was believed to occur only from the surface of the body and dendrites. About 15 years ago, MVB cisternae and EVs were shown to exist and function at synaptic boutons, the terminals' pre- and post-synaptic structures essential for canonical neurotransmitter release. Recent studies have revealed that synaptic EVs are peculiar in many respects and heterogeneous with respect to other neuronal EVs. The distribution of synaptic EVs and the effect of their specific molecules are found at critical sites of their distribution. The role of synaptic EVs could consist of the modulation of canonical neurotransmitter release or a distinct, non-canonical form of neurotransmission. Additional roles of synaptic EVs are still not completely known. In the future, additional investigations will clarify the role of synaptic EVs in pathology, concerning, for example, circuits, trans-synaptic transmission, diagnosis and the therapy of diseases.


Extracellular Vesicles , Neurons , Signal Transduction , Synapses , Synaptic Transmission , Humans , Extracellular Vesicles/metabolism , Animals , Neurons/metabolism , Synapses/metabolism , Exocytosis , Neurotransmitter Agents/metabolism , Synaptic Vesicles/metabolism
11.
Int J Mol Sci ; 25(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38791192

The synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are the most vulnerable structures in the noise-exposed cochlea. Cochlear synaptopathy results from the disruption of these synapses following noise exposure and is considered the main cause of poor speech understanding in noisy environments, even when audiogram results are normal. Cochlear synaptopathy leads to the degeneration of SGNs if damaged IHC-SGN synapses are not promptly recovered. Oxidative stress plays a central role in the pathogenesis of cochlear synaptopathy. C-Phycocyanin (C-PC) has antioxidant and anti-inflammatory activities and is widely utilized in the food and drug industry. However, the effect of the C-PC on noise-induced cochlear damage is unknown. We first investigated the therapeutic effect of C-PC on noise-induced cochlear synaptopathy. In vitro experiments revealed that C-PC reduced the H2O2-induced generation of reactive oxygen species in HEI-OC1 auditory cells. H2O2-induced cytotoxicity in HEI-OC1 cells was reduced with C-PC treatment. After white noise exposure for 3 h at a sound pressure of 118 dB, the guinea pigs intratympanically administered 5 µg/mL C-PC exhibited greater wave I amplitudes in the auditory brainstem response, more IHC synaptic ribbons and more IHC-SGN synapses according to microscopic analysis than the saline-treated guinea pigs. Furthermore, the group treated with C-PC had less intense 4-hydroxynonenal and intercellular adhesion molecule-1 staining in the cochlea compared with the saline group. Our results suggest that C-PC improves cochlear synaptopathy by inhibiting noise-induced oxidative stress and the inflammatory response in the cochlea.


Cochlea , Intercellular Adhesion Molecule-1 , Noise , Oxidative Stress , Phycocyanin , Synapses , Animals , Oxidative Stress/drug effects , Guinea Pigs , Phycocyanin/pharmacology , Phycocyanin/therapeutic use , Cochlea/metabolism , Cochlea/drug effects , Cochlea/pathology , Synapses/drug effects , Synapses/metabolism , Noise/adverse effects , Intercellular Adhesion Molecule-1/metabolism , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/pathology , Reactive Oxygen Species/metabolism , Male , Spiral Ganglion/drug effects , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Hydrogen Peroxide/metabolism , Hair Cells, Auditory, Inner/drug effects , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Antioxidants/pharmacology , Cell Line , Hearing Loss, Hidden
12.
Int J Mol Sci ; 25(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38791517

Maternal immune activation (MIA) is a risk factor for multiple neurodevelopmental disorders; however, animal models developed to explore MIA mechanisms are sensitive to experimental factors, which has led to complexity in previous reports of the MIA phenotype. We sought to characterize an MIA protocol throughout development to understand how prenatal immune insult alters the trajectory of important neurodevelopmental processes, including the microglial regulation of synaptic spines and complement signaling. We used polyinosinic:polycytidylic acid (polyI:C) to induce MIA on gestational day 9.5 in CD-1 mice, and measured their synaptic spine density, microglial synaptic pruning, and complement protein expression. We found reduced dendritic spine density in the somatosensory cortex starting at 3-weeks-of-age with requisite increases in microglial synaptic pruning and phagocytosis, suggesting spine density loss was caused by increased microglial synaptic pruning. Additionally, we showed dysregulation in complement protein expression persisting into adulthood. Our findings highlight disruptions in the prenatal environment leading to alterations in multiple dynamic processes through to postnatal development. This could potentially suggest developmental time points during which synaptic processes could be measured as risk factors or targeted with therapeutics for neurodevelopmental disorders.


Complement System Proteins , Dendritic Spines , Microglia , Poly I-C , Animals , Microglia/metabolism , Microglia/drug effects , Microglia/immunology , Mice , Female , Pregnancy , Dendritic Spines/metabolism , Poly I-C/pharmacology , Complement System Proteins/metabolism , Complement System Proteins/immunology , Prenatal Exposure Delayed Effects , Phagocytosis , Disease Models, Animal , Somatosensory Cortex/drug effects , Somatosensory Cortex/metabolism , Synapses/metabolism , Synapses/drug effects , Neuronal Plasticity/drug effects
13.
PLoS Biol ; 22(5): e3002596, 2024 May.
Article En | MEDLINE | ID: mdl-38718086

Autism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements. The latter involves increased length and beating frequency of motile cilia on ependymal cells lining ventricles. Katnal2-KO hippocampal neurons surrounded by enlarged lateral ventricles show progressive synaptic deficits that correlate with ASD-like transcriptomic changes involving synaptic gene down-regulation. Importantly, early postnatal Katnal2 re-expression prevents ciliary, ventricular, and behavioral phenotypes in Katnal2-KO adults, suggesting a causal relationship and a potential treatment. Therefore, Katnal2 negatively regulates ependymal ciliary function and its deletion in mice leads to ependymal ciliary hyperfunction and hydrocephalus accompanying ASD-related behavioral, synaptic, and transcriptomic changes.


Autism Spectrum Disorder , Cilia , Ependyma , Mice, Knockout , Phenotype , Animals , Male , Mice , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Behavior, Animal , Cilia/metabolism , Disease Models, Animal , Ependyma/metabolism , Hippocampus/metabolism , Hydrocephalus/genetics , Hydrocephalus/metabolism , Hydrocephalus/pathology , Hydrocephalus/physiopathology , Katanin/metabolism , Katanin/genetics , Mice, Inbred C57BL , Neurons/metabolism , Synapses/metabolism , Transcriptome/genetics
15.
Sci Adv ; 10(21): eadl2882, 2024 May 24.
Article En | MEDLINE | ID: mdl-38781346

Neuromorphic sensors, designed to emulate natural sensory systems, hold the promise of revolutionizing data extraction by facilitating rapid and energy-efficient analysis of extensive datasets. However, a challenge lies in accurately distinguishing specific analytes within mixtures of chemically similar compounds using existing neuromorphic chemical sensors. In this study, we present an artificial olfactory system (AOS), developed through the integration of human olfactory receptors (hORs) and artificial synapses. This AOS is engineered by interfacing an hOR-functionalized extended gate with an organic synaptic device. The AOS generates distinct patterns for odorants and mixtures thereof, at the molecular chain length level, attributed to specific hOR-odorant binding affinities. This approach enables precise pattern recognition via training and inference simulations. These findings establish a foundation for the development of high-performance sensor platforms and artificial sensory systems, which are ideal for applications in wearable and implantable devices.


Odorants , Receptors, Odorant , Humans , Receptors, Odorant/metabolism , Odorants/analysis , Smell/physiology , Synapses/metabolism , Pattern Recognition, Automated/methods , Olfactory Receptor Neurons/metabolism , Olfactory Receptor Neurons/physiology , Biosensing Techniques/methods
16.
Biomolecules ; 14(5)2024 May 16.
Article En | MEDLINE | ID: mdl-38785996

Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 dose-dependently decreased glutamate release with an IC50 value of 16 µM. The removal of extracellular Ca2+ or blockade of N-and P/Q-type Ca2+ channels and protein kinase A (PKA) abolished the inhibitory effect of GP-17 on glutamate release from cortical synaptosomes. GP-17 also significantly reduced the phosphorylation of PKA, SNAP-25, and synapsin I in cortical synaptosomes. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid (KA), GP-17 pretreatment significantly prevented seizures and rescued neuronal cell injury and glutamate elevation in the cortex. GP-17 pretreatment decreased the expression levels of sodium-coupled neutral amino acid transporter 1, glutamate synthesis enzyme glutaminase and vesicular glutamate transporter 1 but increased the expression level of glutamate metabolism enzyme glutamate dehydrogenase in the cortex of KA-treated rats. In addition, the KA-induced alterations in the N-methyl-D-aspartate receptor subunits GluN2A and GluN2B in the cortex were prevented by GP-17 pretreatment. GP-17 also prevented the KA-induced decrease in cerebral blood flow and arginase II expression. These results suggest that (i) GP-17, through the suppression of N- and P/Q-type Ca2+ channels and consequent PKA-mediated SNAP-25 and synapsin I phosphorylation, reduces glutamate exocytosis from cortical synaptosomes; and (ii) GP-17 has a neuroprotective effect on KA-induced glutamate excitotoxicity in rats through regulating synaptic glutamate release and cerebral blood flow.


Cyclic AMP-Dependent Protein Kinases , Glutamic Acid , Gynostemma , Animals , Glutamic Acid/metabolism , Rats , Male , Gynostemma/chemistry , Cyclic AMP-Dependent Protein Kinases/metabolism , Rats, Sprague-Dawley , Synaptosomes/metabolism , Synaptosomes/drug effects , Neuroprotective Agents/pharmacology , Kainic Acid/toxicity , Seizures/chemically induced , Seizures/metabolism , Seizures/drug therapy , Seizures/prevention & control , Synapses/drug effects , Synapses/metabolism , Synaptosomal-Associated Protein 25/metabolism , Synapsins/metabolism , Phosphorylation/drug effects , Calcium/metabolism , Plant Extracts
17.
Cells ; 13(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38786059

In recent decades, there has been a dramatic rise in the rates of children being born after in utero exposure to drugs of abuse, particularly opioids. Opioids have been shown to have detrimental effects on neurons and glia in the central nervous system (CNS), but the impact of prenatal opioid exposure (POE) on still-developing synaptic circuitry is largely unknown. Astrocytes exert a powerful influence on synaptic development, secreting factors to either promote or inhibit synapse formation and neuronal maturation in the developing CNS. Here, we investigated the effects of the partial µ-opioid receptor agonist buprenorphine on astrocyte synaptogenic signaling and morphological development in cortical cell culture. Acute buprenorphine treatment had no effect on the excitatory synapse number in astrocyte-free neuron cultures. In conditions where neurons shared culture media with astrocytes, buprenorphine attenuated the synaptogenic capabilities of astrocyte-secreted factors. Neurons cultured from drug-naïve mice showed no change in synapses when treated with factors secreted by astrocytes from POE mice. However, this same treatment was synaptogenic when applied to neurons from POE mice, indicating a complex neuroadaptive response in the event of impaired astrocyte signaling. In addition to promoting morphological and connectivity changes in neurons, POE exerted a strong influence on astrocyte development, disrupting their structural maturation and promoting the accumulation of lipid droplets (LDs), suggestive of a maladaptive stress response in the developing CNS.


Analgesics, Opioid , Astrocytes , Neurons , Prenatal Exposure Delayed Effects , Signal Transduction , Synapses , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Animals , Synapses/metabolism , Synapses/drug effects , Female , Pregnancy , Mice , Analgesics, Opioid/pharmacology , Analgesics, Opioid/adverse effects , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/metabolism , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Signal Transduction/drug effects , Buprenorphine/pharmacology , Cells, Cultured , Mice, Inbred C57BL
18.
Hear Res ; 447: 109022, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705005

The disruption of ribbon synapses in the cochlea impairs the transmission of auditory signals from the cochlear sensory receptor cells to the auditory cortex. Although cisplatin-induced loss of ribbon synapses is well-documented, and studies have reported nitration of cochlear proteins after cisplatin treatment, yet the underlying mechanism of cochlear synaptopathy is not fully understood. This study tests the hypothesis that cisplatin treatment alters the abundance of cochlear synaptosomal proteins, and selective targeting of nitrative stress prevents the associated synaptic dysfunction. Auditory brainstem responses of mice treated with cisplatin showed a reduction in amplitude and an increase in latency of wave I, indicating cisplatin-induced synaptic dysfunction. The mass spectrometry analysis of cochlear synaptosomal proteins identified 102 proteins that decreased in abundance and 249 that increased in abundance after cisplatin treatment. Pathway analysis suggested that the dysregulated proteins were involved in calcium binding, calcium ion regulation, synapses, and endocytosis pathways. Inhibition of nitrative stress by co-treatment with MnTBAP, a peroxynitrite scavenger, attenuated cisplatin-induced changes in the abundance of 27 proteins. Furthermore, MnTBAP co-treatment prevented the cisplatin-induced decrease in the amplitude and increase in the latency of wave I. Together, these findings suggest a potential role of oxidative/nitrative stress in cisplatin-induced cochlear synaptic dysfunction.


Cisplatin , Cochlea , Evoked Potentials, Auditory, Brain Stem , Proteomics , Synapses , Synaptosomes , Cisplatin/toxicity , Cisplatin/pharmacology , Animals , Cochlea/drug effects , Cochlea/metabolism , Cochlea/pathology , Cochlea/physiopathology , Evoked Potentials, Auditory, Brain Stem/drug effects , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Synaptosomes/metabolism , Synaptosomes/drug effects , Oxidative Stress/drug effects , Mice, Inbred CBA , Male , Ototoxicity/metabolism , Ototoxicity/physiopathology , Mice
19.
Nat Commun ; 15(1): 4100, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773091

In most models of neuronal plasticity and memory, dopamine is thought to promote the long-term maintenance of Long-Term Potentiation (LTP) underlying memory processes, but not the initiation of plasticity or new information storage. Here, we used optogenetic manipulation of midbrain dopamine neurons in male DAT::Cre mice, and discovered that stimulating the Schaffer collaterals - the glutamatergic axons connecting CA3 and CA1 regions - of the dorsal hippocampus concomitantly with midbrain dopamine terminals within a 200 millisecond time-window triggers LTP at glutamatergic synapses. Moreover, we showed that the stimulation of this dopaminergic pathway facilitates contextual learning in awake behaving mice, while its inhibition hinders it. Thus, activation of midbrain dopamine can operate as a teaching signal that triggers NeoHebbian LTP and promotes supervised learning.


Dopamine , Dopaminergic Neurons , Hippocampus , Learning , Long-Term Potentiation , Optogenetics , Ventral Tegmental Area , Animals , Long-Term Potentiation/physiology , Ventral Tegmental Area/physiology , Male , Dopamine/metabolism , Mice , Dopaminergic Neurons/physiology , Dopaminergic Neurons/metabolism , Hippocampus/physiology , Hippocampus/metabolism , Learning/physiology , Mice, Transgenic , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology , Synapses/physiology , Synapses/metabolism , Mice, Inbred C57BL , Memory/physiology
20.
Nature ; 629(8012): 639-645, 2024 May.
Article En | MEDLINE | ID: mdl-38693264

Sleep is a nearly universal behaviour with unclear functions1. The synaptic homeostasis hypothesis proposes that sleep is required to renormalize the increases in synaptic number and strength that occur during wakefulness2. Some studies examining either large neuronal populations3 or small patches of dendrites4 have found evidence consistent with the synaptic homeostasis hypothesis, but whether sleep merely functions as a permissive state or actively promotes synaptic downregulation at the scale of whole neurons is unclear. Here, by repeatedly imaging all excitatory synapses on single neurons across sleep-wake states of zebrafish larvae, we show that synapses are gained during periods of wake (either spontaneous or forced) and lost during sleep in a neuron-subtype-dependent manner. However, synapse loss is greatest during sleep associated with high sleep pressure after prolonged wakefulness, and lowest in the latter half of an undisrupted night. Conversely, sleep induced pharmacologically during periods of low sleep pressure is insufficient to trigger synapse loss unless adenosine levels are boosted while noradrenergic tone is inhibited. We conclude that sleep-dependent synapse loss is regulated by sleep pressure at the level of the single neuron and that not all sleep periods are equally capable of fulfilling the functions of synaptic homeostasis.


Homeostasis , Larva , Neurons , Sleep , Synapses , Wakefulness , Zebrafish , Animals , Zebrafish/physiology , Synapses/metabolism , Synapses/physiology , Sleep/physiology , Neurons/physiology , Neurons/metabolism , Wakefulness/physiology , Larva/physiology , Adenosine/metabolism , Single-Cell Analysis
...