Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 786
Filter
1.
Ann Afr Med ; 23(3): 391-399, 2024 Jul 01.
Article in French, English | MEDLINE | ID: mdl-39034564

ABSTRACT

OBJECTIVES: This study investigated the anti-cryptococcal potential of certain essential oils (EOs)/compounds alone and in combination with fluconazole. MATERIALS AND METHODS: We investigated the antifungal activity of oils of Cinnamomum verum, Cymbopogon citratus, Cymbopogon martini, and Syzygium aromaticum, and their major active ingredients cinnamaldehyde, citral, eugenol, and geraniol against clinical and standard strains of Cryptococcus neoformans (CN). Disc diffusion, broth microdilution, checkerboard methods, and transmission electron microscopy were employed to determine growth inhibition, synergistic interaction, and mechanism of action of test compounds. RESULTS: EOs/compounds showed pronounced antifungal efficacy against azole-resistant CN in the order of cinnamaldehyde > eugenol > S. aromaticum > C. verum > citral > C. citratus > geraniol ≥ C. martini, each exhibiting zone of inhibition >15 mm. These oils/compounds were highly cidal compared to fluconazole. Eugenol and cinnamaldehyde showed the strongest synergy with fluconazole against CN by lowering their MICs up to 32-fold. Transmission electron microscopy indicated damage of the fungal cell wall, cell membrane, and other endomembranous organelles. CONCLUSION: Test oils and their active compounds exhibited potential anti-cryptococcus activity against the azole-resistant strains of CN. Moreover, eugenol and cinnamaldehyde significantly potentiated the anti-cryptococcal activity of fluconazole. It is suggested that multiple sites of action from oils/compounds could turn static fluconazole into a cidal drug combination in combating cryptococcosis.


RésuméObjectifs: Cette étude a étudié le potentiel anti-cryptocoque de certaines huiles essentielles (HE)/composés seuls et en combinaison avec fluconazole. Matériels et méthodes: Nous avons étudié l'activité antifongique des huiles de Cinnamomum verum, Cymbopogon citratus, Cymbopogon martini et Syzygium spiceum , et leurs principaux ingrédients actifs, le cinnamaldéhyde, le citral, l'eugénol et le géraniol, contre les normes cliniques et standards. souches de Cryptococcus neoformans (CN). Diffusion sur disque, microdilution en bouillon, méthodes en damier et microscopie électronique à transmission ont été utilisés pour déterminer l'inhibition de la croissance, l'interaction synergique et le mécanisme d'action des composés testés. Résultats: HE/composés a montré une efficacité antifongique prononcée contre les CN résistantes aux azoles dans l'ordre suivant: cinnamaldéhyde > eugénol > S. spiceum > C. verum > citral > C. citratus > géraniol ≥ C. martini , chacun présentant une zone d'inhibition > 15 mm. Ces huiles/composés étaient hautement cides par rapport au fluconazole. L'eugénol et le cinnamaldéhyde ont montré la synergie la plus forte avec le fluconazole contre le CN en abaissant leurs CMI jusqu'à 32 fois. La microscopie électronique à transmission a indiqué des dommages à la paroi cellulaire fongique, à la membrane cellulaire et à d'autres organites endomembranaires. Conclusion: Les huiles testées et leurs composés actifs ont montré une activité anti-cryptocoque potentielle contre les souches de CN résistantes aux azoles. De plus, l'eugénol et le cinnamaldéhyde ont significativement potentialisé l'activité anticryptococcique du fluconazole. Il est suggéré que plusieurs Les sites d'action des huiles/composés pourraient transformer le fluconazole statique en une combinaison médicamenteuse cide pour lutter contre la cryptococcose.


Subject(s)
Acrolein , Antifungal Agents , Cryptococcus neoformans , Cymbopogon , Drug Resistance, Fungal , Drug Synergism , Eugenol , Fluconazole , Microbial Sensitivity Tests , Oils, Volatile , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/ultrastructure , Fluconazole/pharmacology , Antifungal Agents/pharmacology , Oils, Volatile/pharmacology , Cymbopogon/chemistry , Drug Resistance, Fungal/drug effects , Acrolein/analogs & derivatives , Acrolein/pharmacology , Eugenol/pharmacology , Humans , Acyclic Monoterpenes/pharmacology , Syzygium/chemistry , Cinnamomum zeylanicum/chemistry , Terpenes/pharmacology , Monoterpenes/pharmacology , Microscopy, Electron, Transmission , Plant Oils/pharmacology , Cryptococcosis/drug therapy , Cryptococcosis/microbiology
2.
PLoS One ; 19(6): e0305405, 2024.
Article in English | MEDLINE | ID: mdl-38889118

ABSTRACT

Syzigium aromaticum essential oil (EO), eugenol, and ß-caryophyllene were evaluated regarding antifungal, antibiofilm, and in vitro toxicity. Additionally, in vivo toxicity of EO was observed. Anti-Candida activity was assessed through broth microdilution assay for all compounds. Time-kill assay (0, 1, 10, 30 min, 1, 2, and 4 h) was used to determine the influence of EO and eugenol on Candida Growth kinetics. Thereafter, both compounds were evaluated regarding their capacity to act on a biofilm formation and on mature biofilm, based on CFU/ml/g of dry weight. Cell Titer Blue Viability Assay was used for in vitro cytotoxicity, using oral epithelial cells (TR146) and human monocytes (THP-1). Lastly, Galleria mellonella model defined the EO in vivo acute toxicity. All compounds, except ß-cariofilene (MIC > 8000 µg/ml), presented antifungal activity against Candida strains (MIC 500-1000 µg/ml). The growth kinetics of Candida was affected by the EO (5xMIC 30 min onward; 10xMIC 10 min onward) and eugenol (5xMIC 10 min onward; 10xMIC 1 min onward). Fungal viability was also affected by 5xMIC and 10xMIC of both compounds during biofilm formation and upon mature biofilms. LD50 was defined for TR146 and THP1 cells at, respectively, 59.37 and 79.54 µg/ml for the EO and 55.35 and 84.16 µg/ml for eugenol. No sign of toxicity was seen in vivo up to 10mg/ml (20 x MIC) for the EO. S. aromaticum and eugenol presented antifungal and antibiofilm activity, with action on cell growth kinetics. In vivo acute toxicity showed a safe parameter for the EO up to 10 mg/ml.


Subject(s)
Antifungal Agents , Biofilms , Candida , Eugenol , Microbial Sensitivity Tests , Oils, Volatile , Syzygium , Oils, Volatile/pharmacology , Oils, Volatile/toxicity , Humans , Biofilms/drug effects , Biofilms/growth & development , Candida/drug effects , Candida/growth & development , Syzygium/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/toxicity , Animals , Eugenol/pharmacology , Eugenol/toxicity , Cell Line
3.
PLoS One ; 19(6): e0304863, 2024.
Article in English | MEDLINE | ID: mdl-38905259

ABSTRACT

Echinochloa crus-galli is a serious weed species in rice paddies. To obtain a new potential bioherbicide, we evaluated the inhibitory activities of 13 essential oils and their active substances against E. crus-galli. Essential oil from Syzygium aromaticum (L.) Merr. & L. M. Perry (SAEO) exhibited the highest herbicidal activity (EC50 = 3.87 mg mL-1) among the 13 essential oils evaluated. The SAEO was isolated at six different temperatures by vacuum fractional distillation, including 164°C, 165°C (SAEO-165), 169°C, 170°C 175°C and 180°C. The SAEO-165 had the highest inhibitory rate against E. crus-galli. Gas chromatography-mass spectrometry and high phase liquid chromatography identified eugenol (EC50 = 4.07 mg mL-1), α-caryophyllene (EC50 = 17.34 mg mL-1) and ß-caryophyllene (EC50 = 96.66 mg mL-1) as the three compounds in SAEO. Results from a safety bioassay showed that the tolerance of rice seedling (~ 20% inhibition) was higher than that of E. crus-galli (~ 70% inhibition) under SAEO stress. SAEO induced excessive generation of reactive oxygen species leading to oxidative stress and ultimately tissue damage in E. crus-galli. Our results indicate that SAEO has a potential for development into a new selective bio-herbicide. They also provide an example of a sustainable management strategy for E. crus-galli in rice paddies.


Subject(s)
Echinochloa , Herbicides , Oils, Volatile , Syzygium , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Echinochloa/drug effects , Syzygium/chemistry , Herbicides/pharmacology , Herbicides/chemistry , Gas Chromatography-Mass Spectrometry
4.
Chem Asian J ; 19(14): e202400162, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38705851

ABSTRACT

Hydrotalcite-silver (HT-Ag) nanoparticles have been involved in various daily crucial applications, such as antibacterial, photocatalytic, adsorption, etc. There are many approaches to synthesizing silver nanoparticles (AgNPs) decorated on hydrotalcite (HT) surface and the most used approach is using a strong reducing agent. Thus, affordable but effective "green" reducing agents - Syzygium nervosum leaf extract, are taken into account in this work to solve several issues related to chemical reducing agents. This work aimed to assess the effect of Syzygium nervosum leaf extract as a reducing agent for green synthesis of AgNPs on HT through an optimizing process using response surface methodology (RSM) and the Box-Benken model. The optimal conditions for the synthesis of AgNPs on HT include a reaction time of 6.15 hours, a reaction temperature of 50 °C, and the ratio of diluted Syzygium nervosum leaf extract to reduce AgNO3 of 50.37 mL/mg. Under the optimal conditions, the yield of the reduction reaction reached 77.54 %, close to the theoretical value of 76.97 %. The optimization model was suitable for the experiment data. Besides, the morphology, density, and characteristics of AgNPs on the surface of HT layers have been determined by using Ultraviolet-visible spectroscopy, Field emission scanning electron microscopy (FESEM), High-resolution transmission electron microscopy (HR-TEM), selected area diffraction, X-ray diffraction, Dynamic light scattering (DLS), Infrared (IR) spectroscopy, Fluorescence emission spectroscopy (FE), Brunauer-Emmett-Teller (BET) methods. The spherical AgNPs were synthesized successfully on the surface of HT with the average particle size of 13.0±1.1 nm. Interestingly, HT-Ag hybrid materials can inhibit strongly the growth of E. coli, S. aureus as well as two antibiotic resistance bacterial strains, P. stutzeri B27, and antibiotic resistance E. coli. Especially, the antibacterial activity quantification and durability of the HT-Ag hybrid materials were also tested. Overall, the HT-Ag hybrid materials are very promising for application in material science and biomedicine fields.


Subject(s)
Aluminum Hydroxide , Green Chemistry Technology , Magnesium Hydroxide , Metal Nanoparticles , Plant Extracts , Silver , Syzygium , Silver/chemistry , Metal Nanoparticles/chemistry , Syzygium/chemistry , Magnesium Hydroxide/chemistry , Plant Extracts/chemistry , Aluminum Hydroxide/chemistry , Reducing Agents/chemistry , Plant Leaves/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Particle Size , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Surface Properties
5.
Phytomedicine ; 130: 155540, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38810548

ABSTRACT

BACKGROUND: The aqueous extract of the dried buds of Syzygium aromaticum (SAAE) have the potential to alleviate Helicobacter pylori infection, but the specific molecular mechanism has not been fully elucidated. PURPOSE: This study aimed to investigate the underlying mechanisms of SAAE on H. pylori pathogenicity. METHODS: The inhibitory kinetics and anti-H. pylori adhesive capacity assays were conducted to examine the effects of SAAE on the growth and adhesive capability of H. pylori. The H. pylori outer membrane vesicles (OMVs) were purified from the culture supernatant through high-speed centrifugation, filtration, and two rounds of ultracentrifugation. Their characteristics and protein composition were then identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and qualitative proteomics study. Subsequently, the effect of SAAE on the pathogenicity of H. pylori OMVs was investigated using the Griess reagent assay, enzyme-linked immunosorbent assay (ELISA), quantitative proteomics study, TEM, and western blotting assay. RESULTS: SAAE exhibited inhibitory effects on H. pylori growth and adhesion. The isolated H. pylori OMVs showed particle size of 27-242 nm and Zeta potential of -9.67 ± 0.53 mV. A total of 599 proteins were identified in the OMVs. Proteomics study indicated that the differential expressed proteins induced by OMVs with or without SAAE commonly enriched in P53 and autophagy pathways. Besides, SAAE counteracted the increased production of pro-inflammatory cytokines and attenuated the induction of cell autophagy caused by H. pylori OMVs. Furthermore, SAAE normalized the abnormal regulation of downstream targets (AIFM2 and IGFBP3) in the P53 signaling pathway caused by H. pylori OMVs. CONCLUSION: SAAE can inhibit the growth and adhesion of H. pylori, reduce the inflammation and autophagy induced by H. pylori OMVs, and combated the abnormal regulation of P53 signaling pathway caused by H. pylori OMVs. These findings may help elucidate the mechanisms through which SAAE reduces the pathogenicity of H. pylori.


Subject(s)
Helicobacter pylori , Plant Extracts , Syzygium , Helicobacter pylori/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Syzygium/chemistry , Humans , Bacterial Adhesion/drug effects , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Proteomics , Tumor Suppressor Protein p53/metabolism , Anti-Bacterial Agents/pharmacology , Autophagy/drug effects
6.
Org Lett ; 26(20): 4302-4307, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38728049

ABSTRACT

A plant used in an Indonesian traditional herbal medicine as a diabetes treatment and known locally as "Jampu Salo" was collected on Sulawesi Island, Indonesia. It was identified as Syzygium oblanceolatum (C. B. Rob.) Merr. (Myrtaceae) and found for the first time in Sulawesi; it was previously reported only in the eastern Philippines and Borneo. A phytochemical study of S. oblanceolatum led to the isolation of three unprecedented meroterpenoids, syzygioblanes A-C (1-3, respectively). These compounds might be biosynthesized through [4+2] cycloaddition of various germacrane-based cyclic sesquiterpenoids with the flavone desmethoxymatteucinol to form a spiro skeleton. The unique and complex structures were elucidated by microcrystal electron diffraction analysis in addition to general analytical techniques such as high-resolution mass spectrometry, various nuclear magnetic resonance methods, and infrared spectroscopy. Synchrotron X-ray diffraction and calculations of electronic circular dichroism spectra helped to determine the absolute configurations. The newly isolated compounds exhibited collateral sensitivity to more strongly inhibit the growth of a multidrug resistant tumor cell line compared to a chemosensitive tumor cell line.


Subject(s)
Sesquiterpenes , Syzygium , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Syzygium/chemistry , Molecular Structure , Indonesia , Humans , Flavanones/chemistry , Flavanones/pharmacology , Flavanones/isolation & purification , Medicine, Traditional , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Drug Screening Assays, Antitumor , Cell Line, Tumor
7.
J Agric Food Chem ; 72(18): 10295-10303, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38652776

ABSTRACT

We screened the contact activity of 32 commercial essential oils (EOs) and their synergistic effect with ß-cypermethrin against Blattella germanica. Results showed that the most effective EOs against B. germanica were from Illicium verum, Syzygium aromaticum, and Cinnamomum camphora, with LD50 values of less than 500 µg/insect. The most potent synergistic effects of ß-cypermethrin on B. germanica were from Dysphania ambrosioides and Mentha canadensis. Both oils have a co-toxic factor of 133.33. The results of the major compound testing of the EOs showed that trans-anisaldehyde and thymol have the best insecticidal activity against B. germanica, with LD50 values of 141.30 and 138.61 µg/insect, respectively. The compounds with the best synergistic effect on ß-cypermethrin were γ-terpinene and linalool at a concentration of 0.5%. The co-toxic factors for γ-terpinene and linalool were 150 and 133.33, respectively, which were similar to the synergistic effect observed with 2% piperonyl butoxide.


Subject(s)
Drug Synergism , Insecticides , Oils, Volatile , Pyrethrins , Insecticides/pharmacology , Insecticides/chemistry , Pyrethrins/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Animals , Blattellidae/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry , Syzygium/chemistry
8.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 29-39, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650159

ABSTRACT

Asthma is a chronic inflammatory disease of the airways strongly associated with interleukin-4 (IL-4), a cytokine that mediates and regulates various immune responses, including allergic reactions. This study aimed to evaluate the anti-inflammatory and antioxidant effects of an Aqueous Extract of Clove (AEC) Syzygium aromaticum on the lungs and erythrocytes of an experimental asthma model in Wistar rats. For this purpose, four groups of male rats were examined: control, sensitized with ovalbumin (OVA), treated with AEC, and treated with a combination of OVA/AEC. After treatment, the antioxidant effect was determined by measuring the malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione (GSH), and catalase (CAT) levels. The anti-inflammatory effect was determined by measuring IL-4 levels by performing enzyme-linked immunosorbent assay (ELISA) using serum, lung, and bronchoalveolar lavage fluid (BALF) samples. A significant reduction (p ≤ 0.05) in the MDA levels and a significant increase (p ≤ 0.05) in the levels of GPx and CAT were observed in the lungs of rats treated with cloves. However, no statistically significant variation was observed in GSH levels. In erythrocytes, no statistically significant differences were observed between the experimental batches. Regarding the anti-inflammatory effect, the administration of S. aromaticum extract to sensitized rats resulted in a recovery in the levels of total proteins and IL-4 and a decrease in the three compartments studied (lungs, serum, and bronchoalveolar liquid). These results were confirmed by microscopic examination of lung histological sections. Overall, these findings confirmed that the AEC has anti-inflammatory and antioxidant effects.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Asthma , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Glutathione Peroxidase , Glutathione , Interleukin-4 , Lung , Malondialdehyde , Plant Extracts , Rats, Wistar , Syzygium , Animals , Antioxidants/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Syzygium/chemistry , Male , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/pathology , Bronchoalveolar Lavage Fluid/chemistry , Lung/drug effects , Lung/pathology , Lung/metabolism , Glutathione Peroxidase/metabolism , Glutathione/metabolism , Interleukin-4/metabolism , Interleukin-4/blood , Malondialdehyde/metabolism , Ovalbumin , Catalase/metabolism , Rats , Erythrocytes/drug effects , Erythrocytes/metabolism , Water/chemistry
9.
J Microencapsul ; 41(4): 284-295, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38686964

ABSTRACT

This work aimed to investigate the effectiveness of Lippia sidoides and Syzygium aromaticum essential oils (EOs) encapsulated in nanostructured lipid carriers (NLCs) as SARS-CoV-2 inhibitors through virucidal activity assessment. We developed anionic and cationic NLCs loaded with the EOs and assessed their physicochemical properties and SARS-CoV-2 virucidal activity, focusing on the effects of EO type and the NLCs composition. The NLCs exhibited particle sizes of 141.30 to 160.53 nm for anionic and 109.30 to 138.60 nm for cationic types, with PDIs between 0.16 and 0.25. High zeta potentials (>29.0 in modulus) indicated stable formulations. The NLCs effectively encapsulated the EOs, achieving encapsulation efficiencies between 84.6 to 100% w/w of marker compound. The EOs-loaded NLCs reduced the SARS-CoV-2 virion count, exceeding 2 logs over the control. NLCs loaded with Lippia sidoides and Syzygium aromaticum EOs represent an innovative strategy for combating SARS-CoV-2.


Subject(s)
Antiviral Agents , Drug Carriers , Lipids , Nanostructures , Oils, Volatile , SARS-CoV-2 , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/administration & dosage , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Lipids/chemistry , Drug Carriers/chemistry , Nanostructures/chemistry , Humans , Lippia/chemistry , Syzygium/chemistry , COVID-19 Drug Treatment , Particle Size , Chlorocebus aethiops , Vero Cells , Animals , COVID-19
10.
Z Naturforsch C J Biosci ; 79(7-8): 179-186, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38454808

ABSTRACT

The current study describes the chemical composition, antifungal, antibiofilm, antibacterial and molecular docking studies of Syzygium dyerianum growing in Malaysia. The essential oil was obtained through hydrodistillation and characterized using gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The antifungal and antibacterial activities were developed using the broth microdilution assay, whereas the effect on the microbial biofilms was determined using a semi-quantitative static biofilm assay. A total of 31 components were identified, which represent 99.5 % of the essential oil. The results revealed that the essential oil consisted mainly of ß-pinene (15.6 %), α-terpineol (13.3 %), α-pinene (11.1 %), caryophyllene oxide (8.8 %), limonene (8.1 %), borneol (6.0 %) and viridiflorol (5.1 %). The results of the microdilution method showed that essential oil exhibited activity against Candida albicans and Streptococcus mutans with minimal inhibitory concentration values of 125 and 250 µg/mL, respectively. Furthermore, essential oil decreased the biofilm of C. albicans and S. mutans by 20.11 ± 0.27 % and 32.10 ± 4.81 % when treated with 250 µg/mL. The best docking energy was observed with viridiflorol (-29.7 kJ/mol). This study highlights that essential oil can potentially be a natural antifungal, antibacterial, and antibiofilm agent that could be applied in the pharmaceutical and food industries.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Microbial Sensitivity Tests , Molecular Docking Simulation , Oils, Volatile , Syzygium , Biofilms/drug effects , Biofilms/growth & development , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Candida albicans/drug effects , Candida albicans/growth & development , Syzygium/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Streptococcus mutans/drug effects , Streptococcus mutans/growth & development , Gas Chromatography-Mass Spectrometry
11.
PLoS One ; 19(3): e0298986, 2024.
Article in English | MEDLINE | ID: mdl-38551975

ABSTRACT

Syzygium heyneanum is a valuable source of flavonoids and phenols, known for their antioxidant and neuroprotective properties. This research aimed to explore the potential of Syzygium heyneanum ethanol extract (SHE) in countering Parkinson's disease. The presence of phenols and flavonoids results in SHE displaying an IC50 value of 42.13 when assessed in the DPPH scavenging assay. Rats' vital organs (lungs, heart, spleen, liver, and kidney) histopathology reveals little or almost no harmful effect. The study hypothesized that SHE possesses antioxidants that could mitigate Parkinson's symptoms by influencing α-synuclein, acetylcholinesterase (AChE), TNF-α, and IL-1ß. Both in silico and in vivo investigations were conducted. The Parkinson's rat model was established using paraquat (1 mg/kg, i.p.), with rats divided into control, disease control, standard, and SHE-treated groups (150, 300, and 600 mg/kg) for 21 days. According to the ELISA statistics, the SHE treated group had lowers levels of IL-6 and TNF-α than the disease control group, which is a sign of neuroprotection. Behavioral and biochemical assessments were performed, alongside mRNA expression analyses using RT-PCR to assess SHE's impact on α-synuclein, AChE, TNF-α, and interleukins in brain homogenates. Behavioral observations demonstrated dose-dependent improvements in rats treated with SHE (600 > 300 > 150 mg/kg). Antioxidant enzyme levels (catalase, superoxide dismutase, glutathione) were significantly restored, particularly at a high dose, with notable reduction in malondialdehyde. The high dose of SHE notably lowered acetylcholinesterase levels. qRT-PCR results indicated reduced mRNA expression of IL-1ß, α-synuclein, TNF-α, and AChE in SHE-treated groups compared to disease controls, suggesting neuroprotection. In conclusion, this study highlights Syzygium heyneanum potential to alleviate Parkinson's disease symptoms through its antioxidant and modulatory effects on relevant biomarkers.


Subject(s)
Parkinson Disease , Syzygium , Humans , Rats , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Paraquat/toxicity , Parkinson Disease/drug therapy , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Syzygium/chemistry , Acetylcholinesterase/metabolism , China , Tumor Necrosis Factor-alpha/metabolism , Rodentia , Ethnicity , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Phenols/pharmacology , Flavonoids/pharmacology , RNA, Messenger/metabolism , Oxidative Stress
12.
Int J Biol Macromol ; 263(Pt 1): 130286, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382795

ABSTRACT

This study evaluated the physicochemical and antioxidant properties of clove essential oil (0, 0.2, 0.4, 0.6, 0.8, 1.0 % v/v) nanoemulsion (CEON) loaded chitosan-based films. With the increasing concentrations of the CEON, the thickness, b* and ΔE values of the films increased significantly (P < 0.05), while L* and light transmission dropped noticeably (P < 0.05). The hydrogen bonds formed between the CEON and chitosan could be demonstrated through Fourier-transform infrared spectra, indicating their good compatibility and intermolecular interactions. Furthermore, the added CEON considerably reduced the crystallinity and resulted in a porous structure of the films, as observed through X-ray diffraction plots and scanning electron microscopy images, respectively. This eventually led to a drop in both tensile strength and moisture content of the films. Moreover, the antioxidant properties were significantly enhanced (P < 0.05) with the increase in the amount of clove essential oil (CEO) due to the encapsulation of CEO by the nanoemulsion. Films containing 0.6 % CEO had higher elongation at break, higher water contact angle, lower water solubility, lower water vapor permeability, and lower oxygen permeability than the other films; therefore, such films are promising for application in meat preservation.


Subject(s)
Chitosan , Oils, Volatile , Syzygium , Chitosan/chemistry , Oils, Volatile/pharmacology , Clove Oil/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Syzygium/chemistry , Spectroscopy, Fourier Transform Infrared , Permeability , Food Packaging/methods , Steam
13.
Chem Biodivers ; 21(3): e202400124, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279623

ABSTRACT

Two undescribed triterpenes, syzyfolium A (1) and syzyfolium B (2), together with twelve known compounds, terminolic acid (3), actinidic acid (4), piscidinol A (5), threo-dihydroxydehydrodiconiferyl alcohol (6), lariciresinol-4-O-ß-D-glucoside (7), icariol A2 (8), 14ß,15ß-dihydroxyklaineanone (9), garcimangosone D (10), (+)-catechin (11), myricetin-3-O-α-L-rhamnopyranoside (12), quercitrin (13), and 3, 4, 5-trimethoxyphenyl-(6'-O-galloyl)-O-ß-D-glucopyranoside (14) were isolated from the leaves of Syzygium myrsinifolium. Their chemical structures were determined by IR, HR-ESI-MS, 1D and 2D NMR spectra. Compounds 3 and 4 inhibited significantly α-glucosidase with IC50 values of 23.99 and 36.84, respectively, and compounds 1 and 2 inhibited significantly α-amylase with IC50 values of 35.48 and 43.65 µM, respectively.


Subject(s)
Syzygium , Triterpenes , Syzygium/chemistry , alpha-Glucosidases , Plant Extracts/pharmacology , Triterpenes/pharmacology , alpha-Amylases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry
14.
Int J Biol Macromol ; 258(Pt 2): 129168, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171432

ABSTRACT

Tyrosinase is a key enzyme in enzymatic browning, causing quality losses in food through the oxidation process. Thus, the discovery of an effective and natural tyrosinase inhibitor via green technology is of great interest to the global food market due to food security and climate change issues. In this study, Syzygium aqueum (S. aqueum) leaves, which are known to be rich in phenolic compounds (PC), were chosen as a natural source of tyrosinase inhibitor, and the effect of the sustainable, supercritical fluid extraction (SFE) process was evaluated. Response surface methodology-assisted supercritical fluid extraction (RSM-assisted SFE) was utilized to optimize the PCs extracted from S. aqueum. The highest amount of PC was obtained at the optimum conditions (55 °C, 3350 psi, and 70 min). The IC50 (661.815 µg/mL) of the optimized extract was evaluated, and its antioxidant activity (96.8 %) was determined. Gas chromatography-mass spectrometry (GC-MS) results reveal that 2',6'-dihydroxy-4'-methoxychalcone (2,6-D4MC) (82.65 %) was the major PC in S. aqueum. Chemometric analysis indicated that 2,6-D4MC has similar chemical properties to the tyrosinase inhibitor control (kaempferol). The toxicity and physiochemical properties of the novel 2,6-D4MC from S. aqueum revealed that the 2,6-D4MC is safer than kaempferol as predicted via absorption, distribution, metabolism, and excretion (ADME) evaluation. Enzyme kinetic analysis shows that the type of inhibition of the optimized extract is non-competitive inhibition with Km = 1.55 mM and Vmax = 0.017 µM/s. High-performance liquid chromatography (HPLC) analysis shows the effectiveness of S. aqueum as a tyrosinase inhibitor. The mechanistic insight of the tyrosinase inhibition using 2,6-D4MC was successfully calculated using density functional theory (DFT) and molecular docking approaches. The findings could have a significant impact on food security development by devising a sustainable and effective tyrosinase inhibitor from waste by-products that is aligned with the United Nation's SDG 2, zero hunger.


Subject(s)
Chromatography, Supercritical Fluid , Syzygium , Monophenol Monooxygenase , Syzygium/chemistry , Chemometrics , Kaempferols , Chromatography, Supercritical Fluid/methods , Molecular Docking Simulation , Kinetics , Plant Extracts/chemistry
15.
J Asian Nat Prod Res ; 26(1): 38-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190257

ABSTRACT

Guided by 1H NMR spectroscopic experiments using the characteristic enol proton signals as probes, three pairs of new tautomeric cinnamoylphloroglucinol-monoterpene adducts (1-3) were isolated from the buds of Cleistocalyx operculatus. Their structures with absolute configurations were established by spectroscopic analysis, modified Mosher's method, and quantum chemical electronic circular dichroism calculation. Compounds 1-3 represent a novel class of cinnamoylphloroglucinol-monoterpene adducts featuring an unusual C-4-C-1' linkage between 2,2,4-trimethyl-cinnamyl-ß-triketone and modified linear monoterpenoid motifs. Notably, compounds 1-3 exhibited significant in vitro antiviral activity against respiratory syncytial virus (RSV).


Subject(s)
Syzygium , Syzygium/chemistry , Monoterpenes/chemistry , Magnetic Resonance Spectroscopy , Antiviral Agents/chemistry , Molecular Structure
16.
Environ Toxicol ; 39(3): 1086-1098, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37815491

ABSTRACT

Metabolic disorders are majorly associated with insulin resistance and an impaired glucose tolerance. Since, many of the currently available drugs exhibit adverse effects and are resistant to therapies, natural products are a promising alternate in the alleviation of complex metabolic disorders. In the current study, Syzygium cumini methanolic extract (SCE) was investigated for its anti-diabetic and anti-adipogenic potential using C57BL/6 mice fed on high fat diet (HFD). The HFD fed obese mice were treated with 200 mg/kg SCE and compared with positive controls Metformin, Pioglitazone and Sodium Orthovanadate. The biometabolites in SCE were characterized using Fourier transform infrared and gas chromatography and mass spectroscopy. A reduction in blood glucose levels with improved insulin sensitivity and glucose tolerance was observed in SCE-treated HFD obese mice. Histopathological and biochemical investigations showed a reduction in hepatic injury and nephrotoxicity in SCE-administered HFD mice. Results showed inhibition of PTP1B and an upregulation of IRS1 and PKB-mediated signaling in skeletal muscle. A significant decrease in lipid markers such as TC, TG, LDL-c and VLDL-c levels were observed with increased HDL-c in SCE-treated HFD mice. A significant decrease in weight and adiposity was observed in SCE-administered HFD mice in comparison to controls. This decrease could be due to the partial agonism of PPARγ and an increased expression of adiponectin, an insulin sensitizer. Hence, the dual-modulatory effect of SCE, partly due to the presence of 26% Pyrogallol, could be useful in the management of diabetes and its associated maladies.


Subject(s)
Glucose Intolerance , Insulin Resistance , Syzygium , Mice , Animals , Diet, High-Fat , PPAR gamma , Syzygium/chemistry , Syzygium/metabolism , Mice, Obese , Mice, Inbred C57BL , Weight Gain , Insulin/metabolism
17.
Plant Foods Hum Nutr ; 79(1): 73-82, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38006459

ABSTRACT

Fruits of Syzygium jambos (L.) are recognized as a "food", exhibiting significant antidiabetic activities. However, the α-glucosidase inhibition of the components from Syzygium jambos (L.) have not yet been investigated. In this study, a total of 14 compounds were isolated from Syzygium jambos (L.) Alston, eight of which showed significant inhibitory effects on α-glucosidase, with IC50 values in the range of 0.011-0.665 mM. Notably, compounds 1-3 (IC50: 0.013, 0.011 and 0.030 mM, respectively) exhibited much stronger activity than acarbose (IC50: 2.329 ± 0.109 mM). The enzyme kinetics study indicated that compound 1 was an uncompetitive inhibitor, and compounds 2-8 were mixed-type inhibitors. Moreover, the interactions between compounds and α-glucosidase were investigated by molecular docking, which further revealed that the number of olefin double bonds and 2-COOH of heptadeca-phenols had a notable effect on the α-glucosidase inhibitory activity. This study demonstrated that Syzygium jambos (L.) fruit might serve as a functional food for the prevention of diabetes mellitus.


Subject(s)
Syzygium , Syzygium/chemistry , Molecular Docking Simulation , alpha-Glucosidases/metabolism , Enzyme Inhibitors , Spectrum Analysis , Glycoside Hydrolase Inhibitors/pharmacology , Kinetics
18.
Food Chem ; 440: 138245, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38159320

ABSTRACT

This study aimed to prepare a novel emulsion film with high stability, using soy protein-derived amyloid fibrils (SAFs) as an emulsifier incorporating clove essential oil (CEO) as the active component, and the polyvinyl alcohol (PVA) matrix to stabilize the system. The results demonstrated that SAFs can successfully stabilize CEO. Emulsion prepared by SAFS and CEO (SAC) exhibited a small droplet size and better dispersibility compared with SPI and CEO (SC) emulsion. According to FT-IR results, PVA addition increased the hydrogen bond interactions among emulsion film components, thus further reinforcing the protein matrix, increasing the tensile strength (TS) (41.18 MPa) and elongation at break (E) (121.62 %) of the films. The uniform appearance of SAC-PVA (SACP) emulsion films was confirmed by SEM images. Furthermore, SACP emulsion films show distinctive barrier properties, optical properties, and outstanding antioxidant properties. Finally, emulsion films exhibited excellent preservation of strawberries, resulting in an effective decline of the decay rate.


Subject(s)
Oils, Volatile , Syzygium , Clove Oil/chemistry , Oils, Volatile/chemistry , Soybean Proteins/chemistry , Polyvinyl Alcohol/chemistry , Syzygium/chemistry , Emulsions/chemistry , Amyloid , Spectroscopy, Fourier Transform Infrared , Food Packaging/methods
19.
J Physiol Pharmacol ; 74(5)2023 Oct.
Article in English | MEDLINE | ID: mdl-38085521

ABSTRACT

Clove plant (Syzygium aromaticum) is one of the Myrtaceae family. It's a common flavor in food and the traditional medicine. The study's objective was to ascertain whether the clove bud aqueous extract (CAE) and CAE + nanosilver have any biological effects on immune cells and HT-29 colon cancer cell line. Nanosilver was produced through green synthesis approach using CAE. Produced nanosilver was characterized via electron microscope (scanning, SEM) and ultraviolet-visible spectroscopy. CAE and CAE + nanosilver were examined for their active biomolecules using FTIR analysis, p53 contents using real-time PCR, apoptosis and cell cycle arrest power on HT-29 cancer cell line via flow cytometerty and immunomodulatory potential utilizing MTT assay. Results cleared that a spherical nanosilver with a diameter range of 53 nm was formed by CAE. There were several active biomolecules in CAE and CAE + nanosilver. CAE and CAE + nanosilver increased the p53 protein expression and apoptotic cell number in HT-29 colon cancer cells. CAE and CAE + nanosilver could arrest HT-29 cells at the phase G2/M. CAE and CAE + nanosilver stimulated quiescent and PHA-pre-treated splenic cells at higher concentrations, and CAE suppressed quiescent splenic cell when diluted. In conclusion, the safe edible Syzygium aromaticum plant can be utilized to make anti-tumor agent, essentially for colon tumor. As Syzygium aromaticum plant could stimulate immune cells, it can be used as immune-stimulatory agent that can help fight tumor and tumor development.


Subject(s)
Colonic Neoplasms , Metal Nanoparticles , Syzygium , Humans , Silver/pharmacology , Silver/chemistry , Syzygium/chemistry , Tumor Suppressor Protein p53 , Plant Extracts/pharmacology , Plant Extracts/chemistry
20.
Molecules ; 28(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067590

ABSTRACT

Syzygium cumini L. is an evergreen tree belonging to family Myrtaceae, employed for different traditional uses like diabetes, inflammation, and fever. The current study aimed to compare the chemical compositions of the essential oils (EOs) isolated from different organs of Syzygium cumini (leaves (Scl), fruits (Scf), seeds (Scs), and bark (Scb)) using a GC/MS analysis. Also, a chemometric analysis was applied to explore the main similarities and differences among different organs using a Principal Component Analysis (PCA) and a hierarchal cluster analysis (HCA). Furthermore, in vitro antiaging activities were investigated via anti-collagenase, anti-elastase, and anti-hyaluronidase assays. The GC-MS analysis revealed 82 compounds representing 92.13%, 99.42%, 100%, and 92.97% in Scl, Scf, Scs, and Scb, respectively. The predominant components were α-pinene, ß-pinene, (E)-ß-caryophyllene, α-caryophyllene, caryophyllene oxide, and α-humulene epoxide II with variable percentages. All EOs were positioned on positive PC1, except for Scs, which was positioned on the negative side in a separate quadrant. The HCA dendrogram displayed the closeness of Scl and Scb, which was not clearly recognized in the PCA score plot. Moreover, the Scs oils were totally discriminated from other parts. The Scl and Scs oils showed superior anti-collagenase, anti-elastase, and anti-hyaluronidase activities. Thus, S. cumini oils should be considered for cosmetic preparations to retard skin aging manifestations.


Subject(s)
Myrtaceae , Oils, Volatile , Syzygium , Oils, Volatile/chemistry , Syzygium/chemistry , Gas Chromatography-Mass Spectrometry , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL