Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.859
Filter
1.
Drug Des Devel Ther ; 18: 2775-2791, 2024.
Article in English | MEDLINE | ID: mdl-38984208

ABSTRACT

Background: Psoriasis is a common chronic inflammatory skin condition. The emergence of psoriasis has been linked to dysbiosis of the microbiota on the skin surface and an imbalance in the immunological microenvironment. In this study, we investigated the therapeutic impact of topical thymopentin (TP5) on imiquimod (IMQ)-induced psoriasis in mice, as well as the modulatory influence of TP5 on the skin immune milieu and the skin surface microbiota. Methods: The IMQ-induced psoriasis-like lesion mouse model was used to identify the targets and molecular mechanisms of TP5. Immunofluorescence was employed to identify differences in T-cell subset expression before and after TP5 therapy. Changes in the expression of NF-κB signaling pathway components were assessed using Western blotting (WB). 16S rRNA sequencing and network pharmacology were used to detect changes in the skin flora before and after TP5 administration. Results: In vivo, TP5 reduced IMQ-induced back inflammation in mice. H&E staining revealed decreased epidermal thickness and inflammatory cell infiltration with TP5. Masson staining revealed decreased epidermal and dermal collagen infiltration after TP5 administration. Immunohistochemistry showed that TP5 treatment dramatically reduced IL-17 expression. Results of the immunoinfiltration analyses showed psoriatic lesions with more T-cell subsets. According to the immunofluorescence results, TP5 dramatically declined the proportions of CD4+, Th17, ROR+, and CD8+ T cells. WB revealed that TP5 reduced NF-κB pathway expression in skin tissues from IMQ-induced psoriasis model mice. 16S rRNA sequencing revealed a significant increase in Burkholderia and Pseudomonadaceae_Pseudomonas and a significant decrease in Staphylococcaceae_Staphylococcus, Aquabacterium, Herbaspirillum, and Balneimonas. Firmicutes dominated the skin microbial diversity after TP5 treatment, while Bacteroidetes, Verrucomicrobia, TM7, Proteobacteria, Actinobacteria, Acidobacteria, Gemmatimonadetes, and other species dominated in the IMQ group. Conclusion: TP5 may treat psoriasis by modulating the epidermal flora, reducing NF-κB pathway expression, and influencing T-cell subsets.


Subject(s)
Imiquimod , Psoriasis , Skin , Thymopentin , Psoriasis/drug therapy , Psoriasis/chemically induced , Psoriasis/immunology , Psoriasis/pathology , Animals , Mice , Skin/drug effects , Skin/pathology , Imiquimod/pharmacology , Thymopentin/pharmacology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Disease Models, Animal , Mice, Inbred BALB C , Female , Microbiota/drug effects , Male , Mice, Inbred C57BL
2.
Oncoimmunology ; 13(1): 2371575, 2024.
Article in English | MEDLINE | ID: mdl-38952673

ABSTRACT

The role of CD161+CD127+CD8+ T cells in non-small cell lung cancer (NSCLC) patients with diabetes remains unexplored. This study determined the prevalence, phenotype, and function of CD8+ T cell subsets in NSCLC with diabetes. We recruited NSCLC patients (n = 436) treated with anti-PD-1 immunotherapy as first-line treatment. The progression-free survival (PFS), overall survival (OS), T cells infiltration, and peripheral blood immunological characteristics were analyzed in NSCLC patients with or without diabetes. NSCLC patients with diabetes exhibited shorter PFS and OS (p = 0.0069 and p = 0.012, respectively) and significantly lower CD8+ T cells infiltration. Mass cytometry by time-of-flight (CyTOF) showed a higher percentage of CD161+CD127+CD8+ T cells among CD8+T cells in NSCLC with diabetes before anti-PD-1 treatment (p = 0.0071) than that in NSCLC without diabetes and this trend continued after anti-PD-1 treatment (p = 0.0393). Flow cytometry and multiple-immunofluorescence confirmed that NSCLC with diabetes had significantly higher CD161+CD127+CD8+ T cells to CD8+T cells ratios than NSCLC patients without diabetes. The RNA-sequencing analysis revealed immune-cytotoxic genes were reduced in the CD161+CD127+CD8+ T cell subset compared to CD161+CD127-CD8+ T cells in NSCLC with diabetes. CD161+CD127+CD8+ T cells exhibited more T cell-exhausted phenotypes in NSCLC with diabetes. NSCLC patients with diabetes with ≥ 6.3% CD161+CD127+CD8+ T cells to CD8+T cells ratios showed worse PFS. These findings indicate that diabetes is a risk factor for NSCLC patients who undergo anti-PD-1 immunotherapy.CD161+CD127+CD8+ T cells could be a key indicator of a poor prognosis in NSCLC with diabetes. Our findings would help in advancing anti-PD-1 therapy in NSCLC patients with diabetes.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/drug therapy , Male , Female , CD8-Positive T-Lymphocytes/immunology , Middle Aged , Aged , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Interleukin-7 Receptor alpha Subunit/metabolism , Diabetes Mellitus/immunology , Diabetes Mellitus/drug therapy , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/drug effects , Prognosis , Adult
3.
Front Immunol ; 15: 1325356, 2024.
Article in English | MEDLINE | ID: mdl-38835766

ABSTRACT

Introduction: Circulating T follicular helper (cTfh) cells and circulating T peripheral helper (cTph) cells (which share common characteristics with the cTfh population) are implicated in the pathogenesis of immune-mediated and autoimmune diseases such as psoriasis (Ps). Their close interplay with the interleukin 17 (IL-17) axis and the ex vivo effect of IL-17-targeting biologic agents used to treat Ps on them are elusive. This study aimed to investigate the effect of biologics targeting IL-17 on cTfh and cTph cell subpopulations isolated from the blood of patients with Ps. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from patients with Ps at treatment initiation and three months later. Samples were also collected from controls. Cells were stained using monoclonal antibodies. Flow cytometry assessed the fraction of cTfh (CD3+CD4+CXCR5+) and cTph (CD3+CD4+CXCR5-PD-1hi) cells.. Results: Flow cytometric analysis showed increased fractions of activated cTfh subsets including ICOS+ and ICOS+PD-1+ expressing cells, in patients compared to controls. Biologic blocking of IL-17A diminished the cTfh population. Furthermore, ICOS+ and ICOS+PD-1+ sub-populations were also inhibited. Finally, the cTph cell fraction significantly decreased after three months of successful treatment with biologics. Conclusion: Early anti-IL-17-mediated clinical remission in Ps is associated with decreased cTfh and cTph cell subpopulations.


Subject(s)
Biological Products , Interleukin-17 , Psoriasis , Humans , Psoriasis/immunology , Psoriasis/drug therapy , Male , Female , Interleukin-17/metabolism , Interleukin-17/antagonists & inhibitors , Adult , Middle Aged , Biological Products/therapeutic use , Biological Products/pharmacology , T Follicular Helper Cells/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/drug effects
4.
Oncoimmunology ; 13(1): 2355684, 2024.
Article in English | MEDLINE | ID: mdl-38798746

ABSTRACT

Identifying tumor-relevant T cell subsets in the peripheral blood (PB) has become a potential strategy for cancer treatment. However, the subset of PB that could be used to treat cancer remains poorly defined. Here, we found that the CX3CR1+ T cell subset in the blood of patients with lung cancer exhibited effector properties and had a higher TCR matching ratio with tumor-infiltrating lymphocytes (TILs) compared to CX3CR1- T cells, as determined by paired single-cell RNA and TCR sequencing. Meanwhile, the anti-tumor activities, effector cytokine production, and mitochondrial function were enhanced in CX3CR1+ T cells both in vitro and in vivo. However, in the co-culture system of H322 cells with T cells, the percentages of apoptotic cells and Fas were substantially higher in CX3CR1+ T cells than those in CX3CR1- T cells. Fas-mediated apoptosis was rescued by treatment with an anti-PD-1 antibody. Accordingly, the combination of adoptive transfer of CX3CR1+ T cells and anti-PD-1 treatment considerably decreased Fas expression and improved the survival of lung xenograft mice. Moreover, an increased frequency of CX3CR1+ T cells in the PB correlated with a better response and prolonged survival of patients with lung cancer who received anti-PD-1 therapy. These findings indicate the promising potential of adoptive transfer of peripheral CX3CR1+ T cells as an individual cancer immunotherapy.


Subject(s)
CX3C Chemokine Receptor 1 , Immune Checkpoint Inhibitors , Lung Neoplasms , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , CX3C Chemokine Receptor 1/metabolism , Humans , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Female , Apoptosis/drug effects , Male , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
5.
J Neuroinflammation ; 21(1): 112, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684986

ABSTRACT

BACKGROUND: Dimethyl fumarate (DMF) is a fumaric acid ester that exhibits immunoregulatory and anti-inflammatory properties. However, the function of DMF in autoimmune uveitis (AU) is incompletely understood, and studies comprehensively exploring the impact of DMF on immune cells are still lacking. METHODS: To explore the function of DMF in uveitis and its underlying mechanisms, we conducted single-cell RNA sequencing (scRNA-seq) on the cervical draining lymph node (CDLN) cells of normal, experimental autoimmune uveitis (EAU), and DMF-treated EAU mice. Additionally, we integrated scRNA-seq data of the retina and CDLNs to identify the potential impact of DMF on ocular immune cell infiltration. Flow cytometry was conducted to verify the potential target molecules of DMF. RESULTS: Our study showed that DMF treatment effectively ameliorated EAU symptoms. The proportional and transcriptional alterations in each immune cell type during EAU were reversed by DMF treatment. Bioinformatics analysis in our study indicated that the enhanced expression of Pim1 and Cxcr4 in EAU was reversed by DMF treatment. Further experiments demonstrated that DMF restored the balance between effector T (Teff) /regulatory T (Treg) cells through inhibiting the pathway of PIM1-protein kinase B (AKT)-Forkhead box O1 (FOXO1). By incorporating the scRNA-seq data of the retina from EAU mice into analysis, our study identified that T cells highly expressing Pim1 and Cxcr4 were enriched in the retina. DMF repressed the ocular infiltration of Teff cells, and this effect might depend on its inhibition of PIM1 and CXCR4 expression. Additionally, our study indicated that DMF might reduce the proportion of plasma cells by inhibiting PIM1 expression in B cells. CONCLUSIONS: DMF effectively attenuated EAU symptoms. During EAU, DMF reversed the Teff/Treg cell imbalance and suppressed the ocular infiltration of Teff cells by inhibiting PIM1 and CXCR4 expression. Thus, DMF may act as a new drug option for the treatment of AU.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Autoimmune Diseases , Dimethyl Fumarate , Immunosuppressive Agents , Retina , Uveitis , Dimethyl Fumarate/administration & dosage , Dimethyl Fumarate/pharmacology , Uveitis/genetics , Uveitis/immunology , Uveitis/therapy , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Single-Cell Gene Expression Analysis , Disease Models, Animal , Animals , Mice , Female , Mice, Inbred C57BL , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , Transcription, Genetic , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , Atlases as Topic , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Retina/drug effects , Retina/immunology , Lymph Nodes/drug effects , Lymph Nodes/immunology
6.
Front Immunol ; 14: 1125111, 2023.
Article in English | MEDLINE | ID: mdl-37122748

ABSTRACT

Introduction: Immunotherapies have improved the prognosis of many cancer patients including patients with advanced melanoma. Immune checkpoint receptors including CTLA-4 and PD-1 have been established as main therapeutic targets for immunotherapy of melanoma. Although monotherapy is effective in melanoma patients, a dual therapy approach has been shown to be most effective. Dual checkpoint blockade, however, increases substantially the risk for immune-related adverse events (irAEs). Methods: In this study, we characterized peripheral immune cell subsets in patients with anti-PD-1 monotherapy and with dual immune receptors blockade targeting PD-1 and CTLA-4. Results: We found differences in peripheral T cells between patients who developed severe immune-related side effects and patients with mild irAEs. We identified several mainly changes in CD8+ T cell subsets in patients with severe irAE under dual PD-1 and CTLA-4 blockade. Discussion: This work suggests that peripheral immune cell dynamics could be associated with severe immune-related side effects in patients receiving immune checkpoint inhibitors. These changes could be used as future biomarkers in early diagnosis of irAEs.


Subject(s)
CTLA-4 Antigen , Immune Checkpoint Inhibitors , Melanoma , Programmed Cell Death 1 Receptor , T-Lymphocyte Subsets , Female , Humans , Male , CTLA-4 Antigen/antagonists & inhibitors , Drug Therapy, Combination , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Melanoma/immunology , Melanoma/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , Biomarkers
7.
EBioMedicine ; 80: 104013, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35504178

ABSTRACT

BACKGROUND: We recently showed that interleukin (IL)-6 inhibition by tocilizumab improves myocardial salvage in ST-elevation myocardial infarction (STEMI). However, the mechanisms for this effect are not clear. METHODS: In this exploratory sub-study of the ASSAIL-MI trial, we examined leukocyte differential counts and their relation to myocardial salvage and peak troponin T (TnT) in STEMI patients randomised to tocilizumab (n = 101) or placebo (n = 98). We performed RNA-sequencing on whole blood (n = 40) and T cells (n = 20). B and T cell subpopulations were examined by flow cytometry (n = 69). FINDINGS: (i) STEMI patients had higher neutrophil counts at hospitalisation compared with stable angina patients. (ii) After percutaneous coronary intervention there was a gradual decline in neutrophils, which was significantly more pronounced in the tocilizumab group. (iii) The decrease in neutrophils in the tocilizumab group was associated with improved myocardial salvage and lower peak TnT. (iv) RNA-sequencing suggested that neutrophil function was also attenuated by tocilizumab. (v) B and T cell sub-populations changed only minimally after STEMI with minor effects of tocilizumab, supported as well by RNA-sequencing analyses of T cells. (vi) However, a low CD8+ count was associated with improved myocardial salvage in patients admitted to the hospital > 3 h after symptom onset. INTERPRETATION: Tocilizumab induced a rapid reduction in neutrophils and seemed to attenuate neutrophil function in STEMI patients potentially related to the beneficial effects of tocilizumab on myocardial salvage. FUNDING: South-Eastern Norway Regional Health Authority (Nos. 2019067, 2017084), the Central Norway Regional Health Authority and Norwegian Research Council (No. 283867).


Subject(s)
Antibodies, Monoclonal, Humanized , Interleukin-6 , Leukocytes , Neutrophils , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , T-Lymphocyte Subsets , Antibodies, Monoclonal, Humanized/pharmacology , Humans , Interleukin-6/antagonists & inhibitors , Leukocytes/drug effects , Lymphocyte Count , Myocardium , Neutrophils/drug effects , Percutaneous Coronary Intervention/adverse effects , RNA , Randomized Controlled Trials as Topic , ST Elevation Myocardial Infarction/blood , ST Elevation Myocardial Infarction/diagnosis , ST Elevation Myocardial Infarction/drug therapy , T-Lymphocyte Subsets/drug effects , Treatment Outcome
8.
J Virol ; 96(10): e0037922, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35499323

ABSTRACT

HIV integrates into the host genome, creating a viral reservoir of latently infected cells that persists despite effective antiretroviral treatment. CD4-positive (CD4+) T cells are the main contributors to the HIV reservoir. CD4+ T cells are a heterogeneous population, and the mechanisms of latency establishment in the different subsets, as well as their contribution to the reservoir, are still unclear. In this study, we analyzed HIV latency establishment in different CD4+ T cell subsets stimulated with interleukin 15 (IL-15), a cytokine that increases both susceptibility to infection and reactivation from latency. Using a dual-reporter virus that allows discrimination between latent and productive infection at the single-cell level, we found that IL-15-treated primary human CD4+ T naive and CD4+ T stem cell memory (TSCM) cells are less susceptible to HIV infection than CD4+ central memory (TCM), effector memory (TEM), and transitional memory (TTM) cells but are also more likely to harbor transcriptionally silent provirus. The propensity of these subsets to harbor latent provirus compared to the more differentiated memory subsets was independent of differential expression of pTEFb components. Microscopy analysis of NF-κB suggested that CD4+ T naive cells express smaller amounts of nuclear NF-κB than the other subsets, partially explaining the inefficient long terminal repeat (LTR)-driven transcription. On the other hand, CD4+ TSCM cells display similar levels of nuclear NF-κB to CD4+ TCM, CD4+ TEM, and CD4+ TTM cells, indicating the availability of transcription initiation and elongation factors is not solely responsible for the inefficient HIV gene expression in the CD4+ TSCM subset. IMPORTANCE The formation of a latent reservoir is the main barrier to HIV cure. Here, we investigated how HIV latency is established in different CD4+ T cell subsets in the presence of IL-15, a cytokine that has been shown to efficiently induce latency reversal. We observed that, even in the presence of IL-15, the less differentiated subsets display lower levels of productive HIV infection than the more differentiated subsets. These differences were not related to different expression of pTEFb, and modest differences in NF-κB were observed for CD4+ T naive cells only, implying the involvement of other mechanisms. Understanding the molecular basis of latency establishment in different CD4+ T cell subsets might be important for tailoring specific strategies to reactivate HIV transcription in all the CD4+ T subsets that compose the latent reservoir.


Subject(s)
CD4-Positive T-Lymphocytes , HIV Infections , Interleukin-15 , Virus Latency , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , HIV Infections/immunology , HIV Infections/virology , HIV-1 , Humans , Interleukin-15/pharmacology , NF-kappa B/metabolism , Proviruses , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/virology
9.
Biomed Pharmacother ; 148: 112768, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35247717

ABSTRACT

Pulmonary fibrosis induced by silica particles is defined as silicosis, which is an incurable disease. The pathogenesis of silicosis is not completely clear, but it's certain that immune system dysfunction is closely related to it. Immune checkpoint inhibitors (ICIs) are emerging immunotherapeutic agents that mainly target adaptive immune cells, and there is abundant evidence that ICIs are of great value in cancer treatment. However, whether these attractive agents can be implemented in silicosis treatment is unclear. In this study, we explored the efficacy of small molecule inhibitors targeted PD-1/PD-L1 and CTLA-4 on silica-induced pulmonary fibrosis in mice. ICIs were injected intraperitoneally into mice that received silica instillation twice a week. The mice were sacrificed 7 and 28 days after the injection. The lungs, spleen, hilar lymph nodes, thymus, and peripheral blood of mice were collected and subjected to histological examination, flow cytometry analysis, and mRNA and protein quantification. Our results demonstrated that silica exposure caused damage to multiple immune organs in mice, leading to an imbalance in systemic immune homeostasis. Specifically, proportions and subtypes of T and B cells were significantly altered, and the expressions of PD-1, PD-L1 and CTLA-4 were abnormal on these cells. Both PD-1/PD-L1 and CTLA-4 inhibitor administration modulated silica-induced immune system disruption, however, only PD-1/PD-L1 signaling inhibition showed significant amelioration of silicosis. Our findings confirmed for the first time the potential value of ICIs for the treatment of silica-induced pulmonary fibrosis, and this may provide new ideas for the treatment of other fibrosis-related diseases.


Subject(s)
Immune Checkpoint Inhibitors/pharmacology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Silicon Dioxide/adverse effects , Animals , B-Lymphocyte Subsets/drug effects , B7-H1 Antigen/drug effects , CTLA-4 Antigen/drug effects , Homeostasis/drug effects , Male , Mice , Mice, Inbred C57BL , Multiple Organ Failure/chemically induced , Multiple Organ Failure/pathology , Programmed Cell Death 1 Receptor/drug effects , RNA, Messenger , T-Lymphocyte Subsets/drug effects
10.
Comput Math Methods Med ; 2022: 2910782, 2022.
Article in English | MEDLINE | ID: mdl-35313462

ABSTRACT

Background: Many studies have demonstrated that vitamin D has clinical benefits when used to treat patients with chronic obstructive pulmonary disease (COPD). However, most of these studies have insufficient samples or inconsistent results. The aim of this meta-analysis was to evaluate the effects of vitamin D therapy in patients with COPD. Methods: We performed a comprehensive retrieval in the following electronic databases: PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang Data, and Chinese Scientific Journals Database (VIP). Two trained reviewers identified relevant studies, extracted data information, and then assessed the methodical quality by the Cochrane risk of bias assessment tool, independently. Then, the meta-analyses were conducted by RevMan 5.4, binary variables were represented by risks ratio (RR), and continuous variables were represented by mean difference (MD) or standardized mean difference (SMD) to assess the efficacy of vitamin D therapy in patients with COPD. Then, publication bias assessment was conducted by funnel plot analysis. Finally, the quality of evidence was assessed by the GRADE system. Results: A total of 15 articles involving 1598 participants were included in this study. The overall results showed a statistical significance of vitamin D therapy in patients with COPD which can significantly improve forced expiratory volume in 1 second (FEV1) (MD: 5.69, 95% CI: 5.01-6.38,P < 0.00001,I2 = 51%) and FEV1/FVC (SMD:0.49, 95% CI: 0.39-0.60,P < 0.00001,I2 = 84%); and serum 25 (OH)D (SMD:1.21, 95% CI:1.07-1.34,P < 0.00001,I2 = 98%) also increase CD3+ Tcells (MD: 6.67, 95% CI: 5.34-8.00,P < 0.00001,I2 = 78%) and CD4+ T cells (MD: 6.00, 95% CI: 5.01-7.00,P < 0.00001,I2 = 65%); and T lymphocyte CD4+/CD8+ ratio (MD: 0.41, 95% CI: 0.20-0.61,P = 0.0001,I2 = 95%) obviously decrease CD8+ Tcells(SMD: -0.83, 95% CI: -1.05- -0.06,P < 0.00001,I2 = 82%), the times of acute exacerbation (RR: 0.40, 95% CI: 0.28-0.59,P < 0.00001,I2 = 0%), and COPD assessment test (CAT) score (MD: -3.77, 95% CI: -5.86 - -1.68,P = 0.0004,I2 = 79%). Conclusions: Our analysis indicated that vitamin D used in patients with COPD could improve the lung function (FEV1 and FEV1/FVC), the serum 25(OH)D, CD3+ T cells, CD4 + T cells, and T lymphocyte CD4+/CD8+ ratio and reduce CD8+ T cells, acute exacerbation, and CAT scores.


Subject(s)
Pulmonary Disease, Chronic Obstructive/drug therapy , Vitamin D/therapeutic use , Computational Biology , Forced Expiratory Volume/drug effects , Humans , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/physiopathology , Respiratory Function Tests , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , Vital Capacity/drug effects
11.
Neuropathol Appl Neurobiol ; 48(2): e12768, 2022 02.
Article in English | MEDLINE | ID: mdl-34543449

ABSTRACT

BACKGROUND: Lenabasum is a synthetic cannabinoid receptor type-2 (CB2) agonist able to exert potent anti-inflammatory effects, but its role on T cells remains unknown. OBJECTIVES: The present study was undertaken to investigate anti-inflammatory mechanisms of lenabasum in T lymphocyte subsets and its in vivo therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE). METHODS: Mononuclear cells from 17 healthy subjects (HS) and 25 relapsing-remitting multiple sclerosis (RRMS) patients were activated in presence or absence of lenabasum and analysed by flow cytometry and qRT-PCR. EAE mice were treated with lenabasum, and clinical score and neuroinflammation were evaluated. RESULTS: Lenabasum significantly reduced TNF-a production from CD4+ T cells and CD8+ T cells in a dose-dependent manner in both HS and RRMS patients. In MS patients, lenabasum also reduced activation marker CD25 and inhibited IL-2 production from both T cell subsets and IFN-γ and IL-17 from committed Th1 and Th17 cells, respectively. These effects were blocked by the pretreatment with selective CB2 inverse agonist SR144528. In vivo treatment of EAE mice with lenabasum significantly ameliorated disease severity, reduced neuroinflammation and demyelination in spinal cord. CONCLUSION: Lenabasum exerts potent T cell-mediated immunomodulatory effects, suggesting CB2 as a promising pharmacological target to counteract neuroinflammation in MS.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/analogs & derivatives , Multiple Sclerosis, Relapsing-Remitting/immunology , Receptor, Cannabinoid, CB2/agonists , T-Lymphocyte Subsets/drug effects , Adult , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Dronabinol/pharmacology , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Humans , Male , Mice , T-Lymphocyte Subsets/immunology
12.
J Am Soc Nephrol ; 33(1): 121-137, 2022 01.
Article in English | MEDLINE | ID: mdl-34725108

ABSTRACT

BACKGROUND: The reported association of mTOR-inhibitor (mTORi) treatment with a lower incidence of cytomegalovirus (CMV) infection in kidney transplant recipients (KTR) who are CMV seropositive (R+) remains unexplained. METHODS: The incidence of CMV infection and T-cell profile was compared between KTRs treated with mTORis and mycophenolic acid (MPA), and in vitro mTORi effects on T-cell phenotype and functions were analyzed. RESULTS: In KTRs who were R+ and treated with MPA, both αß and γδ T cells displayed a more dysfunctional phenotype (PD-1+, CD85j+) at day 0 of transplantation in the 16 KTRs with severe CMV infection, as compared with the 17 KTRs without or with spontaneously resolving CMV infection. In patients treated with mTORis (n=27), the proportion of PD-1+ and CD85j+ αß and γδ T cells decreased, when compared with patients treated with MPA (n=44), as did the frequency and severity of CMV infections. mTORi treatment also led to higher proportions of late-differentiated and cytotoxic γδ T cells and IFNγ-producing and cytotoxic αß T cells. In vitro, mTORis increased proliferation, viability, and CMV-induced IFNγ production of T cells and decreased PD-1 and CD85j expression in T cells, which shifted the T cells to a more efficient EOMESlow Hobithigh profile. In γδ T cells, the mTORi effect was related to increased TCR signaling. CONCLUSION: Severe CMV replication is associated with a dysfunctional T-cell profile and mTORis improve T-cell fitness along with better control of CMV. A dysfunctional T-cell phenotype could serve as a new biomarker to predict post-transplantation infection and to stratify patients who should benefit from mTORi treatment. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Proportion of CMV Seropositive Kidney Transplant Recipients Who Will Develop a CMV Infection When Treated With an Immunosuppressive Regimen Including Everolimus and Reduced Dose of Cyclosporine Versus an Immunosuppressive Regimen With Mycophenolic Acid and Standard Dose of Cyclosporine A (EVERCMV), NCT02328963.


Subject(s)
Cytomegalovirus Infections/prevention & control , Kidney Transplantation/adverse effects , MTOR Inhibitors/therapeutic use , T-Lymphocyte Subsets/drug effects , Aged , Anti-Bacterial Agents/therapeutic use , Antigens, CD/metabolism , Cell Culture Techniques , Cytomegalovirus Infections/epidemiology , Cytomegalovirus Infections/pathology , Female , Humans , Leukocyte Immunoglobulin-like Receptor B1/metabolism , Male , Middle Aged , Mycophenolic Acid/therapeutic use , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocyte Subsets/metabolism
13.
J Virol ; 96(3): e0178521, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34818070

ABSTRACT

The persistence of cells latently infected with HIV-1, named the latent reservoir, is the major barrier to HIV-1 eradication, and the formation and maintenance of the latent reservoir might be exacerbated by activation of the immunoinhibitory pathway and dysfunction of CD8+ T cells during HIV-1 infection. Our previous findings demonstrated that prophylactic vaccination combined with PD-1 blockade generated distinct immune response profiles and conferred effective control of highly pathogenic SIVmac239 infection in rhesus macaques. However, to our surprise, herein we found that a therapeutic vaccination in combination with PD-1 blockade resulted in activation of the viral reservoir, faster viral rebound after treatment interruption, accelerated AIDS progression, and, ultimately, death in chronically SIV-infected macaques after antiretroviral therapy (ART) interruption. Our study further demonstrated that the SIV provirus was preferentially enriched in PD-1+CD4+ T cells due to their susceptibility to viral entry, potent proliferative ability, and inability to perform viral transcription. In addition, the viral latency was effectively reactivated upon PD-1 blockade. Together, these results suggest that PD-1 blockade may be a double-edged sword for HIV-1 immunotherapy and provide important insight toward the rational design of immunotherapy strategies for an HIV-1 cure. IMPORTANCE As it is one of the most challenging public health problems, there are no clinically effective cure strategies against HIV-1 infection. We demonstrated that prophylactic vaccination combined with PD-1 blockade generated distinct immune response profiles and conferred better control of highly pathogenic SIVmac239 infection in rhesus macaques. In the present study, to our surprise, PD-1 blockade during therapeutic vaccination accelerated the reactivation of latent reservoir and AIDS progression in chronically SIV-infected macaques after ART interruption. Our study further demonstrated that the latent SIV provirus was preferentially enriched in PD-1+CD4+ T cells because of its susceptibility to viral entry, inhibition of SIV transcription, and potent ability of proliferation, and the viral latency was effectively reactivated by PD-1 blockade. Therefore, PD-1 blockade might be a double-edged sword for AIDS therapy. These findings provoke interest in further exploring novel treatments against HIV-1 infection and other emerging infectious diseases.


Subject(s)
Programmed Cell Death 1 Receptor/antagonists & inhibitors , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/immunology , Animals , Anti-Retroviral Agents/pharmacology , Anti-Retroviral Agents/therapeutic use , Antiretroviral Therapy, Highly Active , Biopsy , Computational Biology , Disease Progression , Immunohistochemistry , Immunomodulation/drug effects , Macaca mulatta , SAIDS Vaccines/administration & dosage , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/drug therapy , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transcriptome , Viral Load , Virus Activation/drug effects , Virus Latency/drug effects , Virus Replication/drug effects
14.
J Neuroimmunol ; 362: 577787, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34923373

ABSTRACT

Myasthenia Gravis (MG) is a T cell-driven, autoantibody-mediated disease. Here we show that oral Berberine (BBR) ameliorated clinical symptoms of experimental autoimmune myasthenia gravis(EAMG) rat model via decreasing the frequencies of Th1, Th17, Th1/17 cell subsets. JAK-STAT pathway was highlighted by transcriptomic analysis with EAMG mononuclear cells (MNCs). Surface plasmon resonance identified ligand binding interaction between BBR and JAK2, and electrostatic interaction was proposed by molecular dynamic simulation. Reduced phosphorylated JAK1/2/3 and STAT1/3 in MNCs from BBR-fed EAMG rats were demonstrated. These results suggest that BBR might improve EAMG by rebalancing T cell subsets through targeting JAK-STAT pathway.


Subject(s)
Berberine/pharmacology , Myasthenia Gravis, Autoimmune, Experimental/immunology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , Animals , Female , Rats , Rats, Inbred Lew
15.
J Exp Med ; 219(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34807232

ABSTRACT

Immune checkpoint inhibitor (ICI) therapy continues to revolutionize melanoma treatment, but only a subset of patients respond. Major efforts are underway to develop minimally invasive predictive assays of ICI response. Using single-cell transcriptomics, we discovered a unique CD8 T cell blood/tumor-shared subpopulation in melanoma patients with high levels of oxidative phosphorylation (OXPHOS), the ectonucleotidases CD38 and CD39, and both exhaustion and cytotoxicity markers. We called this population with high levels of OXPHOS "CD8+ TOXPHOS cells." We validated that higher levels of OXPHOS in tumor- and peripheral blood-derived CD8+ TOXPHOS cells correlated with ICI resistance in melanoma patients. We then developed an ICI therapy response predictive model using a transcriptomic profile of CD8+ TOXPHOS cells. This model is capable of discerning responders from nonresponders using either tumor or peripheral blood CD8 T cells with high accuracy in multiple validation cohorts. In sum, CD8+ TOXPHOS cells represent a critical immune population to assess ICI response with the potential to be a new target to improve outcomes in melanoma patients.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Melanoma/therapy , Oxidative Phosphorylation/drug effects , T-Lymphocyte Subsets/drug effects , Adult , Aged , Algorithms , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/immunology , Female , Gene Expression Profiling/methods , Humans , Immune Checkpoint Inhibitors/immunology , Male , Melanoma/genetics , Melanoma/immunology , Middle Aged , Models, Genetic , Outcome Assessment, Health Care/methods , RNA-Seq/methods , Single-Cell Analysis/methods , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
16.
Anticancer Res ; 41(12): 6031-6038, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34848457

ABSTRACT

BACKGROUND/AIM: This study aimed to investigate the characteristics of human peripheral blood γδ T cells, which were expanded ex vivo in the presence of zoledronate (ZOL). MATERIALS AND METHODS: Human peripheral blood cells were cultured with IL-2 and IL-15 in the presence or absence of ZOL, which was added as a phospho-antigen, and their phenotypes were assessed by flow cytometry. Expanded γδ T cells were transduced with CD19 CAR vector, and the cytotoxicity was evaluated in vitro and in vivo by flow cytometry. RESULTS: Ex vivo expansion did not hamper the expression of activating receptors. Interestingly, ZOL promoted the expression of CD226 (DNAM-1), TRAIL, and FAS-L in the Vδ1 subset of γδ T cells. Expanded γδ T cells containing CD19 CAR+ γδ T cells removed B cell lymphoma cells effectively in vivo. CONCLUSION: γδ T cells could be a promising immunotherapeutic for cancer.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/metabolism , Zoledronic Acid/pharmacology , Animals , Antigens, CD19/immunology , Antigens, Neoplasm/immunology , Cell Culture Techniques , Cell Line, Tumor , Cells, Cultured , Humans , Immunotherapy, Adoptive , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Receptors, Chimeric Antigen , T-Lymphocyte Subsets/cytology
17.
Front Immunol ; 12: 757151, 2021.
Article in English | MEDLINE | ID: mdl-34777370

ABSTRACT

CD8+ T cells play a key role in mediating protective immunity after immune challenges such as infection or vaccination. Several subsets of differentiated CD8+ T cells have been identified, however, a deeper understanding of the molecular mechanism that underlies T-cell differentiation is lacking. Conventional approaches to the study of immune responses are typically limited to the analysis of bulk groups of cells that mask the cells' heterogeneity (RNA-seq, microarray) and to the assessment of a relatively limited number of biomarkers that can be evaluated simultaneously at the population level (flow and mass cytometry). Single-cell analysis, on the other hand, represents a possible alternative that enables a deeper characterization of the underlying cellular heterogeneity. In this study, a murine model was used to characterize immunodominant hemagglutinin (HA533-541)-specific CD8+ T-cell responses to nucleic- and protein-based influenza vaccine candidates, using single-cell sorting followed by transcriptomic analysis. Investigation of single-cell gene expression profiles enabled the discovery of unique subsets of CD8+ T cells that co-expressed cytotoxic genes after vaccination. Moreover, this method enabled the characterization of antigen specific CD8+ T cells that were previously undetected. Single-cell transcriptome profiling has the potential to allow for qualitative discrimination of cells, which could lead to novel insights on biological pathways involved in cellular responses. This approach could be further validated and allow for more informed decision making in preclinical and clinical settings.


Subject(s)
Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/pharmacology , Nucleic Acid-Based Vaccines/pharmacology , Single-Cell Analysis , T-Lymphocyte Subsets/metabolism , Transcriptome , Vaccines, Subunit/pharmacology , Adjuvants, Immunologic , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Gene Expression Regulation/drug effects , Mice , Mice, Inbred BALB C , T-Cell Antigen Receptor Specificity , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , Vaccination
18.
Int J Immunopathol Pharmacol ; 35: 20587384211053274, 2021.
Article in English | MEDLINE | ID: mdl-34789044

ABSTRACT

Background: Sphingosine kinase has been identified as playing a central role in the immune cascade, being a common mediator in the cellular response to a variety of signals. The different effects of sphingosine kinase 1 and 2 (SphK1 and SphK2, respectively) activity have not been completely characterized. Aim: To determine the different roles played by SphK1 and SphK2 in the regulation of immune-mediated disorders. Methods: Nine groups of mice were studied. Concanavalin A (ConA) injection was used to induce immune-mediated hepatitis. Mice were treated with SphK1 inhibitor (termed SphK-I) and SphK2 inhibitor (termed ABC294640), prior to ConA injection, and effects of treatment on liver enzymes, subsets of T lymphocytes, and serum levels of cytokines were observed. Results: While liver enzyme elevation was ameliorated by administration of SphK1 inhibitor, SphK2 inhibitor-treated mice did not show this tendency. A marked decrease in expression of CD25+ T-cells and Foxp+ T-cells was observed in mice treated with a high dose of SphK1 inhibitor. Alleviation of liver damage was associated with a statistically significant reduction of serum IFNγ levels in mice treated with SphK1 inhibitor and not in those treated with SphK2 inhibitor. Conclusions: Early administration of SphK1 inhibitor in a murine model of immune-mediated hepatitis alleviated liver damage and inflammation with a statistically significant reduction in IFN-γ levels. The data support a dichotomy in the anti-inflammatory effects of SphK1 and SphK2, and suggests that isoenzyme-directed therapies can improve the effect of targeting these pathways.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Hepatitis, Animal/drug therapy , Phosphotransferases (Alcohol Group Acceptor)/immunology , Animals , Anti-Inflammatory Agents/pharmacology , Hepatitis, Animal/blood , Hepatitis, Animal/immunology , Hepatitis, Animal/pathology , Interferon-gamma/blood , Liver/drug effects , Liver/pathology , Male , Mice, Inbred C57BL , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Signal Transduction , Sphingosine/immunology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology
19.
Int Immunopharmacol ; 101(Pt B): 108366, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34810124

ABSTRACT

Vitamin D (VD) is a multifunctional prohormone and low VD status in pregnancy may contribute to the risk of adverse perinatal outcomes, such as preeclampsia (PE). This molecule may modulate the polarization of T cell subsets during gestation. This study evaluated the in vitro immunomodulatory effect of VD [1,25(OH)2D3] on the gene expression of transcription factors and on cytokine production by T cell subsets. Twenty pregnant women with PE and twenty normotensive (NT) pregnant women were studied. Plasma concentration of VD, [25(OH)D3], was evaluated by chemiluminescence. PBMCs from preeclamptic and NT pregnant women were cultured in the absence or presence of VD to determine gene expression of T-bet (Th1), GATA-3 (Th2), RORγt, and RUNX1 (Th17), FoxP3 (regulatory T cell- Treg), and the receptors of VD (VDR) and IL-23 (IL-23R) by quantitative PCR. The concentration of cytokines in the PBMC supernatant culture was determined by cytometric bead array and ELISA immunoassay. The results showed that plasmatic levels of VD were significantly lower in the PE group. The treatment of PBMCs from PE pregnant women with VD induced downregulation of genes related to inflammatory profiles (Th1 and Th17), as well as an increase of the Th2 and Treg profiles. Thus, VD treatment decreased the release of IFN-γ, TNF-α, IL-17, IL-6, and IL-23 while it increased the levels of IL-10 in the PE group. VD induces an immunomodulatory effect in T cell subsets from pregnant women with PE, polarizing these cells to an anti-inflammatory and regulatory profile.


Subject(s)
Gene Expression Regulation/drug effects , Pre-Eclampsia/metabolism , T-Lymphocyte Subsets/drug effects , Transcription Factors/metabolism , Vitamin D/blood , Vitamin D/pharmacology , Adolescent , Adult , Anti-Inflammatory Agents , Female , Humans , Middle Aged , Pregnancy , T-Lymphocyte Subsets/metabolism , Transcription Factors/genetics , Young Adult
20.
Front Immunol ; 12: 756920, 2021.
Article in English | MEDLINE | ID: mdl-34646279

ABSTRACT

High glucose and fructose intake have been proven to display pro-inflammatory roles during the progression of inflammatory diseases. However, mannose has been shown to be a special type of hexose that has immune regulatory functions. In this review, we trace the discovery process of the regulatory functions of mannose and summarize some past and recent studies showing the therapeutic functions of mannose in inflammatory diseases. We conclude that treatment with mannose can suppress inflammation by inducing regulatory T cells, suppressing effector T cells and inflammatory macrophages, and increasing anti-inflammatory gut microbiome. By summarizing all the important findings, we highlight that mannose treatment is a safe and promising novel strategy to suppress inflammatory diseases, including autoimmune disease and allergic disease.


Subject(s)
Inflammation/drug therapy , Mannose/therapeutic use , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Dysbiosis/drug therapy , Dysbiosis/prevention & control , Fructose/adverse effects , Gastrointestinal Microbiome/drug effects , Glucose/adverse effects , Humans , Hypersensitivity/drug therapy , Hypersensitivity/immunology , Inflammation/chemically induced , Inflammation/immunology , Inflammation/prevention & control , Macrophages/drug effects , Macrophages/immunology , Mannose/pharmacology , Mice , Obesity/drug therapy , Sucrose/adverse effects , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...