Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
J Oral Biosci ; 66(1): 241-248, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342298

ABSTRACT

OBJECTIVES: This study determined the early development of taste buds by observing the changes in the three-dimensional structures of taste pores and microvilli in the circumvallate papillae (CVP) of mice, from pre- and postnatal stages to the adult stages. METHODS: Fragments of mouse CVP tissue were collected on embryonic day (E) 18 and postnatal days (P) 0, 3, 6, 7, 14, 21, 28, and 56. The surfaces of the tissue fragments located pore apertures via scanning electron microscopy, and the sizes of the CVP and maximum diameters of the pores were estimated from the recorded images. Likewise, changes in the structures of the epithelium around the pore aperture and microvilli protruding from the pores were examined. RESULTS: The size of the CVP exhibited a linear increase with age from E18 to P56. The epithelium around the pore aperture demonstrated changes to form microridges, indicating a characteristic pattern during CVP development. The size of the pore aperture also increased with age from E18 to P56. Furthermore, an increase in the number of pores with protruding microvilli was observed at the base of the epithelial trench. A significant positive correlation was observed between the maximum diameter of the pore and the size of the CVP. CONCLUSIONS: The expansion in the lateral view of the CVP was associated with the developmental stage from E18 to P56, suggesting that the growth of the CVP leads to the opening and enlargement of the taste pores with microvillus projections during these stages.


Subject(s)
Taste Buds , Mice , Animals , Taste Buds/chemistry , Taste , Microscopy, Electron, Scanning , Epithelium
2.
J Physiol ; 600(23): 5119-5144, 2022 12.
Article in English | MEDLINE | ID: mdl-36250254

ABSTRACT

Taste cells are a heterogeneous population of sensory receptors that undergo continuous turnover. Different chemo-sensitive cell lines rely on action potentials to release the neurotransmitter onto nerve endings. The electrical excitability is due to the presence of a tetrodotoxin-sensitive, voltage-gated sodium current (INa ) similar to that found in neurons. Since the biophysical properties of neuronal INa change during development, we wondered whether the same also occurred in taste cells. Here, we used the patch-clamp recording technique to study INa in salt-sensing cells (sodium cells) of rat fungiform papillae. We identified these cells by exploiting the known blocking effect of amiloride on ENaC, the sodium (salt) receptor. Based on the amplitude of INa , which is known to increase during development, we subdivided sodium cells into two groups: cells with small sodium current (SSC cells; INa  < 1 nA) and cells with large sodium current (LSC cells; INa  > 1 nA). We found that: the voltage dependence of activation and inactivation significantly differed between these subsets; a slowly inactivating sodium current was more prominent in LSC cells; membrane capacitance in SSC cells was larger than in LSC cells. mRNA expression analysis of the α-subunits of voltage-gated sodium channels in fungiform taste buds supported the functional data. Lucifer Yellow labelling of recorded cells revealed that our electrophysiological criterion for distinguishing two broad groups of taste cells was in good agreement with morphological observations for cell maturity. Thus, all these findings are consistent with developmental changes in the voltage-dependent properties of sodium-taste cells. KEY POINTS: Taste cells are sensory receptors that undergo continuous turnover while they detect food chemicals and communicate with afferent nerve fibres. The voltage-gated sodium current (INa ) is a key ion current for generating action potentials in fully differentiated and chemo-sensitive taste cells, which use electrical signalling to release neurotransmitters. Here we show that, during the maturation of rat taste cells involved in salt detection (sodium cells), the biophysical properties of INa , such as voltage dependence of activation and inactivation, change significantly. Our results help reveal how taste cells gain electrical excitability during turnover, a property critical to their operation as chemical detectors that relay sensory information to nerve fibres.


Subject(s)
Taste Buds , Rats , Animals , Taste Buds/chemistry , Taste Buds/physiology , Taste , Sodium , Sodium Channels/physiology , Tetrodotoxin/pharmacology , Ions/analysis , Action Potentials , Sensory Receptor Cells
3.
J Comp Neurol ; 529(11): 3046-3061, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33786834

ABSTRACT

The oral somatosensory system relays essential information about mechanical stimuli to enable oral functions such as feeding and speech. The neurochemical and anatomical diversity of sensory neurons across oral cavity sites have not been systematically compared. To address this gap, we analyzed healthy human tongue and hard-palate innervation. Biopsies were collected from 12 volunteers and underwent fluorescent immunohistochemistry (≥2 specimens per marker/structure). Afferents were analyzed for markers of neurons (ßIII tubulin), myelinated afferents (neurofilament heavy, NFH), and Merkel cells and taste cells (keratin 20, K20). Hard-palate innervation included Meissner corpuscles, glomerular endings, Merkel cell-neurite complexes, and free nerve endings. The organization of these somatosensory endings is reminiscent of fingertips, suggesting that the hard palate is equipped with a rich repertoire of sensory neurons for pressure sensing and spatial localization of mechanical inputs, which are essential for speech production and feeding. Likewise, the tongue is innervated by afferents that impart it with exquisite acuity and detection of moving stimuli that support flavor construction and speech. Filiform papillae contained end bulbs of Krause, as well as endings that have not been previously reported, including subepithelial neuronal densities, and NFH+ neurons innervating basal epithelia. Fungiform papillae had Meissner corpuscles and densities of NFH+ intraepithelial neurons surrounding taste buds. The differing compositions of sensory endings within filiform and fungiform papillae suggest that these structures have distinct roles in mechanosensation. Collectively, this study has identified previously undescribed neuronal endings in human oral tissues and provides an anatomical framework for understanding oral mechanosensory functions.


Subject(s)
Mechanotransduction, Cellular/physiology , Palate, Hard/innervation , Palate, Hard/physiology , Sensory Receptor Cells/physiology , Tongue/innervation , Tongue/physiology , Adult , Female , Humans , Male , Mechanoreceptors/chemistry , Mechanoreceptors/physiology , Middle Aged , Palate, Hard/chemistry , Sensory Receptor Cells/chemistry , Taste Buds/chemistry , Taste Buds/physiology , Tongue/chemistry
4.
J Comp Neurol ; 529(9): 2227-2242, 2021 06.
Article in English | MEDLINE | ID: mdl-33319419

ABSTRACT

Taste buds, the receptor organs for taste, contain 50-100 taste bud cells. Although these cells undergo continuous turnover, the structural and functional integrity of taste buds is maintained. The molecular mechanisms by which synaptic connectivity between taste buds and afferent fibers is formed and maintained remain ambiguous. In the present study, we examined the localization of N-cadherin in the taste buds of the mouse circumvallate papillae because N-cadherin, one of the classical cadherins, is important for the formation and maintenance of synapses. At the light microscopic level, N-cadherin was predominantly detected in type II cells and nerve fibers in the connective tissues in and around the vallate papillae. At the ultrastructural level, N-cadherin immunoreactivity appears along the cell membrane and in the intracellular vesicles of type II cells. N-cadherin immunoreactivity also is evident in the membranes of afferent terminals at the contact sites to N-cadherin-positive type II cells. At channel type synapses between type II cells and nerve fibers, N-cadherin is present surrounding, but not within, the presumed neurotransmitter release zone, identified by large mitochondria apposed to the taste cells. The present results suggest that N-cadherin is important for the formation or maintenance of type II cell afferent synapses in taste buds.


Subject(s)
Cadherins/analysis , Cadherins/ultrastructure , Taste Buds/chemistry , Taste Buds/ultrastructure , Animals , Cadherins/biosynthesis , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Taste Buds/metabolism
5.
Nutrients ; 14(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35011070

ABSTRACT

Leptin, an anorectic hormone, regulates food intake, energy expenditure and body weight. We assessed the implication of tongue leptin in the modulation of oro-sensory detection of dietary fatty acids in mice. The RT-PCR analysis showed that mRNA encoding leptin and leptin receptor (Ob-Rb) was expressed in mice taste bud cells (TBC). Confocal microscopic studies showed that the lipid sensor CD36 was co-expressed with leptin in mice TBC. Silencing of leptin or Ob-Rb mRNA in tongue papillae upregulated preference for a long-chain fatty acid (LCFA), i.e., linoleic acid (LA), in a two-bottle paradigm in mice. Furthermore, tongue leptin application decreased the preference for the LCFA. These results suggest that tongue leptin exerts an inhibitory action on fatty acid preference. In isolated mice TBC, leptin decreased LCFA-induced increases in free intracellular calcium concentrations, [Ca2+]i. Leptin and LCFA induced the phosphorylation of ERK1/2 and STAT-3 and there were no additive or opposite effects of the two agents on the degree of phosphorylation. However, leptin, but not the LCFA, induced phosphoinositide-3-kinase (PI-3-K)-dependent Akt phosphorylation in TBC. Furthermore, leptin induced hyperpolarization, whereas LCFA induced depolarization in TBC. Our study demonstrates that tongue leptin exerts an inhibitory action on oro-sensory detection of a dietary fatty acid by interfering with Ca2+ signaling and membrane potential in mice TBC.


Subject(s)
Dietary Fats/analysis , Fatty Acids/analysis , Leptin/physiology , Taste Perception/physiology , Tongue/chemistry , Animals , CD36 Antigens/genetics , Calcium Signaling/physiology , Dietary Fats/administration & dosage , Fatty Acids/administration & dosage , Gene Expression , Gene Silencing , Male , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , RNA, Messenger/analysis , Receptors, Leptin/genetics , Taste Buds/chemistry , Taste Buds/physiology
6.
Sci Rep ; 10(1): 18391, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110140

ABSTRACT

The human sweet taste receptor (T1R2) monomer-a member of the G-protein coupled receptor family that detects a wide variety of chemically and structurally diverse sweet tasting molecules, is known to pose a significant threat to human health. Protein that lack crystal structure is a challenge in structure-based protein design. This study focused on the interaction of the T1R2 monomer with rebaudioside A (Reb-A), a steviol glycoside with potential use as a natural sweetener using in-silico and biosensing methods. Herein, homology modelling, docking studies, and molecular dynamics simulations were applied to elucidate the interaction between Reb-A and the T1R2 monomer. In addition, the electrochemical sensing of the immobilised T1R2-Reb-A complex with zinc oxide nanoparticles (ZnONPs) and graphene oxide (GO) were assessed by testing the performance of multiwalled carbon nanotube (MWCNT) as an adsorbent experimentally. Results indicate a strong interaction between Reb-A and the T1R2 receptor, revealing the stabilizing interaction of the amino acids with the Reb-A by hydrogen bonds with the hydroxyl groups of the glucose moieties, along with a significant amount of hydrophobic interactions. Moreover, the presence of the MWCNT as an anchor confirms the adsorption strength of the T1R2-Reb-A complex onto the GO nanocomposite and supported with electrochemical measurements. Overall, this study could serve as a cornerstone in the development of electrochemical immunosensor for the detection of Reb-A, with applications in the food industry.


Subject(s)
Diterpenes, Kaurane/chemistry , Models, Chemical , Receptors, G-Protein-Coupled/chemistry , Sweetening Agents/chemistry , Taste Buds/chemistry , Adsorption , Biosensing Techniques , Computer Simulation , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding
7.
Proc Natl Acad Sci U S A ; 117(7): 3518-3527, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32015136

ABSTRACT

Numerous fatty acid receptors have proven to play critical roles in normal physiology. Interactions among these receptor types and their subsequent membrane trafficking has not been fully elucidated, due in part to the lack of efficient tools to track these cellular events. In this study, we fabricated the surface-enhanced Raman scattering (SERS)-based molecular sensors for detection of two putative fatty acid receptors, G protein-coupled receptor 120 (GPR120) and cluster of differentiation 36 (CD36), in a spatiotemporal manner in single cells. These SERS probes allowed multiplex detection of GPR120 and CD36, as well as a peak that represented the cell. This multiplexed sensing system enabled the real-time monitoring of fatty acid-induced receptor activation and dynamic distributions on the cell surface, as well as tracking of the receptors' internalization processes on the addition of fatty acid. Increased SERS signals were seen in engineered HEK293 cells with higher fatty acid concentrations, while decreased responses were found in cell line TBDc1, suggesting that the endocytic process requires innate cellular components. SERS mapping results confirm that GPR120 is the primary receptor and may work synergistically with CD36 in sensing polyunsaturated fatty acids and promoting Ca2+ mobilization, further activating the process of fatty acid uptake. The ability to detect receptors' locations and monitor fatty acid-induced receptor redistribution demonstrates the specificity and potential of our multiplexed SERS imaging platform in the study of fatty acid-receptor interactions and might provide functional information for better understanding their roles in fat intake and development of fat-induced obesity.


Subject(s)
CD36 Antigens/metabolism , Fatty Acids/metabolism , Receptors, G-Protein-Coupled/metabolism , Spectrum Analysis, Raman/methods , Animals , CD36 Antigens/chemistry , Calcium/metabolism , HEK293 Cells , Humans , Mice , Protein Binding , Receptors, G-Protein-Coupled/chemistry , Single-Cell Analysis , Taste Buds/chemistry , Taste Buds/metabolism
8.
Br J Nutr ; 122(11): 1212-1220, 2019 12 14.
Article in English | MEDLINE | ID: mdl-31524116

ABSTRACT

Fatty acid taste (FAT) perception is involved in the regulation of dietary fat intake, where impaired FAT is associated with increased fatty food intake. There are a number of FAT receptors identified on human taste cells that are potentially responsible for FAT perception. Manipulating dietary fat intake, and in turn FAT perception, would elucidate the receptors that are associated with long-term regulation of FAT perception. The present study aimed to assess associations between diet-mediated changes to FAT receptors and FAT perception in humans. A co-twin randomised controlled trial was conducted, where each matching twin within a pair were randomly allocated to either an 8-week low-fat (LF; <20 % energy fat) or an 8-week high-fat (HF; >35 % energy fat) diet. At baseline and week 8, fungiform papillae were biopsied in the fasted state and FAT receptor gene expressions (cluster of differentiation 36 (CD36), free fatty acid receptor 2 (FFAR2), FFAR4, G protein-coupled receptor 84 (GPR84) and a delayed rectifying K+ channel (K+ voltage-gated channel subfamily A member 2; KCNA2)) were measured using RT-PCR; and FAT threshold (FATT) was assessed using three-alternate forced choice methodology. Linear mixed models were fitted, adjusting for correlation between co-twins. Intake was compliant with the study design, with the LF and HF groups consuming 14·8 and 39·9 % energy from fat, respectively. Expression of FFAR4 increased by 38 % in the LF group (P = 0·023; time-diet interaction P = 0·063). ΔFFAR4 (Δ, week 8-baseline) was associated with Δfat intake (g) ( = -159·4; P < 0·001) and ΔFATT ( = -8·8; P = 0·016). In summary, FFAR4 is involved in long-term diet-mediated changes to FAT perception. Manipulating dietary fat intake, and therefore FFAR4 expression, might aid in reducing taste-mediated passive overconsumption of fatty foods.


Subject(s)
Diet, Fat-Restricted , Receptors, G-Protein-Coupled/genetics , Taste Buds/metabolism , Taste Perception/physiology , Up-Regulation/physiology , Adult , Australia , Biopsy , Dietary Fats/administration & dosage , Fasting , Fatty Acids , Female , Humans , Male , Middle Aged , Taste/physiology , Taste Buds/chemistry , Taste Perception/genetics , Taste Threshold/physiology
9.
Nutrients ; 11(9)2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31546789

ABSTRACT

The systemic renin-angiotensin system (RAS) is an important regulator of body fluid and sodium homeostasis. Angiotensin II (AngII) is a key active product of the RAS. We previously revealed that circulating AngII suppresses amiloride-sensitive salt taste responses and enhances the responses to sweet compounds via the AngII type 1 receptor (AT1) expressed in taste cells. However, the molecular mechanisms underlying the modulation of taste function by AngII remain uncharacterized. Here we examined the expression of three RAS components, namely renin, angiotensinogen, and angiotensin-converting enzyme-1 (ACE1), in mouse taste tissues. We found that all three RAS components were present in the taste buds of fungiform and circumvallate papillae and co-expressed with αENaC (epithelial sodium channel α-subunit, a salt taste receptor) or T1R3 (taste receptor type 1 member 3, a sweet taste receptor component). Water-deprived mice exhibited significantly increased levels of renin expression in taste cells (p < 0.05). These results indicate the existence of a local RAS in the taste organ and suggest that taste function may be regulated by both locally-produced and circulating AngII. Such integrated modulation of peripheral taste sensitivity by AngII may play an important role in sodium/calorie homeostasis.


Subject(s)
Gene Expression Regulation/physiology , Glutamate Decarboxylase/metabolism , Receptors, G-Protein-Coupled/metabolism , Renin-Angiotensin System/physiology , Taste/physiology , Angiotensinogen/genetics , Angiotensinogen/metabolism , Animals , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Female , Glutamate Decarboxylase/genetics , Green Fluorescent Proteins , Male , Mice , Receptors, G-Protein-Coupled/genetics , Renin/genetics , Renin/metabolism , Taste Buds/chemistry
10.
Biosens Bioelectron ; 145: 111673, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31546200

ABSTRACT

Electronic tongues (ETs) have been developed and widely used in food, beverage and pharmaceutical fields, but limited in sensitivity and specificity. In recent years, bioelectronic tongues (BioETs) integrating biological materials and various types of transducers are proposed to bridge the gap between ET system and biological taste. In this work, a bionic in vitro cell-based BioET is developed for bitter and umami detection, utilizing rat cardiomyocytes as a primary taste sensing element and microelectrode arrays (MEAs) as a secondary transducer for the first time. The primary cardiomyocytes of Sprague Dawley (SD) rats, which endogenously express bitter and umami taste receptors, were cultured on MEAs. Cells attached and grew well on the sensor surface, and syncytium was formed for potential conduction and mechanical beating, indicating the good biocompatibility of surface coating. The specificity of this BioET was verified by testing different tastants and bitter compounds. The results show that the BioET responds to bitter and umami compounds specifically among five basic tastants. For bitter recognition, only those can activate receptors in cardiomyocytes can be recognized by the BioET, and different bitter substances could be discriminated by principal component analysis (PCA). Moreover, the specific detections of two bitters (Denatonium Benzoate, Diphenidol) and an umami compound (Monosodium Glutamate) were realized with a detection limit of 10-6 M. The cardiomyocytes-based BioET proposed in this work provides a new approach for the construction of BioETs and has promising applications in taste detection and pharmaceutical study.


Subject(s)
Biosensing Techniques , Electronic Nose , Quaternary Ammonium Compounds/isolation & purification , Sodium Glutamate/isolation & purification , Animals , Bionics/trends , Myocytes, Cardiac/metabolism , Quaternary Ammonium Compounds/chemistry , Rats , Receptors, G-Protein-Coupled/genetics , Sodium Glutamate/chemistry , Taste/genetics , Taste Buds/chemistry
11.
Biochem Biophys Res Commun ; 511(2): 280-286, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30782484

ABSTRACT

In the mammalian taste system, the taste receptor type 2 (T2R) family mediates bitter taste, and the taste receptor type 1 (T1R) family mediates sweet and umami tastes (the heterodimer of T1R2/T1R3 forms the sweet taste receptor, and the heterodimer of T1R1/T1R3 forms the umami taste receptor). In the chicken genome, bitter (T2R1, T2R2, and T2R7) and umami (T1R1 and T1R3) taste receptor genes have been found. However, the localization of these taste receptors in the taste buds of chickens has not been elucidated. In the present study, we demonstrated that the bitter taste receptor T2R7 and the umami taste receptor subunit T1R1 were expressed specifically in the taste buds of chickens labeled by Vimentin, a molecular marker for chicken taste buds. We analyzed the distributions of T2R7 and T1R1 on the oral epithelial sheets of chickens and among 3 different oral tissues of chickens: the palate, the base of the oral cavity, and the posterior tongue. We found that the distribution patterns and numbers were similar between taste bud clusters expressing these receptors and those expressing Vimentin. These results indicated broad distributions of T2R7 and T1R1 in the gustatory tissues of the chicken oral cavity. In addition, 3D-reconstructed images clearly revealed that high levels of T2R7 and T1R1 were expressed in Vimentin-negative taste bud cells. Taken together, the present results indicated the presence of bitter and umami sensing systems in the taste buds of chickens, and broad distribution of T2R7 and T1R1 in the chicken oral cavity.


Subject(s)
Avian Proteins/analysis , Chickens/anatomy & histology , Receptors, G-Protein-Coupled/analysis , Taste Buds/ultrastructure , Vimentin/analysis , Animals , Chickens/physiology , Taste , Taste Buds/chemistry , Taste Buds/cytology , Taste Perception
12.
Endocrinology ; 159(9): 3331-3339, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30060183

ABSTRACT

We and others have reported that taste cells in taste buds express many peptides in common with cells in the gut and islets of Langerhans in the pancreas. Islets and taste bud cells express the hormones glucagon and ghrelin, the same ATP-sensitive potassium channel responsible for depolarizing the insulin-secreting ß cell during glucose-induced insulin secretion, as well as the propeptide-processing enzymes PC1/3 and PC2. Given the common expression of functionally specific proteins in taste buds and islets, it is surprising that no one has investigated whether insulin is synthesized in taste bud cells. Using immunofluorescence, we demonstrated the presence of insulin in mouse, rat, and human taste bud cells. By detecting the postprocessing insulin molecule C-peptide and green fluorescence protein (GFP) in taste cells of both insulin 1-GFP and insulin 2-GFP mice and the presence of the mouse insulin transcript by in situ hybridization, we further proved that insulin is synthesized in individual taste buds and not taken up from the parenchyma. In addition to our cytology data, we measured the level of insulin transcript by quantitative RT-PCR in the anterior and posterior lingual epithelia. These analyses showed that insulin is translated in the circumvallate and foliate papillae in the posterior, but only insulin transcript was detected in the anterior fungiform papillae of the rodent tongue. Thus, some taste cells are insulin-synthesizing cells generated from a continually replenished source of precursor cells in the adult mammalian lingual epithelium.


Subject(s)
Gene Expression , Insulin/biosynthesis , Insulin/genetics , Taste Buds/metabolism , Animals , Diabetes Mellitus/metabolism , Diabetes Mellitus, Experimental/metabolism , Enzyme-Linked Immunosorbent Assay , Epithelium/chemistry , Epithelium/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Protein Biosynthesis , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Taste Buds/chemistry , Transcription, Genetic
13.
BMC Biol ; 16(1): 12, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29347925

ABSTRACT

BACKGROUND: The mouse Grueneberg ganglion (GG) is an olfactory subsystem specialized in the detection of volatile heterocyclic compounds signalling danger. The signalling pathways transducing the danger signals are only beginning to be characterized. RESULTS: Screening chemical libraries for compounds structurally resembling the already-identified GG ligands, we found a new category of chemicals previously identified as bitter tastants that initiated fear-related behaviours in mice depending on their volatility and evoked neuronal responses in mouse GG neurons. Screening for the expression of signalling receptors of these compounds in the mouse GG yielded transcripts of the taste receptors Tas2r115, Tas2r131, Tas2r143 and their associated G protein α-gustducin (Gnat3). We were further able to confirm their expression at the protein level. Challenging these three G protein-coupled receptors in a heterologous system with the known GG ligands, we identified TAS2R143 as a chemical danger receptor transducing both alarm pheromone and predator-derived kairomone signals. CONCLUSIONS: These results demonstrate that similar molecular elements might be used by the GG and by the taste system to detect chemical danger signals present in the environment.


Subject(s)
Ganglia, Autonomic/metabolism , Pheromones/administration & dosage , Smell/physiology , Taste Buds/metabolism , Taste/physiology , Animals , Cats , Cell Line , Female , Ganglia, Autonomic/chemistry , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Smell/drug effects , Taste/drug effects , Taste Buds/chemistry , Taste Buds/drug effects
14.
Sci Rep ; 7(1): 9131, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28831098

ABSTRACT

RNA-Seq is a powerful tool in transcriptomic profiling of cells and tissues. We recently identified many more taste buds than previously appreciated in chickens using molecular markers to stain oral epithelial sheets of the palate, base of oral cavity, and posterior tongue. In this study, RNA-Seq was performed to understand the transcriptomic architecture of chicken gustatory tissues. Interestingly, taste sensation related genes and many more differentially expressed genes (DEGs) were found between the epithelium and mesenchyme in the base of oral cavity as compared to the palate and posterior tongue. Further RNA-Seq using specifically defined tissues of the base of oral cavity demonstrated that DEGs between gustatory (GE) and non-gustatory epithelium (NGE), and between GE and the underlying mesenchyme (GM) were enriched in multiple GO terms and KEGG pathways, including many biological processes. Well-known genes for taste sensation were highly expressed in the GE. Moreover, genes of signaling components important in organogenesis (Wnt, TGFß/ BMP, FGF, Notch, SHH, Erbb) were differentially expressed between GE and GM. Combined with other features of chicken taste buds, e.g., uniquely patterned array and short turnover cycle, our data suggest that chicken gustatory tissue provides an ideal system for multidisciplinary studies, including organogenesis and regenerative medicine.


Subject(s)
Chickens/genetics , Organogenesis , Sequence Analysis, RNA/methods , Taste Buds/cytology , Animals , Chick Embryo , Gene Expression Profiling/methods , Mesoderm/chemistry , Mesoderm/cytology , Organ Specificity , Palate/chemistry , Palate/cytology , Signal Transduction , Taste Buds/chemistry , Taste Buds/embryology , Tongue/chemistry , Tongue/cytology
15.
Nat Commun ; 8: 15530, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28534491

ABSTRACT

The taste receptor type 1 (T1r) family perceives 'palatable' tastes. These receptors function as T1r2-T1r3 and T1r1-T1r3 heterodimers to recognize a wide array of sweet and umami (savory) tastes in sugars and amino acids. Nonetheless, it is unclear how diverse tastes are recognized by so few receptors. Here we present crystal structures of the extracellular ligand-binding domains (LBDs), the taste recognition regions of the fish T1r2-T1r3 heterodimer, bound to different amino acids. The ligand-binding pocket in T1r2LBD is rich in aromatic residues, spacious and accommodates hydrated percepts. Biophysical studies show that this binding site is characterized by a broad yet discriminating chemical recognition, contributing for the particular trait of taste perception. In contrast, the analogous pocket in T1r3LBD is occupied by a rather loosely bound amino acid, suggesting that the T1r3 has an auxiliary role. Overall, we provide a structural basis for understanding the chemical perception of taste receptors.


Subject(s)
Oryzias/physiology , Receptors, G-Protein-Coupled/chemistry , Taste Buds/physiology , Taste/physiology , Animals , Binding Sites , Crystallography, X-Ray , Ligands , Mutagenesis , Protein Structure, Quaternary , Receptors, G-Protein-Coupled/isolation & purification , Receptors, G-Protein-Coupled/physiology , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Structure-Activity Relationship , Taste Buds/chemistry
16.
Chem Senses ; 42(4): 343-359, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28334404

ABSTRACT

Salt reception by taste cells is still the less understood transduction process occurring in taste buds, the peripheral sensory organs for the detection of food chemicals. Although there is evidence suggesting that the epithelial sodium channel (ENaC) works as sodium receptor, yet it is not clear how salt-detecting cells signal the relevant information to nerve endings. Taste cells responding to sweet, bitter, and umami substances release ATP as neurotransmitter through a nonvesicular mechanism. Three different channel proteins have been proposed as conduit for ATP secretion: pannexin channels, connexin hemichannels, and calcium homeostasis modulator 1 (CALHM1) channels. In heterologous expression systems, these channels mediate outwardly rectifying membrane currents with distinct biophysical and pharmacological properties. I therefore tested whether also salt-detecting taste cells were endowed with these currents. To this aim, I applied the patch-clamp techniques to single cells in isolated taste buds from rat fungiform papillae. Salt-detecting cells were functionally identified by exploiting the effect of amiloride, which induces a current response by shutting down ENaCs. I looked for the presence of outwardly rectifying currents by using appropriate voltage-clamp protocols and specific pharmacological tools. I found that indeed salt-detecting cells possessed these currents with properties consistent with the presence, at least in part, of CALHM1 channels. Unexpectedly, CALHM1-like currents in taste cells were potentiated by known blockers of pannexin, suggesting a possible inhibitory action of this protein on CALMH1. These findings indicate that communication between salt-detecting cells and nerve endings might involve ATP release by CALMH1 channels.


Subject(s)
Calcium Channels/physiology , Taste Buds/cytology , Taste/physiology , Amiloride/pharmacology , Animals , Epithelial Sodium Channel Blockers , Homeostasis , Patch-Clamp Techniques , Rats , Sodium Channels/drug effects , Sodium Chloride , Taste Buds/chemistry
17.
J Comp Neurol ; 525(10): 2358-2375, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28316078

ABSTRACT

Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT3 receptors on the gustatory nerves. We show here, using 5-HT3A GFP mice, that 5-HT3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus.


Subject(s)
Green Fluorescent Proteins/biosynthesis , Nerve Fibers/metabolism , Neurons, Afferent/metabolism , Receptors, Serotonin, 5-HT3/biosynthesis , Taste Buds/metabolism , Taste/physiology , Animals , Female , Green Fluorescent Proteins/analysis , Male , Mice , Mice, Transgenic , Nerve Fibers/chemistry , Nerve Fibers/ultrastructure , Neural Pathways/chemistry , Neural Pathways/metabolism , Neural Pathways/ultrastructure , Neurons, Afferent/chemistry , Neurons, Afferent/ultrastructure , Receptors, Serotonin, 5-HT3/analysis , Receptors, Serotonin, 5-HT3/ultrastructure , Solitary Nucleus/chemistry , Solitary Nucleus/metabolism , Solitary Nucleus/ultrastructure , Taste Buds/chemistry , Taste Buds/ultrastructure
19.
Histochem Cell Biol ; 147(1): 5-16, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27586853

ABSTRACT

Grainyhead-like 3 (Grhl3) is a transcription factor involved in epithelial morphogenesis. In the present study, we evaluated the developmental role of Grhl3 in structural formation of the circumvallate papilla (CVP), which undergoes dynamic morphological changes during organogenesis. The specific expression pattern of Grhl3 was examined in the CVP-forming region, specifically in the apex and epithelial stalk from E13.5 to E15.5 using in situ hybridization. To determine the role of Grhl3 in epithelial morphogenesis of the CVP, we employed an in vitro tongue culture method, wherein E13.5 tongue were isolated and cultured for 2 days after knocking down of Grhl3. Knockdown of Grhl3 resulted in significant changes to the epithelial structure of the CVP, such that the apical region of the CVP was smaller in size, and the epithelial stalks were more deeply invaginated. To define the mechanisms underlying these morphological alterations, we examined cell migration, proliferation, and apoptosis using phalloidin staining, immunohistochemistry against Ki67, ROCK1, and E-cadherin, and a TUNEL assay, respectively. These results revealed an increase in proliferation, a reduction in apoptosis, and an altered pattern of cytoskeletal formation in the CVP-forming epithelium, following Grhl3 knockdown. In addition, there were changes in the specific expression patterns of signaling and apoptosis-related molecules such as Axin2, Bak1, Bcl2, Casp3, Casp8, Ctnnb1, Cnnd1, Gli3, Lef1, Ptch1, Rock1, Shh, and Wnt11, which could explain the altered cellular and morphological events. Based on these results, we propose that developmental stage-specific Grhl3 plays a significant role in CVP morphogenesis not by just disruption of epithelial integrity but by regulating epithelial cell proliferation, apoptosis, and migration via Shh, Wnt, and apoptosis signaling during mouse embryogenesis.


Subject(s)
DNA-Binding Proteins/metabolism , Epithelium/metabolism , Taste Buds/embryology , Taste Buds/metabolism , Transcription Factors/metabolism , Animals , DNA-Binding Proteins/biosynthesis , DNA-Binding Proteins/chemistry , Epithelium/chemistry , In Situ Hybridization , Mice , Mice, Inbred ICR , Organogenesis , Taste Buds/chemistry , Tissue Culture Techniques , Transcription Factors/biosynthesis , Transcription Factors/chemistry
20.
J Anat ; 229(6): 778-790, 2016 12.
Article in English | MEDLINE | ID: mdl-27476649

ABSTRACT

Nerve fibers that surround and innervate the taste bud were visualized with inherent fluorescence using Brainbow transgenic mice that were generated by mating the founder line L with nestin-cre mice. Multicolor fluorescence revealed perigemmal fibers as branched within the non-taste epithelium and ending in clusters of multiple rounded swellings surrounding the taste pore. Brainbow-labeling also revealed the morphology and branching pattern of single intragemmal fibers. These taste bud fibers frequently innervated both the peripheral bud, where immature gemmal cells are located, and the central bud, where mature, differentiated cells are located. The fibers typically bore preterminal and terminal swellings, growth cones with filopodia, swellings, and rounded retraction bulbs. These results establish an anatomical substrate for taste nerve fibers to contact and remodel among receptor cells at all stages of their differentiation, an interpretation that was supported by staining with GAP-43, a marker for growing fibers and growth cones.


Subject(s)
Nerve Fibers/chemistry , Staining and Labeling/methods , Taste Buds/chemistry , Animals , Ganglia, Sensory/chemistry , Mice , Mice, Transgenic , Microscopy, Fluorescence/methods , Taste Buds/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...