Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.669
Filter
1.
Subcell Biochem ; 104: 73-100, 2024.
Article in English | MEDLINE | ID: mdl-38963484

ABSTRACT

Telomeres at the end of eukaryotic chromosomes are extended by a specialized set of enzymes and telomere-associated proteins, collectively termed here the telomere "replisome." The telomere replisome acts on a unique replicon at each chromosomal end of the telomeres, the 3' DNA overhang. This telomere replication process is distinct from the replisome mechanism deployed to duplicate the human genome. The G-rich overhang is first extended before the complementary C-strand is filled in. This overhang is extended by telomerase, a specialized ribonucleoprotein and reverse transcriptase. The overhang extension process is terminated when telomerase is displaced by CTC1-STN1-TEN1 (CST), a single-stranded DNA-binding protein complex. CST then recruits DNA polymerase α-primase to complete the telomere replication process by filling in the complementary C-strand. In this chapter, the recent structure-function insights into the human telomere C-strand fill-in machinery (DNA polymerase α-primase and CST) will be discussed.


Subject(s)
DNA Polymerase I , DNA Primase , DNA Replication , Telomere-Binding Proteins , Telomere , Humans , Telomere/metabolism , Telomere/genetics , DNA Polymerase I/metabolism , DNA Polymerase I/genetics , DNA Polymerase I/chemistry , DNA Primase/metabolism , DNA Primase/genetics , DNA Primase/chemistry , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , Telomerase/metabolism , Telomerase/genetics
2.
Cell Commun Signal ; 22(1): 357, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987851

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression. Tubulointerstitial inflammation is a driver of tubular cell senescence and a common characteristic of CKD. However, the mechanism by which the interstitial inflammation drives tubular cell senescence remains unclear. This paper aims to explore the role of exosomal miRNAs derived from macrophages in the development of tubular cell senescence. METHODS: Among the identified inflammation-related miRNAs, miR-155 is considered to be one of the most important miRNAs involved in the inflammatory response. Macrophages, the primary immune cells that mediate inflammatory processes, contain a high abundance of miR-155 in their released exosomes. We assessed the potential role of miR-155 in tubular cell senescence and renal fibrosis. We subjected miR-155-/- mice and wild-type controls, as well as tubular epithelial cells (TECs), to angiotensin II (AngII)-induced kidney injury. We assessed kidney function and injury using standard techniques. TECs were evaluated for cell senescence and telomere dysfunction in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. RESULTS: Compared with normal controls, miR-155 was up-regulated in proximal renal tubule cells in CKD patients and mouse models of CKD. Moreover, the expression of miR-155 was positively correlated with the extent of renal fibrosis, eGFR decline and p16INK4A expression. The overexpression of miR-155 exacerbated tubular senescence, evidenced by increased detection of p16INK4A/p21expression and senescence-associated ß-galactosidase activity. Notably, miR-155 knockout attenuates renal fibrosis and tubule cell senescence in vivo. Interestingly, once released, macrophages-derived exosomal miR-155 was internalized by TECs, leading to telomere shortening and dysfunction through targeting TRF1. A dual-luciferase reporter assay confirmed that TRF1 was the direct target of miR-155. Thus, our study clearly demonstrates that exosomal miR-155 may mediate communication between macrophages and TECs, subsequently inducing telomere dysfunction and senescence in TECs. CONCLUSIONS: Our work suggests a new mechanism by which macrophage exosomes are involved in the development of tubule senescence and renal fibrosis, in part by delivering miR-155 to target TRF1 to promote telomere dysfunction. Our study may provide novel strategies for the treatment of AngII-induced kidney injury.


Subject(s)
Cellular Senescence , Epithelial Cells , Exosomes , Kidney Tubules , Macrophages , MicroRNAs , Telomere , MicroRNAs/genetics , MicroRNAs/metabolism , Cellular Senescence/genetics , Exosomes/metabolism , Exosomes/genetics , Animals , Epithelial Cells/metabolism , Epithelial Cells/pathology , Macrophages/metabolism , Kidney Tubules/pathology , Kidney Tubules/metabolism , Mice , Telomere/genetics , Telomere/metabolism , Humans , Mice, Inbred C57BL , Male , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Fibrosis/genetics , Angiotensin II
3.
Nat Cell Biol ; 26(7): 1212-1224, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961283

ABSTRACT

Despite the demonstrated importance of DNA G-quadruplexes (G4s) in health and disease, technologies to readily manipulate specific G4 folding for functional analysis and therapeutic purposes are lacking. Here we employ G4-stabilizing protein/ligand in conjunction with CRISPR to selectively facilitate single or multiple targeted G4 folding within specific genomic loci. We demonstrate that fusion of nucleolin with a catalytically inactive Cas9 can specifically stabilize G4s in the promoter of oncogene MYC and muscle-associated gene Itga7 as well as telomere G4s, leading to cell proliferation arrest, inhibition of myoblast differentiation and cell senescence, respectively. Furthermore, CRISPR can confer intra-G4 selectivity to G4-binding compounds pyridodicarboxamide and pyridostatin. Compared with traditional G4 ligands, CRISPR-guided biotin-conjugated pyridodicarboxamide enables a more precise investigation into the biological functionality of de novo G4s. Our study provides insights that will enhance understanding of G4 functions and therapeutic interventions.


Subject(s)
CRISPR-Cas Systems , G-Quadruplexes , Nucleolin , RNA-Binding Proteins , Humans , Ligands , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , Picolinic Acids/pharmacology , Picolinic Acids/chemistry , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Animals , Cellular Senescence/drug effects , Cellular Senescence/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , Promoter Regions, Genetic , Telomere/metabolism , Telomere/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Pyridines/pharmacology , Pyridines/chemistry , DNA/metabolism , DNA/genetics , Mice , Clustered Regularly Interspaced Short Palindromic Repeats , HEK293 Cells , Myoblasts/metabolism , Myoblasts/cytology , Aminoquinolines
4.
Nat Commun ; 15(1): 5964, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013853

ABSTRACT

Meiotic rapid prophase chromosome movements (RPMs) require connections between the chromosomes and the cytoskeleton, involving SUN (Sad1/UNC-84)-domain-containing proteins at the inner nuclear envelope (NE). RPMs remain significantly understudied in plants, with respect to their importance in the regulation of meiosis. Here, we demonstrate that Arabidopsis thaliana meiotic centromeres undergo rapid (up to 500 nm/s) and uncoordinated movements during the zygotene and pachytene stages. These centromere movements are not affected by altered chromosome organization and recombination but are abolished in the double mutant sun1 sun2. We also document the changes in chromosome dynamics and nucleus organization during the transition from leptotene to zygotene, including telomere attachment to SUN-enriched NE domains, bouquet formation, and nucleolus displacement, all of which were defective in sun1 sun2. These results establish A. thaliana as a model species for studying the functional implications of meiotic RPMs and demonstrate the mechanistic conservation of telomere-led RPMs in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chromosomes, Plant , Meiosis , Nuclear Envelope , Telomere , Arabidopsis/genetics , Arabidopsis/metabolism , Nuclear Envelope/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Chromosomes, Plant/genetics , Telomere/metabolism , Centromere/metabolism , Prophase , Meiotic Prophase I , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
5.
ACS Chem Biol ; 19(7): 1433-1439, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38959478

ABSTRACT

Most of the human cancers are dependent on telomerase to extend the telomeres. But ∼10% of all cancers use a telomerase-independent, homologous recombination mediated pathway called alternative lengthening of telomeres (ALT). Due to the poor prognosis, ALT status is not being considered yet in the diagnosis of cancer. No such specific treatment is available to date for ALT positive cancers. ALT positive cancers are dependent on replication stress to deploy DNA repair pathways to the telomeres to execute homologous recombination mediated telomere extension. SMARCAL1 (SWI/SNF related, matrix-associated, actin-dependent regulator of chromatin, subfamily A-like 1) is associated with the ALT telomeres to resolve replication stress thus providing telomere stability. Thus, the dependency on replication stress regulatory factors like SMARCAL1 made it a suitable therapeutic target for the treatment of ALT positive cancers. In this study, we found a significant downregulation of SMARCAL1 expression by stabilizing the G-quadruplex (G4) motif found in the promoter of SMARCAL1 by potent G4 stabilizers, like TMPyP4 and BRACO-19. SMARCAL1 downregulation led toward the increased localization of PML (promyelocytic leukemia) bodies in ALT telomeres and triggered the formation of APBs (ALT-associated promyelocytic leukemia bodies) in ALT positive cell lines, increasing telomere replication stress and DNA damage at a genomic level. Induction of replication stress and hyper-recombinogenic phenotype in ALT positive cells mediated by G4 stabilizing molecules already highlighted their possible application as a new therapeutic window to target ALT positive tumors. In accordance with this, our study will also provide a valuable insight toward the development of G4-based ALT therapeutics targeting SMARCAL1.


Subject(s)
DNA Helicases , G-Quadruplexes , Neoplasms , Promoter Regions, Genetic , Telomere , Humans , Telomere/genetics , Telomere/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , Neoplasms/genetics , Cell Line, Tumor , DNA Replication , Telomere Homeostasis
6.
Nat Commun ; 15(1): 5955, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009594

ABSTRACT

Human telomerase assembly is a highly dynamic process. Using biochemical approaches, we find that LARP3 and LARP7/MePCE are involved in the early stage of human telomerase RNA (hTR) and that their binding to RNA is destabilized when the mature form is produced. LARP3 plays a negative role in preventing the processing of the 3'-extended long (exL) form and the binding of LARP7 and MePCE. Interestingly, the tertiary structure of the exL form prevents LARP3 binding and facilitates hTR biogenesis. Furthermore, low levels of LARP3 promote hTR maturation, increase telomerase activity, and elongate telomeres. LARP7 and MePCE depletion inhibits the conversion of the 3'-extended short (exS) form into mature hTR and the cytoplasmic accumulation of hTR, resulting in telomere shortening. Taken together our data suggest that LARP3 and LARP7/MePCE mediate the processing of hTR precursors and regulate the production of functional telomerase.


Subject(s)
Autoantigens , RNA , Ribonucleoproteins , SS-B Antigen , Telomerase , Humans , Telomerase/metabolism , Telomerase/genetics , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , RNA/metabolism , RNA/genetics , Autoantigens/metabolism , Autoantigens/genetics , Telomere/metabolism , Telomere/genetics , HeLa Cells , Telomere Shortening , Protein Binding
7.
J Cancer Res Clin Oncol ; 150(7): 353, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012375

ABSTRACT

This article presents an in-depth exploration of the roles of Telomere Repeat-binding Factors 1 and 2 (TRF1 and TRF2), and the shelterin complex, in the context of cancer biology. It emphasizes their emerging significance as potential biomarkers and targets for therapeutic intervention. Central to the shelterin complex, TRF1 and TRF2 are crucial in maintaining telomere integrity and genomic stability, their dysregulation often being a hallmark of cancerous cells. The article delves into the diagnostic and prognostic capabilities of TRF1 and TRF2 across various cancer types, highlighting their sensitivity and specificity. Furthermore, it reviews current strides in drug discovery targeting the shelterin complex, detailing specific compounds and their modes of action. The review candidly addresses the challenges in developing therapies aimed at the shelterin complex, including drug resistance, off-target effects, and issues in drug delivery. By synthesizing recent research findings, the article sheds light on the intricate relationship between telomere biology and cancer development. It underscores the urgency for continued research to navigate the existing challenges and fully leverage the therapeutic potential of TRF1, TRF2, and the shelterin complex in the realm of cancer treatment.


Subject(s)
Neoplasms , Telomere , Telomeric Repeat Binding Protein 1 , Telomeric Repeat Binding Protein 2 , Humans , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/therapy , Telomeric Repeat Binding Protein 2/metabolism , Telomeric Repeat Binding Protein 2/genetics , Telomeric Repeat Binding Protein 1/metabolism , Telomeric Repeat Binding Protein 1/genetics , Telomere/metabolism , Molecular Targeted Therapy/methods , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Shelterin Complex , Telomere-Binding Proteins
8.
PLoS Genet ; 20(6): e1011329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38913752

ABSTRACT

Precise regulation of chromosome dynamics in the germline is essential for reproductive success across species. Yet, the mechanisms underlying meiotic chromosomal events such as homolog pairing and chromosome segregation are not fully understood in many species. Here, we employ Oligopaint DNA FISH to investigate mechanisms of meiotic homolog pairing and chromosome segregation in the holocentric pantry moth, Plodia interpunctella, and compare our findings to new and previous studies in the silkworm moth, Bombyx mori, which diverged from P. interpunctella over 100 million years ago. We find that pairing in both Bombyx and Plodia spermatogenesis is initiated at gene-rich chromosome ends. Additionally, both species form rod shaped cruciform-like bivalents at metaphase I. However, unlike the telomere-oriented chromosome segregation mechanism observed in Bombyx, Plodia can orient bivalents in multiple different ways at metaphase I. Surprisingly, in both species we find that kinetochores consistently assemble at non-telomeric loci toward the center of chromosomes regardless of where chromosome centers are located in the bivalent. Additionally, sister kinetochores do not seem to be paired in these species. Instead, four distinct kinetochores are easily observed at metaphase I. Despite this, we find clear end-on microtubule attachments and not lateral microtubule attachments co-orienting these separated kinetochores. These findings challenge the classical view of segregation where paired, poleward-facing kinetochores are required for accurate homolog separation in meiosis I. Our studies here highlight the importance of exploring fundamental processes in non-model systems, as employing novel organisms can lead to the discovery of novel biology.


Subject(s)
Bombyx , Chromosome Segregation , Meiosis , Moths , Spermatogenesis , Animals , Chromosome Segregation/genetics , Moths/genetics , Moths/physiology , Male , Spermatogenesis/genetics , Meiosis/genetics , Bombyx/genetics , Bombyx/physiology , Kinetochores/metabolism , Microtubules/metabolism , Microtubules/genetics , Chromosome Pairing/genetics , Chromosomes, Insect/genetics , In Situ Hybridization, Fluorescence , Metaphase , Telomere/genetics , Telomere/metabolism , Kinetics
9.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928414

ABSTRACT

Application of laser-generated electron beams in radiotherapy is a recent development. Accordingly, mechanisms of biological response to radiation damage need to be investigated. In this study, telomere length (TL) as endpoint of genetic damage was analyzed in human blood cells (leukocytes) and K562 leukemic cells irradiated with laser-generated ultrashort electron beam. Metaphases and interphases were analyzed in quantitative fluorescence in situ hybridization (Q-FISH) to assess TL. TLs were shortened compared to non-irradiated controls in both settings (metaphase and interphase) after irradiation with 0.5, 1.5, and 3.0 Gy in blood leukocytes. Radiation also caused a significant TL shortening detectable in the interphase of K562 cells. Overall, a negative correlation between TL and radiation doses was observed in normal and leukemic cells in a dose-dependent manner. K562 cells were more sensitive than normal blood cells to increasing doses of ultrashort electron beam radiation. As telomere shortening leads to genome instability and cell death, the results obtained confirm the suitability of this biomarker for assessing genotoxic effects of accelerated electrons for their further use in radiation therapy. Observed differences in TL shortening between normal and K562 cells provide an opportunity for further development of optimal radiation parameters to reduce side effects in normal cells during radiotherapy.


Subject(s)
Electrons , Leukocytes , Telomere , Humans , K562 Cells , Leukocytes/radiation effects , Leukocytes/metabolism , Telomere/radiation effects , Telomere/genetics , Telomere/metabolism , Leukemia/genetics , Leukemia/pathology , Leukemia/radiotherapy , Telomere Homeostasis/radiation effects , In Situ Hybridization, Fluorescence , Telomere Shortening/radiation effects , DNA Damage/radiation effects , Dose-Response Relationship, Radiation
10.
Methods Enzymol ; 698: 361-378, 2024.
Article in English | MEDLINE | ID: mdl-38886039

ABSTRACT

Alternative Lengthening of Telomeres (ALT) is a mechanism used by 10-15% of all cancers to achieve replicative immortality, bypassing the DNA damage checkpoint associated with short telomeres that leads to cellular senescence or apoptosis. ALT does not occur in non-cancerous cells, presenting a potential therapeutic window for cancers where this mechanism is active. Disrupting the FANCM-RMI interaction has emerged as a promising therapeutic strategy that induces synthetic ALT lethality in genetic studies on cancer cell lines. There are currently no chemical inhibitors reported in the literature, in part due to the lack of reliable biophysical or biochemical assays to screen for FANCM-RMI disruption. Here we describe the development of a robust competitive fluorescence polarization (FP) assay that quantifies target binding at the FANCM-RMI interface. The assay employs a labeled peptide tracer TMR-RaMM2 derived from the native MM2 binding motif, which binds to recombinant RMI1-RMI2 and can be displaced by competitive inhibitors. We report the methods for recombinant production of RMI1-RMI2, design and evaluation of the tracer TMR-RaMM2, along with unlabeled peptide inhibitor controls to enable ALT-targeted drug discovery.


Subject(s)
Fluorescence Polarization , Telomere Homeostasis , Humans , Fluorescence Polarization/methods , Telomere Homeostasis/drug effects , Protein Binding , Telomere/metabolism , Telomere/genetics , DNA Helicases
11.
J Phys Chem B ; 128(25): 5950-5965, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38875355

ABSTRACT

The guanine-rich telomeric repeats can form G-quadruplexes (G4s) that alter the accessibility of the single-stranded telomeric overhang. In this study, we investigated the effects of Na+ and K+ on G4 folding and accessibility through cation introduction and exchange. We combined differential scanning calorimetry (DSC), circular dichroism (CD), and single molecule Förster resonance energy transfer (smFRET) to monitor the stability, conformational dynamics, and complementary strand binding accessibility of G4 formed by single-stranded telomeric DNA. Our data showed that G4 formed through heating and slow cooling in K+ solution exhibited fewer conformational dynamics than G4 formed in Na+ solution, which is consistent with the higher thermal stability of G4 in K+. Monitoring cation exchange with real time smFRET at room temperature shows that Na+ and K+ can replace each other in G4. When encountering high K+ at room or body temperature, G4 undergoes a slow conformational rearrangement process which is mostly complete by 2 h. The slow conformational rearrangement ends with a stable G4 that is unable to be unfolded by a complementary strand. This study provides new insights into the accessibility of G4 forming sequences at different time points after introduction to a high K+ environment in cells, which may affect how the nascent telomeric overhang interacts with proteins and telomerase.


Subject(s)
DNA, Single-Stranded , G-Quadruplexes , Potassium , Telomere , Potassium/chemistry , Potassium/metabolism , Telomere/chemistry , Telomere/metabolism , Humans , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , Fluorescence Resonance Energy Transfer , Sodium/chemistry , Sodium/metabolism , Nucleic Acid Conformation , Circular Dichroism , Calorimetry, Differential Scanning
12.
Nat Commun ; 15(1): 5148, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890274

ABSTRACT

Telomere length is an important biomarker of organismal aging and cellular replicative potential, but existing measurement methods are limited in resolution and accuracy. Here, we deploy digital telomere measurement (DTM) by nanopore sequencing to understand how distributions of human telomere length change with age and disease. We measure telomere attrition and de novo elongation with up to 30 bp resolution in genetically defined populations of human cells, in blood cells from healthy donors and in blood cells from patients with genetic defects in telomere maintenance. We find that human aging is accompanied by a progressive loss of long telomeres and an accumulation of shorter telomeres. In patients with defects in telomere maintenance, the accumulation of short telomeres is more pronounced and correlates with phenotypic severity. We apply machine learning to train a binary classification model that distinguishes healthy individuals from those with telomere biology disorders. This sequencing and bioinformatic pipeline will advance our understanding of telomere maintenance mechanisms and the use of telomere length as a clinical biomarker of aging and disease.


Subject(s)
Machine Learning , Telomere Homeostasis , Telomere , Humans , Telomere/genetics , Telomere/metabolism , Telomere Homeostasis/genetics , Adult , Healthy Aging/genetics , Middle Aged , Male , Aged , Female , Telomere Shortening/genetics , Aging/genetics , Nanopore Sequencing/methods , Young Adult
13.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892366

ABSTRACT

In order to overcome the resistance to radiotherapy in human chondrosarcoma cells, the prevention from efficient DNA repair with a combined treatment with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) inhibitor AZD7648 was explored for carbon ion (C-ion) as well as reference photon (X-ray) irradiation (IR) using gene expression analysis, flow cytometry, protein phosphorylation, and telomere length shortening. Proliferation markers and cell cycle distribution changed significantly after combined treatment, revealing a prominent G2/M arrest. The expression of the G2/M checkpoint genes cyclin B, CDK1, and WEE1 was significantly reduced by IR alone and the combined treatment. While IR alone showed no effects, additional AZD7648 treatment resulted in a dose-dependent reduction in AKT phosphorylation and an increase in Chk2 phosphorylation. Twenty-four hours after IR, the key genes of DNA repair mechanisms were reduced by the combined treatment, which led to impaired DNA repair and increased radiosensitivity. A time-dependent shortening of telomere length was observed in both cell lines after combined treatment with AZD7648 and 8 Gy X-ray/C-ion IR. Our data suggest that the inhibition of DNA-PKcs may increase sensitivity to X-rays and C-ion IR by impairing its functional role in DNA repair mechanisms and telomere end protection.


Subject(s)
Chondrosarcoma , DNA-Activated Protein Kinase , Heavy Ion Radiotherapy , Telomere , Humans , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , DNA-Activated Protein Kinase/genetics , Cell Line, Tumor , Chondrosarcoma/metabolism , Chondrosarcoma/genetics , Chondrosarcoma/radiotherapy , Chondrosarcoma/drug therapy , Telomere/drug effects , Telomere/metabolism , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/radiation effects , DNA Repair/drug effects , Radiation Tolerance/drug effects , Pyrazoles/pharmacology , Cell Proliferation/drug effects , Bone Neoplasms/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , G2 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/radiation effects
14.
Cancer Res Commun ; 4(6): 1533-1547, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38837897

ABSTRACT

Acquiring a telomere maintenance mechanism is a hallmark of high-risk neuroblastoma and commonly occurs by expressing telomerase (TERT). Telomerase-negative neuroblastoma has long telomeres and utilizes the telomerase-independent alternative lengthening of telomeres (ALT) mechanism. Conversely, no discernable telomere maintenance mechanism is detected in a fraction of neuroblastoma with long telomeres. Here, we show, unlike most cancers, DNA of the TERT promoter is broadly hypomethylated in neuroblastoma. In telomerase-positive neuroblastoma cells, the hypomethylated DNA promoter is approximately 1.5 kb. The TERT locus shows active chromatin marks with low enrichment for the repressive mark, H3K27me3. MYCN, a commonly amplified oncogene in neuroblstoma, binds to the promoter and induces TERT expression. Strikingly, in neuroblastoma with long telomeres, the hypomethylated region spans the entire TERT locus, including multiple nearby genes with enrichment for the repressive H3K27me3 chromatin mark. Furthermore, subtelomeric regions showed enrichment of repressive chromatin marks in neuroblastomas with long telomeres relative to those with short telomeres. These repressive marks were even more evident at the genic loci, suggesting a telomere position effect (TPE). Inhibiting H3K27 methylation by three different EZH2 inhibitors induced the expression of TERT in cell lines with long telomeres and H3K27me3 marks in the promoter region. EZH2 inhibition facilitated MYCN binding to the TERT promoter in neuroblastoma cells with long telomeres. Taken together, these data suggest that epigenetic regulation of TERT expression differs in neuroblastoma depending on the telomere maintenance status, and H3K27 methylation is important in repressing TERT expression in neuroblastoma with long telomeres. SIGNIFICANCE: The epigenetic landscape of the TERT locus is unique in neuroblastoma. The DNA at the TERT locus, unlike other cancer cells and similar to normal cells, are hypomethylated in telomerase-positive neuroblastoma cells. The TERT locus is repressed by polycomb repressive complex-2 complex in neuroblastoma cells that have long telomeres and do not express TERT. Long telomeres in neuroblastoma cells are also associated with repressive chromatin states at the chromosomal termini, suggesting TPE.


Subject(s)
Neuroblastoma , Promoter Regions, Genetic , Telomerase , Telomere , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Telomerase/genetics , Telomerase/metabolism , Humans , Promoter Regions, Genetic/genetics , Telomere/metabolism , Telomere/genetics , Cell Line, Tumor , DNA Methylation/genetics , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Gene Expression Regulation, Neoplastic , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism
15.
Commun Biol ; 7(1): 698, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862827

ABSTRACT

Telomeres are repetitive nucleoprotein complexes at chromosomal termini essential for maintaining genome stability. Telomeric RNA, or TERRA, is a previously presumed long noncoding RNA of heterogeneous lengths that contributes to end-capping structure and function, and facilitates telomeric recombination in tumors that maintain telomere length via the telomerase-independent Alternative Lengthening of Telomeres (ALT) pathway. Here, we investigated TERRA in the radiation-induced DNA damage response (DDR) across astronauts, high-altitude climbers, healthy donors, and cellular models. Similar to astronauts in the space radiation environment and climbers of Mt. Everest, in vitro radiation exposure prompted increased transcription of TERRA, while simulated microgravity did not. Data suggest a specific TERRA DDR to telomeric double-strand breaks (DSBs), and provide direct demonstration of hybridized TERRA at telomere-specific DSB sites, indicative of protective TERRA:telomeric DNA hybrid formation. Targeted telomeric DSBs also resulted in accumulation of TERRA foci in G2-phase, supportive of TERRA's role in facilitating recombination-mediated telomere elongation. Results have important implications for scenarios involving persistent telomeric DNA damage, such as those associated with chronic oxidative stress (e.g., aging, systemic inflammation, environmental and occupational radiation exposures), which can trigger transient ALT in normal human cells, as well as for targeting TERRA as a therapeutic strategy against ALT-positive tumors.


Subject(s)
Altitude , Space Flight , Telomere , Humans , Telomere/metabolism , Telomere/genetics , Male , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Adult , Middle Aged , DNA Breaks, Double-Stranded , Female , DNA Damage , Mountaineering , Telomere Homeostasis
16.
Stem Cell Res Ther ; 15(1): 180, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902824

ABSTRACT

BACKGROUND: Telomeres consist of repetitive DNA sequences at the chromosome ends to protect chromosomal stability, and primarily maintained by telomerase or occasionally by alternative telomere lengthening of telomeres (ALT) through recombination-based mechanisms. Additional mechanisms that may regulate telomere maintenance remain to be explored. Simultaneous measurement of telomere length and transcriptome in the same human embryonic stem cell (hESC) revealed that mRNA expression levels of UBQLN1 exhibit linear relationship with telomere length. METHODS: In this study, we first generated UBQLN1-deficient hESCs and compared with the wild-type (WT) hESCs the telomere length and molecular change at RNA and protein level by RNA-seq and proteomics. Then we identified the potential interacting proteins with UBQLN1 using immunoprecipitation-mass spectrometry (IP-MS). Furthermore, the potential mechanisms underlying the shortened telomeres in UBQLN1-deficient hESCs were analyzed. RESULTS: We show that Ubiquilin1 (UBQLN1) is critical for telomere maintenance in human embryonic stem cells (hESCs) via promoting mitochondrial function. UBQLN1 deficiency leads to oxidative stress, loss of proteostasis, mitochondria dysfunction, DNA damage, and telomere attrition. Reducing oxidative damage and promoting mitochondria function by culture under hypoxia condition or supplementation with N-acetylcysteine partly attenuate the telomere attrition induced by UBQLN1 deficiency. Moreover, UBQLN1 deficiency/telomere shortening downregulates genes for neuro-ectoderm lineage differentiation. CONCLUSIONS: Altogether, UBQLN1 functions to scavenge ubiquitinated proteins, preventing their overloading mitochondria and elevated mitophagy. UBQLN1 maintains mitochondria and telomeres by regulating proteostasis and plays critical role in neuro-ectoderm differentiation.


Subject(s)
Autophagy-Related Proteins , Human Embryonic Stem Cells , Mitochondria , Proteostasis , Telomere Homeostasis , Telomere , Humans , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Mitochondria/metabolism , Telomere/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Oxidative Stress , DNA Damage
17.
Nano Lett ; 24(27): 8351-8360, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38916238

ABSTRACT

Targeting telomere maintenance has emerged as a promising strategy for hepatocellular carcinoma (HCC) treatment. However, given the duality of the telomere-telomerase axis in telomere maintenance, a comprehensive strategy is urgently needed. Herein, we develop a poly(amino acid) (D-PAAs)-based strategy for spatiotemporal codelivery of telomerase inhibitor, BIBR1523, and AKT inhibitor, isobavachalcone. By leveraging D-PAAs' modifiability, we synthesize polymer-inhibitor conjugates (PB and PI) and a folic acid-decorated tumor-targeting vector (PF). These building blocks undergo micellization to fabricate a codelivery nanomedicine (P-BI@P-FA) by exploiting D-PAAs' noncovalent assembly. P-BI@P-FA improves the pharmacokinetics, tumor selectivity, and bioavailability of small molecule inhibitors and initiates a dual telomere-specific inhibition by combining telomerase deactivation with telomere disruption. Furthermore, a hybrid tumor-targeting magnetic nanosystem is designed using D-PAAs and manganese dioxide to showcase magnetic resonance imaging capacities. Our D-PAAs-based strategy addresses the pressing need for telomere-specific HCC treatment while allowing for diagnostic application, presenting a promising avenue for nanomedicine design.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Magnetic Resonance Imaging , Nanomedicine , Telomerase , Telomere , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Telomerase/antagonists & inhibitors , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Humans , Nanomedicine/methods , Telomere/metabolism , Magnetic Resonance Imaging/methods , Animals , Mice , Cell Line, Tumor , Amino Acids/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use
18.
Cell ; 187(14): 3638-3651.e18, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38838667

ABSTRACT

Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Our findings suggest that POT1 hinge phosphorylation is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/primase in an inactive, autoinhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/primase into an active state that completes telomere replication through fill-in synthesis.


Subject(s)
DNA Polymerase I , DNA Primase , Shelterin Complex , Telomere-Binding Proteins , Telomere , Humans , Telomere-Binding Proteins/metabolism , Shelterin Complex/metabolism , Telomere/metabolism , Phosphorylation , DNA Primase/metabolism , DNA Primase/genetics , DNA Polymerase I/metabolism , Cryoelectron Microscopy , Telomerase/metabolism , Models, Molecular
19.
Sci Adv ; 10(24): eadk4387, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865460

ABSTRACT

The function of TERRA in the regulation of telomerase in human cells is still debated. While TERRA interacts with telomerase, how it regulates telomerase function remains unknown. Here, we show that TERRA colocalizes with the telomerase RNA subunit hTR in the nucleoplasm and at telomeres during different phases of the cell cycle. We report that TERRA transcripts relocate away from chromosome ends during telomere lengthening, leading to a reduced number of telomeric TERRA-hTR molecules and consequent increase in "TERRA-free" telomerase molecules at telomeres. Using live-cell imaging and super-resolution microscopy, we show that upon transcription, TERRA relocates from its telomere of origin to long chromosome ends. Furthermore, TERRA depletion by antisense oligonucleotides promoted hTR localization to telomeres, leading to increased residence time and extended half-life of hTR molecules at telomeres. Overall, our findings indicate that telomeric TERRA transcripts inhibit telomere elongation by telomerase acting in trans, impairing telomerase access to telomeres that are different from their chromosome end of origin.


Subject(s)
Telomerase , Telomere , Telomerase/metabolism , Telomerase/genetics , Humans , Telomere/metabolism , Telomere/genetics , Telomere Homeostasis , HeLa Cells , RNA/metabolism , RNA/genetics , Transcription, Genetic , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , Cell Cycle/genetics , Chromosomes, Human/metabolism , Chromosomes, Human/genetics , DNA-Binding Proteins , Transcription Factors
20.
Sci Rep ; 14(1): 13159, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849401

ABSTRACT

Epigenetic mechanisms contribute to the maintenance of both type 2 diabetes mellitus (T2DM) and psychiatric disorders. Emerging evidence suggests that molecular pathways and neurocognitive performance regulate epigenetic dynamics in these disorders. The current combined and transdiagnostic study investigated whether inflammatory, oxidative stress, adhesion molecule, neurocognitive and functional performance are significant predictors of telomere dynamics in a sample stratified by global DNA methylation levels. Peripheral blood inflammation, oxidative stress and adhesion molecule biomarkers and neurocognitive function were assessed twice over a 1-year period in 80 individuals, including 16 with schizophrenia (SZ), 16 with bipolar disorder (BD), 16 with major depressive disorder (MDD), 15 with T2DM, and 17 healthy controls (HCs). Leukocyte telomere length (LTL) was measured by qRT-PCR using deoxyribonucleic acid (DNA) extracted from peripheral blood samples. A posteriori, individuals were classified based on their global methylation score (GMS) at baseline into two groups: the below-average methylation (BM) and above-average methylation (AM) groups. Hierarchical and k-means clustering methods, mixed one-way analysis of variance and linear regression analyses were performed. Overall, the BM group showed a significantly higher leukocyte telomere length (LTL) than the AM group at both time points (p = 0.02; η2p = 0.06). Moreover, the BM group had significantly lower levels of tumor necrosis factor alpha (TNF-α) (p = 0.03; η2p = 0.06) and C-reactive protein (CRP) (p = 0.03; η2p = 0.06) than the AM group at the 1-year follow-up. Across all participants, the regression models showed that oxidative stress (reactive oxygen species [ROS]) (p = 0.04) and global cognitive score [GCS] (p = 0.02) were significantly negatively associated with LTL, whereas inflammatory (TNF-α) (p = 0.04), adhesion molecule biomarkers (inter cellular adhesion molecule [ICAM]) (p = 0.009), and intelligence quotient [IQ] (p = 0.03) were significantly positively associated with LTL. Moreover, the model predictive power was increased when tested in both groups separately, explaining 15.8% and 28.1% of the LTL variance at the 1-year follow-up for the AM and BM groups, respectively. Heterogeneous DNA methylation in individuals with T2DM and severe mental disorders seems to support the hypothesis that epigenetic dysregulation occurs in a transdiagnostic manner. Our results may help to elucidate the interplay between epigenetics, molecular processes and neurocognitive function in these disorders. DNA methylation and LTL are potential therapeutic targets for transdiagnostic interventions to decrease the risk of comorbidities.


Subject(s)
DNA Methylation , Inflammation , Oxidative Stress , Schizophrenia , Telomere , Humans , Male , Female , Inflammation/blood , Inflammation/genetics , Adult , Middle Aged , Telomere/genetics , Telomere/metabolism , Schizophrenia/genetics , Schizophrenia/blood , Diabetes Mellitus, Type 2/genetics , Biomarkers/blood , Bipolar Disorder/genetics , Bipolar Disorder/blood , Depressive Disorder, Major/genetics , Depressive Disorder, Major/blood , Leukocytes/metabolism , Epigenesis, Genetic , Telomere Homeostasis , Cognition , Case-Control Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...