Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 521
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1380013, 2024.
Article in English | MEDLINE | ID: mdl-39086902

ABSTRACT

In this study, we used a bioinformatic approach to construct a miRNA-target gene interaction network potentially involved in the anabolic effect of parathyroid hormone analogue teriparatide [PTH (1-34)] on osteoblasts. We extracted a dataset of 26 microRNAs (miRNAs) from previously published studies and predicted miRNA target interactions (MTIs) using four software tools: DIANA, miRWalk, miRDB, and TargetScan. By constructing an interactome of PTH-regulated miRNAs and their predicted target genes, we elucidated signaling pathways regulating pluripotency of stem cells, the Hippo signaling pathway, and the TGF-beta signaling pathway as the most significant pathways in the effects of PTH on osteoblasts. Furthermore, we constructed intersection of MTI networks for these three pathways and added validated interactions. There are 8 genes present in all three selected pathways and a set of 18 miRNAs are predicted to target these genes, according to literature data. The most important genes in all three pathways were BMPR1A, BMPR2 and SMAD2 having the most interactions with miRNAs. Among these miRNAs, only miR-146a-5p and miR-346 have validated interactions in these pathways and were shown to be important regulators of these pathways. In addition, we also propose miR-551b-5p and miR-338-5p for further experimental validation, as they have been predicted to target important genes in these pathways but none of their target interactions have yet been verified. Our wet-lab experiment on miRNAs differentially expressed between PTH (1-34) treated and untreated mesenchymal stem cells supports miR-186-5p from the literature obtained data as another prominent miRNA. The meticulous selection of miRNAs outlined will significantly support and guide future research aimed at discovering and understanding the crucial pathways of osteoanabolic PTH-epigenetic effects on osteoblasts. Additionally, they hold potential for the discovery of new PTH target genes, innovative biomarkers for the effectiveness and safety of osteoporosis-affected treatment, as well as novel therapeutic targets.


Subject(s)
Computational Biology , MicroRNAs , Osteoblasts , Parathyroid Hormone , MicroRNAs/genetics , Osteoblasts/drug effects , Osteoblasts/metabolism , Computational Biology/methods , Parathyroid Hormone/pharmacology , Humans , Gene Regulatory Networks/drug effects , Signal Transduction/drug effects , Animals , Teriparatide/pharmacology
2.
Bone ; 187: 117189, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38960296

ABSTRACT

PURPOSE: The effects of daily teriparatide (D-PTH, 20 µg/day), weekly high-dose teriparatide (W-PTH, 56.5 µg/week), or bisphosphonate (BP) on the vertebra and proximal femur were investigated using quantitative computed tomography (QCT). METHODS: A total of 131 postmenopausal women with a history of fragility fractures were randomized to receive D-PTH, W-PTH, or bisphosphonate (oral alendronate or risedronate). QCT were evaluated at baseline and after 18 months of treatment. RESULTS: A total of 86 participants were evaluated by QCT (Spine: D-PTH: 25, W-PTH: 21, BP: 29. Hip: PTH: 22, W-PTH: 21, BP: 32. Dropout rate: 30.5 %). QCT of the vertebra showed that D-PTH, W-PTH, and BP increased total vBMD (+34.8 %, +18.2 %, +11.1 %), trabecular vBMD (+50.8 %, +20.8 %, +12.2 %), and marginal vBMD (+20.0 %, +14.0 %, +11.5 %). The increase in trabecular vBMD was greater in the D-PTH group than in the W-PTH and BP groups. QCT of the proximal femur showed that D-PTH, W-PTH, and BP increased total vBMD (+2.8 %, +3.6 %, +3.2 %) and trabecular vBMD (+7.7 %, +5.1 %, +3.4 %), while only W-PTH and BP significantly increased cortical vBMD (-0.1 %, +1.5 %, +1.6 %). Although there was no significant increase in cortical vBMD in the D-PTH group, cortical bone volume (BV) increased in all three treatment groups (+2.1 %, +3.6 %, +3.1 %). CONCLUSIONS: D-PTH had a strong effect on trabecular bone of vertebra. Although D-PTH did not increase cortical BMD of proximal femur, it increased cortical BV. W-PTH had a moderate effect on trabecular bone of vertebra, while it increased both cortical BMD and BV of proximal femur. Although BP had a limited effect on trabecular bone of vertebra compared to teriparatide, it increased both cortical BMD and BV of proximal femur.


Subject(s)
Cancellous Bone , Diphosphonates , Femur , Postmenopause , Teriparatide , Tomography, X-Ray Computed , Humans , Teriparatide/administration & dosage , Teriparatide/therapeutic use , Teriparatide/pharmacology , Female , Aged , Femur/drug effects , Femur/diagnostic imaging , Femur/pathology , Cancellous Bone/drug effects , Cancellous Bone/diagnostic imaging , Cancellous Bone/pathology , Diphosphonates/administration & dosage , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , Postmenopause/drug effects , Cortical Bone/drug effects , Cortical Bone/diagnostic imaging , Cortical Bone/pathology , Bone Density Conservation Agents/administration & dosage , Bone Density Conservation Agents/therapeutic use , Middle Aged , Bone Density/drug effects , Fractures, Bone/diagnostic imaging , Spine/diagnostic imaging , Spine/drug effects
3.
Arch Osteoporos ; 19(1): 55, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954145

ABSTRACT

Trends toward more favorable improvement of the cortical bone parameters by once-weekly (56.5 µg once a week) and twice-weekly teriparatide (28.2 µg twice a week), and that of the trabecular bone parameters by once-daily (1/D) teriparatide (20 µg/day once a day) were shown. PURPOSE: To examine the effects of differences in the amount of teriparatide (TPTD) per administration and its dosing frequency on the bone structure in the proximal femur by dual-energy X-ray absorptiometry (DXA)-based 3D-modeling (3D-SHAPER software). METHODS: This was a multicenter retrospective study. Patients aged 50 years or older with primary osteoporosis who continuously received once-/twice-weekly (1・2/W, n = 60) or 1/D TPTD (n = 14) administration for at least one year were included in the study. Measurement regions included the femoral neck (FN), trochanter (TR), femoral shaft (FS), and total proximal hip (TH). Concurrently, the bone mineral density (BMD) and Trabecular Bone Score (TBS) were measured. RESULTS: The cross-sectional area, cross-sectional moment of inertia, and section modulus in the FS were significantly improved in the 1・2/W TPTD group, as compared to the 1/D TPTD group. However, significant improvement of the cortical thickness and buckling ratio in the FN was observed in the 1/D TPTD group, as compared to the 1・2/W TPTD group. Trabecular BMD values in the FS and TH were significantly increased in the 1/D TPTD group, as compared to the 1・2/W TPTD group, while the cortical BMD values in the TR, FS, and TH were significantly increased in the 1・2/W TPTD group, as compared to the 1/D TPTD group. CONCLUSION: Trends toward more favorable improvement of the cortical bone by 1・2/W TPTD and that of the trabecular bones by 1/D TPTD were observed.


Subject(s)
Absorptiometry, Photon , Bone Density Conservation Agents , Bone Density , Femur , Imaging, Three-Dimensional , Teriparatide , Humans , Teriparatide/administration & dosage , Teriparatide/pharmacology , Female , Bone Density/drug effects , Retrospective Studies , Aged , Middle Aged , Male , Bone Density Conservation Agents/administration & dosage , Bone Density Conservation Agents/pharmacology , Femur/drug effects , Femur/diagnostic imaging , Imaging, Three-Dimensional/methods , Osteoporosis/drug therapy , Osteoporosis/diagnostic imaging , Drug Administration Schedule , Aged, 80 and over , Dose-Response Relationship, Drug
4.
Calcif Tissue Int ; 115(2): 169-173, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38907093

ABSTRACT

Teriparatide is an anabolic drug sometimes administered to patients who have atypical femoral fracture (AFF). However, whether teriparatide has beneficial effects on bone healing remains uncertain. The present study aimed to analyze the association between teriparatide and bone healing in complete AFF. A total of 59 consecutive cases (58 patients) who underwent intramedullary nailing for complete AFF were categorized based on postoperative use of teriparatide into the non-teriparatide (non-TPTD, n = 34) and teriparatide groups (TPTD, n = 25). Time-to-bone union was evaluated and compared between the two groups. Additionally, multiple regression analysis was performed to evaluate factors affecting time-to-bone union. All participants were women, with a mean age of 77.6 years (range: 62-92). No significant difference in time-to-bone union was found between the non-TPTD and TPTD groups (5.5 months vs. 5.8 months, p = 0.359). Two patients in the non-TPTD group underwent reoperation (p = 0.503) due to failure caused by inadequate fixation, and both achieved bone healing after additional fixation with blocking screws. Multiple regression analysis revealed that the anterior gap of the fracture site postoperatively was a factor affecting time-to-bone union (p = 0.014). The beneficial effect of teriparatide on bone healing in complete AFF could not be confirmed. Additional randomized controlled trials are required. Nonetheless, appropriate techniques, including efforts to reduce the gap on the tensile side during the surgery, are important for reliable bone healing.


Subject(s)
Bone Density Conservation Agents , Femoral Fractures , Fracture Healing , Teriparatide , Humans , Teriparatide/therapeutic use , Teriparatide/pharmacology , Female , Femoral Fractures/drug therapy , Aged , Fracture Healing/drug effects , Aged, 80 and over , Bone Density Conservation Agents/therapeutic use , Bone Density Conservation Agents/pharmacology , Middle Aged , Fracture Fixation, Intramedullary/methods , Treatment Outcome , Retrospective Studies
5.
Int J Oral Maxillofac Implants ; (3): 435-445, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905118

ABSTRACT

PURPOSE: To evaluate the efficacy of combined therapy of teriparatide and raloxifene on the osseointegration of titanium dental implants in a rabbit model of osteoporotic bone. MATERIALS AND METHODS: Sixty female rabbits were randomly divided into six groups. The sham ovariectomy group (control) consisted of animals that received no medication. Animals in the ovariectomy group (OVX) underwent ovariectomy and received no medication. The combined group consisted of ovariectomized animals that received combined teriparatide (10 mg/kg) for 12 weeks and raloxifene (10 mg/kg) for 12 weeks. The sequential group (SEQ) consisted of ovariectomized animals that received teriparatide (10 mg/kg) for the first 6 weeks and raloxifene therapy (10 mg/kg) for the following 6 weeks sequentially. The parathormone (PTH) and raloxifene (RAL) groups consisted of ovariectomized animals that received only teriparatide (10 mg/kg) for 12 weeks or raloxifene (10 mg/kg) for 12 weeks, respectively. Dental implants (Bilimplant) were placed in the proximal metaphysis of both tibias in all rabbits. Histomorphometric and microCT studies were performed on the specimens obtained from the right tibia bone. Removal torque (RTQ) and implant stability quotient (ISQ) tests were performed on the specimens obtained from the left tibia bone. The results were compared and evaluated statistically. RESULTS: RTQ analysis revealed a statistically significant difference between the mean values of the combined group (93.01 ± 27.19 Ncm) and the OVX group (49.6 ± 12.5 Ncm) (P = .015). The highest mean T0 (implantation day) value was obtained in the control group (67.1 ± 3.4 Ncm), and the lowest mean value was obtained in the OVX group (61.4 ± 3.8 Ncm). The highest T1 mean (3 months after implantation) was obtained by the combined group (76.6 ± 3.8 Ncm), and the lowest mean was obtained by the OVX group (68.9 ± 6.2 Ncm). Histomorphometric analyses showed that the mean percentage of bone-to-implant contact (BIC%) of the combined group (51.2%) was significantly higher than that of the OVX group (28.6%) (P =.006). In the microCT examinations, it was found that the mean BIC% value of the combined group (41.1%) was significantly higher than that of the OVX group (24.1%) (P < .001). CONCLUSIONS: According to the results of the current study, combined therapy of teriparatide and raloxifene improves the BIC and osseointegration of titanium dental implants in osteoporotic bone compared with sequential or independent therapy with these agents.


Subject(s)
Bone Density Conservation Agents , Dental Implants , Disease Models, Animal , Osseointegration , Osteoporosis , Ovariectomy , Raloxifene Hydrochloride , Teriparatide , Animals , Rabbits , Teriparatide/therapeutic use , Teriparatide/pharmacology , Raloxifene Hydrochloride/pharmacology , Raloxifene Hydrochloride/therapeutic use , Osseointegration/drug effects , Female , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Osteoporosis/drug therapy , Dental Implantation, Endosseous/methods , X-Ray Microtomography , Random Allocation , Titanium , Drug Therapy, Combination
7.
Int J Implant Dent ; 10(1): 18, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625587

ABSTRACT

PURPOSE: Osteoporotic individuals who have dental implants usually require a prolonged healing time for osseointegration due to the shortage of bone mass and the lack of initial stability. Although studies have shown that intermittent teriparatide administration can promote osseointegration, there is little data to support the idea that pre-implantation administration is necessary and beneficial. METHODS: Sixty-four titanium implants were placed in the bilateral proximal tibial metaphysis in 32 female SD rats. Bilateral ovariectomy (OVX) was used to induce osteoporosis. Four major groups (n = 8) were created: PRE (OVX + pre-implantation teriparatide administration), POST (OVX + post-implantation administration), OP (OVX + normal saline (NS)) and SHAM (sham rats + NS). Half of rats (n = 4) in each group were euthanized respectively at 4 weeks or 8 weeks after implantation surgery, and four major groups were divided into eight subgroups (PRE4 to SHAM8). Tibiae were collected for micro-CT morphometry, biomechanical test and undecalcified sections analysis. RESULTS: Compared to OP group, rats in PRE and SHAM groups had a higher value of insertion torque (p < 0.05). The micro-CT analysis, biomechanical test, and histological data showed that peri-implant trabecular growth, implants fixation and bone-implant contact (BIC) were increased after 4 or 8 weeks of teriparatide treatment (p < 0.05). There was no statistically difference in those parameters between PRE4 and POST8 subgroups (p > 0.05). CONCLUSIONS: In osteoporotic rats, post-implantation administration of teriparatide enhanced peri-implant bone formation and this effect was stronger as the medicine was taken longer. Pre-implantation teriparatide treatment improved primary implant stability and accelerated the osseointegration process.


Subject(s)
Dental Implants , Teriparatide , Female , Animals , Rats , Rats, Sprague-Dawley , Teriparatide/pharmacology , Teriparatide/therapeutic use , Osseointegration , Embryo Implantation , Saline Solution
8.
Osteoporos Int ; 35(8): 1337-1358, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38587674

ABSTRACT

Antiresorptive medications do not negatively affect fracture healing in humans. Teriparatide may decrease time to fracture healing. Romosozumab has not shown a beneficial effect on human fracture healing. BACKGROUND: Fracture healing is a complex process. Uncertainty exists over the influence of osteoporosis and the medications used to treat it on fracture healing. METHODS: Narrative review authored by the members of the Fracture Working Group of the Committee of Scientific Advisors of the International Osteoporosis Foundation (IOF), on behalf of the IOF and the Société Internationale de Chirurgie Orthopédique et de Traumatologie (SICOT). RESULTS: Fracture healing is a multistep process. Most fractures heal through a combination of intramembranous and endochondral ossification. Radiographic imaging is important for evaluating fracture healing and for detecting delayed or non-union. The presence of callus formation, bridging trabeculae, and a decrease in the size of the fracture line over time are indicative of healing. Imaging must be combined with clinical parameters and patient-reported outcomes. Animal data support a negative effect of osteoporosis on fracture healing; however, clinical data do not appear to corroborate with this. Evidence does not support a delay in the initiation of antiresorptive therapy following acute fragility fractures. There is no reason for suspension of osteoporosis medication at the time of fracture if the person is already on treatment. Teriparatide treatment may shorten fracture healing time at certain sites such as distal radius; however, it does not prevent non-union or influence union rate. The positive effect on fracture healing that romosozumab has demonstrated in animals has not been observed in humans. CONCLUSION: Overall, there appears to be no deleterious effect of osteoporosis medications on fracture healing. The benefit of treating osteoporosis and the urgent necessity to mitigate imminent refracture risk after a fracture should be given prime consideration. It is imperative that new radiological and biological markers of fracture healing be identified. It is also important to synthesize clinical and basic science methodologies to assess fracture healing, so that a convergence of the two frameworks can be achieved.


Subject(s)
Bone Density Conservation Agents , Fracture Healing , Osteoporosis , Osteoporotic Fractures , Humans , Fracture Healing/drug effects , Fracture Healing/physiology , Bone Density Conservation Agents/therapeutic use , Bone Density Conservation Agents/pharmacology , Osteoporotic Fractures/prevention & control , Osteoporotic Fractures/physiopathology , Osteoporosis/drug therapy , Osteoporosis/physiopathology , Teriparatide/therapeutic use , Teriparatide/pharmacology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/pharmacology
9.
J Bone Miner Res ; 39(6): 672-682, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38578978

ABSTRACT

Anabolic treatment is indicated for high and very-high risk patients with osteoporosis, but acceptance is limited because current anabolic medications require subcutaneous injections. The purpose of this study was to assess the effects of a novel orally administered PTH tablet on serum markers of bone formation (PINP and osteocalcin), bone resorption (crosslinked C-telopeptide [CTX]), BMD, and safety in postmenopausal women with low BMD or osteoporosis. In this 6-mo, double-blind, placebo-controlled study, 161 patients were randomized to oral PTH tablets containing 0.5, 1.0, 1.5, or 2.5 mg or placebo daily. Biochemical markers were assessed at 1, 2, 3, and 6 mo and BMD of LS, TH, and FN was measured at 6 mo. Biochemical marker changes were dose dependent with minimal or no effect at the 2 lowest doses. At the highest dose (2.5 mg once daily), serum PINP and OC levels increased 30% within 1 mo after oral PTH initiation (P < .0001), remained elevated through 3 mo, and were back to baseline at 6 mo. In contrast, serum CTX levels declined 16% and 21% below baseline at 3 and 6 mo, respectively (both P ≤ .02). At 6 mo, 2.5 mg tablets increased mean BMD vs placebo of the LS by 2.7%, TH by 1.8%, and FN by 2.8% (all P ≤ .01). There were no drug-related serious adverse events. The most common adverse events were headache, nausea, and dizziness. In contrast to subcutaneous PTH, the oral PTH tablet appears to increase BMD rapidly by the dual mechanism of stimulating formation and inhibiting bone resorption. This might be the first effective oral anabolic alternative to subcutaneous administration for the treatment of low BMD or osteoporosis.


Despite the superior benefits of bone-building (anabolic) agents and guidelines supporting their use, these medications are used in a minority of patients for whom they are appropriate, in part because they require daily or monthly injections, which limit patient acceptance. An oral anabolic tablet has potential to address this substantial treatment gap. In this double-blind, placebo controlled, dose-finding randomized study, 161 postmenopausal women with low BMD or osteoporosis were treated with varying doses of the active part of PTH(1-34) or placebo given in daily oral tablets for 6 mo. The highest oral PTH tablet dose (2.5 mg) produced an increase in markers of bone formation while simultaneously decreasing the markers of bone breakdown. Significant gains in BMD of the spine and hip were observed at the end of the 6-mo study and there were no significant safety concerns. The 2.5 mg oral PTH tablet dose was well tolerated when patients were instructed to titrate up to the full dose. We conclude that this PTH tablet might be the first effective orally administered bone building medication and should be studied further in treatment of women with osteoporosis.


Subject(s)
Bone Density , Humans , Female , Administration, Oral , Middle Aged , Aged , Bone Density/drug effects , Biomarkers/blood , Tablets , Postmenopause/drug effects , Postmenopause/blood , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/blood , Double-Blind Method , Parathyroid Hormone/blood , Placebos , Teriparatide/administration & dosage , Teriparatide/pharmacology , Peptide Fragments/blood
10.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673956

ABSTRACT

For a wide range of chronic autoimmune and inflammatory diseases in both adults and children, synthetic glucocorticoids (GCs) are one of the most effective treatments. However, besides other adverse effects, GCs inhibit bone mass at multiple levels, and at different ages, especially in puberty. Although extensive studies have investigated the mechanism of GC-induced osteoporosis, their target cell populations still be obscure. Here, our data show that the osteoblast subpopulation among Gli1+ metaphyseal mesenchymal progenitors (MMPs) is responsive to GCs as indicated by lineage tracing and single-cell RNA sequencing experiments. Furthermore, the proliferation and differentiation of Gli1+ MMPs are both decreased, which may be because GCs impair the oxidative phosphorylation(OXPHOS) and aerobic glycolysis of Gli1+ MMPs. Teriparatide, as one of the potential treatments for GCs in bone mass, is sought to increase bone volume by increasing the proliferation and differentiation of Gli1+ MMPs in vivo. Notably, our data demonstrate teriparatide ameliorates GC-caused bone defects by targeting Gli1+ MMPs. Thus, Gli1+ MMPs will be the potential mesenchymal progenitors in response to diverse pharmaceutical administrations in regulating bone formation.


Subject(s)
Glucocorticoids , Mesenchymal Stem Cells , Osteoporosis , Animals , Mice , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Glucocorticoids/adverse effects , Glucocorticoids/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mice, Inbred C57BL , Osteoblasts/metabolism , Osteoblasts/drug effects , Osteogenesis/drug effects , Osteoporosis/chemically induced , Osteoporosis/metabolism , Osteoporosis/pathology , Teriparatide/pharmacology , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics
11.
BMC Musculoskelet Disord ; 25(1): 109, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310278

ABSTRACT

BACKGROUND: Teriparatide (TPTD) is a widely used anabolic agent for the treatment of osteoporosis. Several factors have been identified to be related to bone mineral density (BMD) increase in anti-osteoporosis treatment with other agents; however, there has been no systematic analysis to summarize the associated determinants of BMD reaction to daily teriparatide treatment. METHODS: In this retrospective study, we performed a comprehensive investigation involving not only clinical data but also several relevant lifestyle factors to be examined for their potential contribution to BMD response. This post-hoc analysis included 258 post-menopaused patients with osteoporosis who received TPTD at 20 µg/day for 12 months. Univariate and multivariate analyses were conducted to distinguish the response variables of lumbar spine (LS) BMD transformation, the principal outcome measure of efficacy, from the baseline at 12 months. RESULTS: Twelve months of TPTD treatment resulted in an absolute 0.39 ± 0.37 increase in T-score of LS BMD. Gastrointestinal disease, prior bisphosphonate or glucocorticoid treatment, no vitamin K2 supplementation, low levels of serum 25(OH)D and PINP, weak increment of PINP and ß-CTX at 3 months, unhealthy lifestyle (excessive smoking, tea, coffee, and drinking), vegetarian diet pattern, low ALT level, and high BMD at baseline were determined by univariate analyses to be related to the weak reaction of TPTD treatment (P < 0.10). In the multiple regression model, postmenopausal women with vitamin K2 supplementation, higher baseline serum 25(OH)D level, and higher PINP concentration at 3 months indicated a good reaction of LS BMD at 12 months (P < 0.05). Patients with gastrointestinal disease, prior bisphosphonate and glucocorticoid treatment, vegetarian diet pattern, and higher baseline BMD were significantly more likely to have a lower absolute LS BMD response compared to patients without these characteristics (P < 0.05). Further analysis confirmed the negative effect of unhealthy lifestyle on TPTD treatment. CONCLUSION: Our results emphasize the significance of a comprehensive assessment of clinical or lifestyle-related characteristics of postmenopausal women with osteoporosis in the management of TPTD therapy in routine care.


Subject(s)
Bone Density Conservation Agents , Gastrointestinal Diseases , Osteoporosis, Postmenopausal , Osteoporosis , Humans , Female , Teriparatide/therapeutic use , Teriparatide/pharmacology , Retrospective Studies , Postmenopause , Glucocorticoids/therapeutic use , Osteoporosis/diagnostic imaging , Osteoporosis/drug therapy , Bone Density , Diphosphonates/therapeutic use , Lumbar Vertebrae/diagnostic imaging , Osteoporosis, Postmenopausal/diagnostic imaging , Osteoporosis, Postmenopausal/drug therapy
12.
Bone ; 181: 117042, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360197

ABSTRACT

This study investigated the efficacy of the two FDA-approved bone anabolic ligands of the parathyroid hormone receptor 1 (PTH1R), teriparatide or human parathyroid hormone 1-34 (PTH) and abaloparatide (ABL), to restoring skeletal health using a preclinical murine model of streptozotocin-induced T1-DM. Intermittent daily subcutaneous injections of equal molar doses (12 pmoles/g/day) of PTH (50 ng/g/day), ABL (47.5 ng/g/day), or vehicle, were administered for 28 days to 5-month-old C57Bl/6 J male mice with established T1-DM or control (C) mice. ABL was superior to PTH in increasing or restoring bone mass in control or T1-MD mice, respectively, which was associated with superior stimulation of trabecular and periosteal bone formation, upregulation of osteoclastic/osteoblastic gene expression, and increased circulating bone remodeling markers. Only ABL corrected the reduction in ultimate load, which is a measure of bone strength, induced by T1-DM, and it also increased energy to ultimate load. In addition, bones from T1-DM mice treated with PTH or ABL exhibited increased ultimate stress, a material index, compared to T1-DM mice administered with vehicle. And both PTH and ABL prevented the increased expression of the Wnt antagonist Sost/sclerostin displayed by T1-DM mice. Further, PTH and ABL increased to a similar extent the circulating bone resorption marker CTX and the bone formation marker P1NP in T1-DM after 2 weeks of treatment; however, only ABL sustained these increases after 4 weeks of treatment. We conclude that at equal molar doses, ABL is more effective than PTH in increasing bone mass and restoring the cortical and trabecular bone lost with T1-DM, due to higher and longer-lasting increases in bone remodeling.


Subject(s)
Diabetes Mellitus, Type 1 , Teriparatide , Humans , Mice , Male , Animals , Infant, Newborn , Teriparatide/pharmacology , Teriparatide/therapeutic use , Diabetes Mellitus, Type 1/drug therapy , Bone Density/physiology , Parathyroid Hormone-Related Protein/pharmacology , Parathyroid Hormone/pharmacology , Parathyroid Hormone/therapeutic use
13.
J Endocrinol Invest ; 47(7): 1667-1677, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38191946

ABSTRACT

PURPOSE: The aim of this study was to evaluate changes in hip geometry parameters following treatment with teriparatide (TPD), denosumab (Dmab) and zoledronate (ZOL) in real-life setting. METHODS: We studied 249 patients with osteoporosis (OP) with mean [SD] age of 71.5 [11.1] years divided into 3 treatment groups; Group A received TPD; n = 55, Group B (Dmab); n = 116 and Group C (ZOL); n = 78 attending a routine metabolic bone clinic. Bone mineral density (BMD) was measured by DXA at the lumbar spine (LS), total hip (TH) and femoral neck (FN) prior to treatment and after 2 years (Group A), after a mean treatment duration of 3.3 [1.3] years (Group B) and after 1, 2 and 3 doses of ZOL (Group C) to assess treatment response. Hip structural analysis (HSA) was carried out retrospectively from DXA-acquired femur images at the narrow neck (NN), the intertrochanter (IT) and femoral shaft (FS). RESULTS: Changes in parameters of hip geometry and mechanical strength were seen in the following treatment. Percentage change in cross-sectional area (CSA): 3.56[1.6] % p = 0.01 and cross-sectional moment of inertia (CSMI): 4.1[1.8] % p = 0.029 increased at the NN only in Group A. Improvement in HSA parameters at the IT were seen in group B: CSA: 3.3[0.67]% p < 0.001, cortical thickness (Co Th): 2.8[0.78]% p = 0.001, CSMI: 5.9[1.3]% p < 0.001, section modulus (Z):6.2[1.1]% p < 0.001 and buckling ratio (BR): - 3.0[0.86]% p = 0.001 with small changes at the FS: CSA: 1.2[0.4]% p = 0.005, Z:1.6 [0.76]%, p = 0.04. Changes at the IT were also seen in Group C (after 2 doses): CSA: 2.5[0.77]% p = 0.017, Co Th: 2.4[0.84]% p = 0.012, CSMI: 3.9[1.3]% p = 0.017, Z:5.2[1.16]% p < 0.001 and BR: - 3.1[0.88]% p = 0.001 and at the NN (following 3 doses): outer diameter (OD): 4.0[1.4]% p = 0.0005, endocortical diameter(ED): 4.3[1.67% p = 0.009, CSA:5.2[1.8]% p = 0.003, CSMI: 9.3[3.8]% p = 0.019. CONCLUSIONS: Analysis of the effect of OP therapies on hip geometry is useful in understanding the mechanisms of their anti-fracture effect and may provide additional information on their efficacy.


Subject(s)
Bone Density Conservation Agents , Bone Density , Denosumab , Osteoporosis , Teriparatide , Zoledronic Acid , Humans , Female , Zoledronic Acid/therapeutic use , Zoledronic Acid/administration & dosage , Zoledronic Acid/pharmacology , Teriparatide/therapeutic use , Teriparatide/administration & dosage , Teriparatide/pharmacology , Aged , Bone Density Conservation Agents/therapeutic use , Bone Density Conservation Agents/administration & dosage , Bone Density/drug effects , Male , Denosumab/therapeutic use , Denosumab/administration & dosage , Osteoporosis/drug therapy , Osteoporosis/pathology , Retrospective Studies , Absorptiometry, Photon , Diphosphonates/therapeutic use , Diphosphonates/administration & dosage , Middle Aged , Aged, 80 and over , Follow-Up Studies
14.
J Med Chem ; 67(2): 1360-1369, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38195392

ABSTRACT

In spite of effective antiosteoporosis potency, teriparatide, a bone-building agent approved by the FDA (Food and Drug Administration), was proven to exhibit various side effects. In our previous work, we developed a universal strategy for synthesizing arginine N-glycosylated peptides termed silver-promoted solid-phase glycosylation (SSG) strategy. However, it is unknown whether the SSG strategy can be applied in the peptide drug design. Herein, we first reported the optimization of teriparatide via SSG strategy. Using Arg20 and/or Arg25 as the modifying positions, three series of arginine N-glycosylated teriparatide analogs were successfully synthesized, of which the introduced sugar groups included glucose, galactose, mannose, rhamnose, ribose, 2-acetamino-2-deoxy-glucose, xylose, lactose, and maltose. Among the 27 arginine N-glycosylated derivatives, Arg20-xylose and Arg25-maltose teriparatide analogs, termed PTH-1g and PTH-2i, respectively, indicated enhanced serum stability and significantly improved antiosteoporotic activities in vitro and in vivo compared with the native counterpart. They may serve as effective therapeutic candidates for treating osteoporosis.


Subject(s)
Bone Density Conservation Agents , Teriparatide , Teriparatide/pharmacology , Teriparatide/therapeutic use , Silver/pharmacology , Glycosylation , Maltose/pharmacology , Xylose/pharmacology , Peptides/pharmacology , Glucose/pharmacology , Lactose , Catalysis , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Bone Density
15.
J Oral Biosci ; 66(1): 49-60, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38048848

ABSTRACT

OBJECTIVES: Teriparatide [TPTD; human parathyroid hormone (hPTH1-34)] is an anti-osteoporotic drug with bone anabolic effects. Clinical and preclinical studies have indicated that TPTD has value in oral and maxillofacial bone therapies, including jawbone regeneration, periodontal tissue repair, and the treatment of medication-related osteonecrosis of the jaw. However, it is unclear whether the craniofacial bones respond to TPTD similarly to the axial and appendicular bones. Recent studies showed that TPTD acts on both osteocytes and osteoblasts. This study aimed to characterize distinct craniofacial bone sites, with a focus on morphometric changes in osteocytic lacunae in ovariectomized rats receiving TPTD. METHODS: Conventional bone histomorphometric analyses of mandibular and parietal bone sections were conducted. High-resolution confocal imaging-based three-dimensional fluorescence morphometric analyses of osteocytic lacunae in distinct mandibular and parietal bone sites were conducted. RESULTS: We observed dynamic changes in the morphometric characteristics of osteocytic lacunae specifically in alveolar and other mandibular bone sites upon TPTD administration. CONCLUSIONS: These findings suggest that osteocytes in mandibular bone (specifically, alveolar bone) have unique functional characteristics of osteocytic perilacunar remodeling.


Subject(s)
Osteocytes , Teriparatide , Humans , Rats , Animals , Teriparatide/pharmacology , Osteocytes/physiology , Fluorescence , Bone Remodeling , Mandible/diagnostic imaging
16.
JCI Insight ; 8(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37870958

ABSTRACT

Osteocytes express parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptors and respond to the PTHrP analog abaloparatide (ABL) and to the PTH 1-34 fragment teriparatide (TPTD), which are used to treat osteoporosis. Several studies indicate overlapping but distinct skeletal responses to ABL or TPTD, but their effects on cortical bone may differ. Little is known about their differential effects on osteocytes. We compared cortical osteocyte and skeletal responses to ABL and TPTD in sham-operated and ovariectomized mice. Administered 7 weeks after ovariectomy for 4 weeks at a dose of 40 µg/kg/d, TPTD and ABL had similar effects on trabecular bone, but ABL showed stronger effects in cortical bone. In cortical osteocytes, both treatments decreased lacunar area, reflecting altered peri-lacunar remodeling favoring matrix accumulation. Osteocyte RNA-Seq revealed that several genes and pathways were altered by ovariectomy and affected similarly by TPTD and ABL. Notwithstanding, several signaling pathways were uniquely regulated by ABL. Thus, in mice, TPTD and ABL induced a positive osteocyte peri-lacunar remodeling balance, but ABL induced stronger cortical responses and affected the osteocyte transcriptome differently. We concluded that ABL affected the cortical osteocyte transcriptome in a manner subtly different from TPTD, resulting in more beneficial remodeling/modeling changes and homeostasis of the cortex.


Subject(s)
Parathyroid Hormone-Related Protein , Teriparatide , Female , Mice , Animals , Teriparatide/pharmacology , Teriparatide/therapeutic use , Parathyroid Hormone-Related Protein/pharmacology , Parathyroid Hormone-Related Protein/metabolism , Osteocytes/metabolism , Transcriptome , Estrogens/pharmacology
17.
Front Cell Infect Microbiol ; 13: 1230568, 2023.
Article in English | MEDLINE | ID: mdl-37829606

ABSTRACT

Introduction: Diabetes mellitus (DM) impairs fracture healing and is associated with susceptibility to infection, which further inhibits fracture healing. While intermittent parathyroid hormone (1-34) (iPTH) effectively improves fracture healing, it is unknown whether infection-associated impaired fracture healing can be rescued with PTH (teriparatide). Methods: A chronic diet-induced type 2 diabetic mouse model was used to yield mice with decreased glucose tolerance and increased blood glucose levels compared to lean-fed controls. Methicillin-resistant Staphylococcus aureus (MRSA) was inoculated in a surgical tibia fracture model to simulate infected fracture, after which mice were treated with a combination of antibiotics and adjunctive teriparatide treatment. Fracture healing was assessed by Radiographic Union Scale in Tibial Fractures (RUST), micro-computed tomography (µCT), biomechanical testing, and histology. Results: RUST score was significantly poorer in diabetic mice compared to their lean nondiabetic counterparts. There were concomitant reductions in micro-computed tomography (µCT) parameters of callus architecture including bone volume/total volume, trabecular thickness, and total mineral density in type 2 diabetes mellitus (T2DM) mice. Biomechanicaltesting of fractured femora demonstrated diminished torsional rigidity, stiffness, and toughness to max torque. Adjuvant teriparatide treatment with systemic antibiotic therapy improved numerous parameters of bone microarchitecture bone volume, increased connectivity density, and increased trabecular number in both the lean and T2DM group. Despite the observation that poor fracture healing in T2DM mice was further impaired by MRSA infection, adjuvant iPTH treatment significantly improved fracture healing compared to antibiotic treatment alone in infected T2DM fractures. Discussion: Our results suggest that teriparatide may constitute a viable adjuvant therapeutic agent to improve bony union and bone microarchitecture to prevent the development of septic nonunion under diabetic conditions.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Methicillin-Resistant Staphylococcus aureus , Mice , Animals , Fracture Healing , Teriparatide/therapeutic use , Teriparatide/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , X-Ray Microtomography , Parathyroid Hormone/pharmacology , Parathyroid Hormone/therapeutic use
18.
Sci Rep ; 13(1): 15518, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726385

ABSTRACT

This study aimed to investigate the preventive effect of teriparatide (TPD) administration on medication-related osteonecrosis of the jaw (MRONJ) before tooth extraction due to periodontal lesions in bilaterally ovariectomized female rats treated with zoledronic acid. Thirty skeletally mature Sprague-Dawley rats were randomly divided into three groups: control (CONT, n = 10), zoledronic acid (ZA, n = 10), and zoledronic acid and teriparatide (ZA-TPD, n = 10). The rats were sacrificed 8 weeks after tooth extraction. Micro-computed tomography analysis of the tibia showed that bone mineral density was highest in the CONT, followed by that in the ZA and ZA-TPD groups (CONT/ZA, p = 0.009; CONT/ZA-TPD, p < 0.001; ZA/ZA-TPD, p < 0.001). In the trabecular bone analysis of the extraction site, significant differences in specific bone surface (CONT/ZA, p = 0.010; CONT/ZA-TPD, p = 0.007; ZA/ZA-TPD, p = 0.002) and trabecular thickness (CONT/ZA-TPD, p = 0.002; ZA/ZA-TPD, p = 0.002) were observed. Histological analyses of the extraction sites revealed characteristic MRONJ lesions in the ZA group. Osteonecrosis, inflammatory cells, and sequestrum were less frequently observed in the ZA-TPD group than in the ZA group. In conclusion, TPD administration before tooth extraction helped reduce the occurrence of MRONJ in rats treated with zoledronic acid, confirming its preventative effects.


Subject(s)
Osteonecrosis , Teriparatide , Female , Rats , Animals , Rats, Sprague-Dawley , Teriparatide/pharmacology , X-Ray Microtomography , Zoledronic Acid , Osteonecrosis/chemically induced , Osteonecrosis/prevention & control
19.
Jt Dis Relat Surg ; 34(2): 356-364, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37462639

ABSTRACT

OBJECTIVES: This study aims to compare the effects of teriparatide, zoledronic acid, and their combination therapy with vitamin K on osteoporotic rats. MATERIALS AND METHODS: We divided a total of 50 female Sprague-Dawley rats into five groups: A (the control group), B and D (the teriparatide group), and C and E (the zoledronic acid group). Following ovariectomy and subcutaneous heparin administration at a dose of 2 IU/kg for four weeks, osteoporosis was created. Groups A, B, and C were fed with standard feed, while Groups D and E were fed with vitamin K-rich feed. After four weeks of treatment, sacrification was performed. The right and left femurs were separated for histopathological and biomechanical evaluation, respectively. For histopathological evaluation, the femurs were decalcified, and the sections were stained with hematoxylin-eosin and evaluated under a light microscope. Fracture healing was evaluated using the classification system as described previously. For biomechanical evaluation, the 3-point stress test and torsion stress test were applied to 10 femurs from each group. RESULTS: Groups B-E were histopathologically and biomechanically superior to Group A in fracture healing of osteoporotic rats; however, it was not statistically significant (p>0.05). The group that received additional vitamin K was histopathologically and biomechanically superior to the group which was fed with standard feed, although it was not statistically significant (p>0.05). CONCLUSION: Our study results indicated that both teriparatide and zoledronic acid had beneficial effects on osteoporotic fractures with comparable histological and biochemical results. Vitamin K promoted teriparatide and zoledronic acid treatment on osteoporotic fracture healing. Based on these findings, combination therapies may yield the most optimal results in biomechanical and histological examinations.


Subject(s)
Bone Density Conservation Agents , Osteoporosis , Osteoporotic Fractures , Rats , Female , Animals , Zoledronic Acid/pharmacology , Zoledronic Acid/therapeutic use , Teriparatide/pharmacology , Teriparatide/therapeutic use , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Vitamin K/pharmacology , Vitamin K/therapeutic use , Rats, Sprague-Dawley , Osteoporosis/drug therapy , Fracture Healing
20.
J Orthop Surg Res ; 18(1): 447, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37349750

ABSTRACT

BACKGROUND: Continuous use of glucocorticoids (GCs) has become the primary cause of secondary osteoporosis. Bisphosphonate drugs were given priority over denosumab and teriparatide in the 2017 American College of Rheumatology (ACR) guidelines but have a series of shortcomings. This study aims to explore the efficacy and safety of teriparatide and denosumab compared with those of oral bisphosphonate drugs. METHODS: We systematically searched studies included in the PubMed, Web of Science, Embase, and Cochrane library databases and included randomized controlled trials that compared denosumab or teriparatide with oral bisphosphonates. Risk estimates were pooled using both fixed and random effects models. RESULTS: We included 10 studies involving 2923 patients who received GCs for meta-analysis, including two drug base analyses and four sensitivity analyses. Teriparatide and denosumab were superior to bisphosphonates in increasing the bone mineral density (BMD) of the lumbar vertebrae [teriparatide: mean difference [MD] 3.98%, 95% confidence interval [CI] 3.61-4.175%, P = 0.00001; denosumab: MD 2.07%, 95% CI 0.97-3.17%, P = 0.0002]. Teriparatide was superior to bisphosphonates in preventing vertebral fractures and increasing hip BMD [MD 2.39%, 95% CI 1.47-3.32, P < 0.00001]. There was no statistically significant difference between serious adverse events, adverse events, and nonvertebral fracture prevention drugs. CONCLUSIONS: Teriparatide and denosumab exhibited similar or even superior characteristics to bisphosphonates in our study, and we believe that they have the potential to become first-line GC-induced osteoporosis treatments, especially for patients who have previously received other anti-osteoporotic drugs with poor efficacy.


Subject(s)
Bone Density Conservation Agents , Osteoporosis , Humans , Teriparatide/therapeutic use , Teriparatide/pharmacology , Glucocorticoids/adverse effects , Denosumab/adverse effects , Bone Density Conservation Agents/adverse effects , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Diphosphonates/adverse effects , Bone Density , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL