Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.913
1.
J Med Microbiol ; 73(6)2024 Jun.
Article En | MEDLINE | ID: mdl-38833520

Introduction. ListerineÒ is a bactericidal mouthwash widely used to prevent oral health problems such as dental plaque and gingivitis. However, whether it promotes or undermines a healthy oral microbiome is unclear.Hypothesis/Gap Statement. We hypothesized that the daily use of Listerine Cool Mint would have a significant impact on the oropharyngeal microbiome.Aim. We aimed to assess if daily usage of Listerine Cool Mint influenced the composition of the pharyngeal microbiome.Methodology. The current microbiome substudy is part of the Preventing Resistance in Gonorrhoea trial. This was a double-blind single-centre, crossover, randomized controlled trial of antibacterial versus placebo mouthwash to reduce the incidence of gonorrhoea/chlamydia/syphilis in men who have sex with men (MSM) taking HIV pre-exposure prophylaxis (PrEP). Fifty-nine MSM taking HIV PrEP were enrolled. In this crossover trial, participants received 3 months of daily Listerine followed by 3 months of placebo mouthwash or vice versa. Oropharyngeal swabs were taken at baseline and after 3 months use of each mouthwash. DNA was extracted for shotgun metagenomic sequencing (Illumina Inc.). Non-host reads were taxonomically classified with MiniKraken and Bracken. The alpha and beta diversity indices were compared between baseline and after each mouthwash use. Differentially abundant bacterial taxa were identified using ANOVA-like differential expression analysis.Results. Streptococcus was the most abundant genus in most samples (n = 103, 61.7 %) with a median relative abundance of 31.5% (IQR 20.6-44.8), followed by Prevotella [13.5% (IQR 4.8-22.6)] and Veillonella [10.0% (IQR 4.0-16.8)]. Compared to baseline, the composition of the oral microbiome at the genus level (beta diversity) was significantly different after 3 months of Listerine (P = 0.006, pseudo-F = 2.29) or placebo (P = 0.003, pseudo-F = 2.49, permutational multivariate analysis of variance) use. Fusobacterium nucleatum and Streptococcus anginosus were significantly more abundant after Listerine use compared to baseline.Conclusion. Listerine use was associated with an increased abundance of common oral opportunistic bacteria previously reported to be enriched in periodontal diseases, oesophageal and colorectal cancer, and systemic diseases. These findings suggest that the regular use of Listerine mouthwash should be carefully considered.


Cross-Over Studies , Microbiota , Mouthwashes , Oropharynx , Salicylates , Terpenes , Humans , Mouthwashes/administration & dosage , Mouthwashes/pharmacology , Male , Salicylates/pharmacology , Salicylates/therapeutic use , Salicylates/administration & dosage , Microbiota/drug effects , Double-Blind Method , Adult , Oropharynx/microbiology , Terpenes/administration & dosage , Terpenes/pharmacology , Drug Combinations , Homosexuality, Male , Gonorrhea/microbiology , Gonorrhea/prevention & control , HIV Infections/prevention & control , Pre-Exposure Prophylaxis/methods , Syphilis/prevention & control , Syphilis/microbiology , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification
2.
Molecules ; 29(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731459

Terpenoid alkaloids are recognized as a class of compounds with limited numbers but potent biological activities, primarily derived from plants, with a minor proportion originating from animals and microorganisms. These alkaloids are synthesized from the same prenyl unit that forms the terpene skeleton, with the nitrogen atom introduced through ß-aminoethanol, ethylamine, or methylamine, leading to a range of complex and diverse structures. Based on their skeleton type, they can be categorized into monoterpenes, sesquiterpenes, diterpenes, and triterpene alkaloids. To date, 289 natural terpenoid alkaloids, excluding triterpene alkaloids, have been identified in studies published between 2019 and 2024. These compounds demonstrate a spectrum of biological activities, including anti-inflammatory, antitumor, antibacterial, analgesic, and cardioprotective effects, making them promising candidates for further development. This review provides an overview of the sources, chemical structures, and biological activities of natural terpenoid alkaloids, serving as a reference for future research and applications in this area.


Alkaloids , Terpenes , Alkaloids/chemistry , Alkaloids/pharmacology , Terpenes/chemistry , Terpenes/pharmacology , Humans , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Molecular Structure
3.
BMC Complement Med Ther ; 24(1): 185, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711049

BACKGROUND: Cancer is a fatal disease that severely affects humans. Designing new anticancer strategies and understanding the mechanism of action of anticancer agents is imperative. HYPOTHESIS/PURPOSE: In this study, we evaluated the utility of metformin and D-limonene, alone or in combination, as potential anticancer therapeutics using the human liver and breast cancer cell lines HepG2 and MCF-7. STUDY DESIGN: An integrated systems pharmacology approach is presented for illustrating the molecular interactions between metformin and D-limonene. METHODS: We applied a systems-based analysis to introduce a drug-target-pathway network that clarifies different mechanisms of treatment. The combination treatment of metformin and D-limonene induced apoptosis in both cell lines compared with single drug treatments, as indicated by flow cytometric and gene expression analysis. RESULTS: The mRNA expression of Bax and P53 genes were significantly upregulated while Bcl-2, iNOS, and Cox-2 were significantly downregulated in all treatment groups compared with normal cells. The percentages of late apoptotic HepG2 and MCF-7 cells were higher in all treatment groups, particularly in the combination treatment group. Calculations for the combination index (CI) revealed a synergistic effect between both drugs for HepG2 cells (CI = 0.14) and MCF-7 cells (CI = 0.22). CONCLUSION: Our data show that metformin, D-limonene, and their combinations exerted significant antitumor effects on the cancer cell lines by inducing apoptosis and modulating the expression of apoptotic genes.


Apoptosis , Breast Neoplasms , Cell Proliferation , Limonene , Liver Neoplasms , Metformin , Humans , Metformin/pharmacology , Limonene/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Liver Neoplasms/drug therapy , Cell Proliferation/drug effects , Hep G2 Cells , MCF-7 Cells , Terpenes/pharmacology , Female , Antineoplastic Agents/pharmacology , Cyclohexenes/pharmacology
4.
BMC Oral Health ; 24(1): 575, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760758

BACKGROUND: Translational microbiome research using next-generation DNA sequencing is challenging due to the semi-qualitative nature of relative abundance data. A novel method for quantitative analysis was applied in this 12-week clinical trial to understand the mechanical vs. chemotherapeutic actions of brushing, flossing, and mouthrinsing against the supragingival dental plaque microbiome. Enumeration of viable bacteria using vPCR was also applied on supragingival plaque for validation and on subgingival plaque to evaluate interventional effects below the gingival margin. METHODS: Subjects with gingivitis were enrolled in a single center, examiner-blind, virtually supervised, parallel group controlled clinical trial. Subjects with gingivitis were randomized into brushing only (B); brushing and flossing (BF); brushing and rinsing with Listerine® Cool Mint® Antiseptic (BA); brushing and rinsing with Listerine® Cool Mint® Zero (BZ); or brushing, flossing, and rinsing with Listerine® Cool Mint® Zero (BFZ). All subjects brushed twice daily for 1 min with a sodium monofluorophosphate toothpaste and a soft-bristled toothbrush. Subjects who flossed used unflavored waxed dental floss once daily. Subjects assigned to mouthrinses rinsed twice daily. Plaque specimens were collected at the baseline visit and after 4 and 12 weeks of intervention. Bacterial cell number quantification was achieved by adding reference amounts of DNA controls to plaque samples prior to DNA extraction, followed by shallow shotgun metagenome sequencing. RESULTS: 286 subjects completed the trial. The metagenomic data for supragingival plaque showed significant reductions in Shannon-Weaver diversity, species richness, and total and categorical bacterial abundances (commensal, gingivitis, and malodor) after 4 and 12 weeks for the BA, BZ, and BFZ groups compared to the B group, while no significant differences were observed between the B and BF groups. Supragingival plaque vPCR further validated these results, and subgingival plaque vPCR demonstrated significant efficacy for the BFZ intervention only. CONCLUSIONS: This publication reports on a successful application of a quantitative method of microbiome analysis in a clinical trial demonstrating the sustained and superior efficacy of essential oil mouthrinses at controlling dental plaque compared to mechanical methods. The quantitative microbiological data in this trial also reinforce the safety and mechanism of action of EO mouthrinses against plaque microbial ecology and highlights the importance of elevating EO mouthrinsing as an integral part of an oral hygiene regimen. TRIAL REGISTRATION: The trial was registered on ClinicalTrials.gov on 31/10/2022. The registration number is NCT05600231.


Dental Devices, Home Care , Dental Plaque , Gingivitis , Microbiota , Mouthwashes , Toothbrushing , Humans , Dental Plaque/microbiology , Gingivitis/microbiology , Mouthwashes/therapeutic use , Female , Microbiota/drug effects , Adult , Toothbrushing/methods , Male , Single-Blind Method , Middle Aged , Salicylates/therapeutic use , Drug Combinations , Terpenes/therapeutic use , Terpenes/pharmacology , Bacterial Load/drug effects , Anti-Infective Agents, Local/therapeutic use , Young Adult
5.
Int J Food Microbiol ; 418: 110741, 2024 Jun 16.
Article En | MEDLINE | ID: mdl-38733636

Plant volatile organic compounds (PVOCs) have gained increasing attention for their role in preventing fungal spoilage and insect contamination in postharvest agro-products owing to their effectiveness and sustainability. In this study, the essential oil was extracted from fresh M. alternifolia (tea tree) leaves, and the fumigation vapor of tea tree oil (TTO) completely inhibited the growth of Aspergillus flavus on agar plates at a concentration of 1.714 µL/mL. Terpinen-4-ol was identified as the major component (40.76 %) of TTO volatiles analyzed using headspace gas chromatography-mass spectrometry. Terpinen-4-ol vapor completely inhibited the A. flavus growth on agar plates and 20 % moisture wheat grain at 0.556 and 1.579 µL/mL, respectively, indicating that terpinen-4-ol serves as the main antifungal constituent in TTO volatiles. The minimum inhibitory concentration of terpinen-4-ol in liquid-contact culture was 1.6 µL/mL. Terpinen-4-ol treatment caused depressed, wrinkled, and punctured mycelial morphology and destroyed the plasma membrane integrity of A. flavus. Metabolomics analysis identified significant alterations in 93 metabolites, with 79 upregulated and 14 downregulated in A. flavus mycelia exposed to 1.6 µL/mL terpinen-4-ol for 6 h, involved in multiple cellular processes including cell membrane permeability and integrity, the ABC transport system, pentose phosphate pathway, and the tricarboxylic acid cycle. Biochemical analysis and 2,7-dichlorofluorescein diacetate staining showed that terpinen-4-ol induced oxidative stress and mitochondrial dysfunction in A. flavus mycelia. This study provides new insights into the antifungal effects of the main TTO volatile compounds terpinen-4-ol on the growth of A. flavus.


Aspergillus flavus , Tea Tree Oil , Terpenes , Triticum , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Tea Tree Oil/pharmacology , Terpenes/pharmacology , Triticum/microbiology , Antifungal Agents/pharmacology , Volatile Organic Compounds/pharmacology , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry , Edible Grain/microbiology , Food Preservation/methods
6.
J Alzheimers Dis ; 99(1): 333-343, 2024.
Article En | MEDLINE | ID: mdl-38701154

Background: Neurodegeneration is a term describing an irreversible process of neuronal damage. In recent decades, research efforts have been directed towards deepening our knowledge of numerous neurodegenerative disorders, with a particular focus on conditions such as Alzheimer's disease (AD). Human transferrin (htf) is a key player in maintaining iron homeostasis within brain cells. Any disturbance in this equilibrium gives rise to the emergence of neurodegenerative diseases and associated pathologies, particularly AD. Limonene, a natural compound found in citrus fruits and various plants, has shown potential neuroprotective properties. Objective: In this study, our goal was to unravel the binding of limonene with htf, with the intention of comprehending the interaction mechanism of limonene with htf. Methods: Binding was scrutinized using fluorescence quenching and UV-Vis spectroscopic analyses. The binding mechanism of limonene was further investigated at the atomic level through molecular docking and extensive 200 ns molecular dynamic simulation (MD) studies. Results: Molecular docking uncovered that limonene interacted extensively with the deep cavity located within the htf binding pocket. MD results indicated that binding of limonene to htf did not induce substantial structural alterations, ultimately forming stable complex. The findings from fluorescence binding indicated a pronounced interaction between limonene and htf, limonene binds to htf with a binding constant (K) of 0.1×105 M-1. UV spectroscopy also advocated stable htf-limonene complex formation. Conclusions: The study deciphered the binding mechanism of limonene with htf, providing a platform to use limonene in AD therapeutics in context of iron homeostasis.


Alzheimer Disease , Limonene , Molecular Docking Simulation , Transferrin , Limonene/pharmacology , Limonene/metabolism , Limonene/chemistry , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Transferrin/metabolism , Molecular Dynamics Simulation , Terpenes/pharmacology , Terpenes/chemistry , Terpenes/metabolism , Protein Binding
7.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731856

We characterized the therapeutic biological modes of action of several terpenes in Poria cocos F.A Wolf (PC) and proposed a broad therapeutic mode of action for PC. Molecular docking and drug-induced transcriptome analysis were performed to confirm the pharmacological mechanism of PC terpene, and a new analysis method, namely diffusion network analysis, was proposed to verify the mechanism of action against Alzheimer's disease. We confirmed that the compound that exists only in PC has a unique mechanism through statistical-based docking analysis. Also, docking and transcriptomic analysis results could reflect results in clinical practice when used complementarily. The detailed pharmacological mechanism of PC was confirmed by constructing and analyzing the Alzheimer's disease diffusion network, and the antioxidant activity based on microglial cells was verified. In this study, we used two bioinformatics approaches to reveal PC's broad mode of action while also using diffusion networks to identify its detailed pharmacological mechanisms of action. The results of this study provide evidence that future pharmacological mechanism analysis should simultaneously consider complementary docking and transcriptomics and suggest diffusion network analysis, a new method to derive pharmacological mechanisms based on natural complex compounds.


Molecular Docking Simulation , Terpenes , Transcriptome , Terpenes/pharmacology , Terpenes/chemistry , Transcriptome/drug effects , Humans , Wolfiporia/chemistry , Gene Expression Profiling/methods , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Microglia/drug effects , Microglia/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Computational Biology/methods , Animals
8.
Phytomedicine ; 129: 155638, 2024 Jul.
Article En | MEDLINE | ID: mdl-38728916

BACKGROUND: Diabetes mellitus, a hyperglycemic condition associated with multitudinous organ dysfunction, is a hallmark of the metabolic disorder. This life-threatening condition affects millions of individuals globally, harming them financially, physically and psychologically in the course of therapy. PURPOSES: The course therapy for illnesses has undergone ground-breaking transformations due to recent technical advances and insights. Alternatively, the administration of hyperglycemia-reducing agents results in several complications, including severe cardiovascular disease, kidney failure, hepatic problems, and several dermatological conditions. Consideration of alternate diabetic therapy having minimal side effects or no adverse reactions has been driven by such problems. STUDY DESIGN: An extensive literature study was conducted in authoritative scientific databases such as PubMed, Scopus, and Web of Science to identify the studies elucidating the bioactivities of terpenoids in diabetic conditions. METHODS: Keywords including 'terpenoids', 'monoterpenes', 'diterpenes', 'sesquiterpenes', 'diabetes', 'diabetes mellitus', 'clinical trials', 'preclinical studies', and 'increased blood glucose' were used to identify the relevant research articles. The exclusion criteria, such as English language, duplication, open access, abstract only, and studies not involving preclinical and clinical research, were set. Based on these criteria, 937 relevant articles were selected for further evaluation. RESULTS: Triterpenes can serve as therapeutic agents for diabetic retinopathy, peripheral neuropathy, and kidney dysfunction by inhibiting several pathways linked to hyperglycemia and its complications. Therefore, it is essential to draw special attention to these compounds' therapeutic effectiveness and provide scientific professionals with novel data. CONCLUSION: This study addressed recent progress in research focussing on mechanisms of terpenoid, its by-products, physiological actions, and therapeutic applications, particularly in diabetic and associated disorders.


Diabetes Mellitus , Hypoglycemic Agents , Terpenes , Humans , Terpenes/pharmacology , Terpenes/therapeutic use , Animals , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Phytotherapy , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
9.
Neurochem Int ; 177: 105748, 2024 Jul.
Article En | MEDLINE | ID: mdl-38703789

Adaptation to psychosocial stress is psychologically distressing, initiating/promoting comorbidity with alcohol use disorders. Emerging evidence moreover showed that ethanol (EtOH) exacerbates social-defeat stress (SDS)-induced behavioral impairments, neurobiological sequelae, and poor therapeutic outcomes. Hence, this study investigated the effects of geraniol, an isoprenoid monoterpenoid alcohol with neuroprotective functions on EtOH escalated SDS-induced behavioral impairments, and neurobiological sequelae in mice. Male mice chronically exposed to SDS for 14 days were repeatedly fed with EtOH (2 g/kg, p. o.) from days 8-14. From days 1-14, SDS-EtOH co-exposed mice were concurrently treated with geraniol (25 and 50 mg/kg) or fluoxetine (10 mg/kg) orally. After SDS-EtOH translational interactions, arrays of behavioral tasks were examined, followed by investigations of oxido-inflammatory, neurochemicals levels, monoamine oxidase-B and acetylcholinesterase activities in the striatum, prefrontal-cortex, and hippocampus. The glial fibrillary acid protein (GFAP) expression was also quantified in the prefrontal-cortex immunohistochemically. Adrenal weights, serum glucose and corticosterone concentrations were measured. EtOH exacerbated SDS-induced low-stress resilience, social impairment characterized by anxiety, depression, and memory deficits were attenuated by geraniol (50 and 100 mg/kg) and fluoxetine. In line with this, geraniol increased the levels of dopamine, serotonin, and glutamic-acid decarboxylase enzyme, accompanied by reduced monoamine oxidase-B and acetylcholinesterase activities in the prefrontal-cortex, hippocampus, and striatum. Geraniol inhibited SDS-EtOH-induced adrenal hypertrophy, corticosterone, TNF-α, IL-6 release, malondialdehyde and nitrite levels, with increased antioxidant activities. Immunohistochemical analyses revealed that geraniol enhanced GFAP immunoreactivity in the prefrontal-cortex relative to SDS-EtOH group. We concluded that geraniol ameliorates SDS-EtOH interaction-induced behavioral changes via normalization of neuroimmune-endocrine and neurochemical dysregulations in mice brains.


Acyclic Monoterpenes , Ethanol , Stress, Psychological , Terpenes , Animals , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/therapeutic use , Male , Stress, Psychological/psychology , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Stress, Psychological/complications , Mice , Ethanol/toxicity , Ethanol/pharmacology , Terpenes/pharmacology , Terpenes/therapeutic use , Brain/drug effects , Brain/metabolism , Social Defeat
10.
Clin Transl Sci ; 17(5): e13804, 2024 May.
Article En | MEDLINE | ID: mdl-38700454

St. John's wort (SJW) extract, a herbal medicine with antidepressant effects, is a potent inducer of intestinal and/or hepatic cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), which can cause clinically relevant drug interactions. It is currently not known whether SJW can also induce P-gp activity at the human blood-brain barrier (BBB), which may potentially lead to decreased brain exposure and efficacy of certain central nervous system (CNS)-targeted P-gp substrate drugs. In this study, we used a combination of positron emission tomography (PET) imaging and cocktail phenotyping to gain a comprehensive picture on the effect of SJW on central and peripheral P-gp and CYP activities. Before and after treatment of healthy volunteers (n = 10) with SJW extract with a high hyperforin content (3-6%) for 12-19 days (1800 mg/day), the activity of P-gp at the BBB was assessed by means of PET imaging with the P-gp substrate [11C]metoclopramide and the activity of peripheral P-gp and CYPs was assessed by administering a low-dose phenotyping cocktail (caffeine, omeprazole, dextromethorphan, and midazolam or fexofenadine). SJW significantly increased peripheral P-gp, CYP3A, and CYP2C19 activity. Conversely, no significant changes in the peripheral metabolism, brain distribution, and P-gp-mediated efflux of [11C]metoclopramide across the BBB were observed following the treatment with SJW extract. Our data suggest that SJW does not lead to significant P-gp induction at the human BBB despite its ability to induce peripheral P-gp and CYPs. Simultaneous intake of SJW with CNS-targeted P-gp substrate drugs is not expected to lead to P-gp-mediated drug interactions at the BBB.


Blood-Brain Barrier , Hypericum , Phloroglucinol , Phloroglucinol/analogs & derivatives , Plant Extracts , Positron-Emission Tomography , Terfenadine/analogs & derivatives , Terpenes , Humans , Hypericum/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Phloroglucinol/pharmacokinetics , Phloroglucinol/pharmacology , Phloroglucinol/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/pharmacokinetics , Male , Adult , Positron-Emission Tomography/methods , Terpenes/pharmacology , Terpenes/pharmacokinetics , Terpenes/metabolism , Female , Young Adult , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Bridged Bicyclo Compounds/pharmacology , Bridged Bicyclo Compounds/pharmacokinetics , Bridged Bicyclo Compounds/administration & dosage , Terfenadine/pharmacokinetics , Terfenadine/administration & dosage , Terfenadine/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Healthy Volunteers
11.
Molecules ; 29(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38792220

The increasing prevalence of autoimmune diseases globally has prompted extensive research and the development of immunosuppressants. Currently, immunosuppressive drugs such as cyclosporine, rapamycin, and tacrolimus have been utilized in clinical practice. However, long-term use of these drugs may lead to a series of adverse effects. Therefore, there is an urgent need to explore novel drug candidates for treating autoimmune diseases. This review aims to find potential candidate molecules for natural immunosuppressive compounds derived from plants, animals, and fungi over the past decade. These compounds include terpenoids, alkaloids, phenolic compounds, flavonoids, and others. Among them, compounds 49, 151, 173, 200, 204, and 247 have excellent activity; their IC50 were less than 1 µM. A total of 109 compounds have good immunosuppressive activity, with IC50 ranging from 1 to 10 µM. These active compounds have high medicinal potential. The names, sources, structures, immunosuppressive activity, and the structure-activity relationship were summarized and analyzed.


Biological Products , Immunosuppressive Agents , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/chemistry , Biological Products/chemistry , Biological Products/pharmacology , Humans , Animals , Structure-Activity Relationship , Terpenes/chemistry , Terpenes/pharmacology
12.
J Nat Prod ; 87(4): 1092-1102, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38557062

As an important bioactive molecular backbone, drimane meroterpenoids have drawn a great deal of attention from both pharmacologists and chemists. Inspired by the prevalidated success of conformational restriction in the discovery of novel pharmaceutical leads, two distinct tetracyclic drimane meroterpenoids, (-)-pelorol and (+)-aureol, were synthesized from the inexpensive starting material (-)-sclareol through 10 and 8 steps with 5.6% and 5.4% overall yield, respectively. The mild conditions, operational facility, and scalability enabled the expedient synthesis and biological exploration of not only natural products themselves but also their mimics. The first agrochemical exploration showed (-)-pelorol and (+)-aureol possessed good antifungal activity against Rhizoctonia solani, with EC50 values of 7.7 and 6.9 µM, respectively. This revealed that tetracyclic drimane meroterpenoids are valuable models for antifungal lead discovery.


Antifungal Agents , Rhizoctonia , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Molecular Structure , Rhizoctonia/drug effects , Terpenes/pharmacology , Terpenes/chemical synthesis , Terpenes/chemistry , Stereoisomerism , Sesquiterpenes/pharmacology , Sesquiterpenes/chemical synthesis , Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/pharmacology , Microbial Sensitivity Tests
13.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38587823

AIM: In this study, it was aimed to examine the antibacterial activity of the essential oil components (EOCs), carvacrol (CAR), cinnamaldehyde (CIN), thymol (TH), alpha pinene (α-PN), eucalyptol (EU), limonene (LIM), and the antibiotics, linezolid (LZD), vancomycin (VAN), gentamicin (GEN), ciprofloxacin (CIP), clindamycin (CLN), and penicillin (PEN) against 50 multidrug resistant Corynebacterium striatum strains, and the synergistic interactions of CAR and CIN with the antibiotics against 10 randomly selected Coryne. striatum strains to explore synergistic interactions to determine if their combined use could enhance antibiotic activity and potentially reduce resistance. METHODS AND RESULTS: The activity of the EOCs and the antibiotics against Coryne. striatum strains isolated from clinical specimens, was examined by broth microdilution method. The synergistic interactions of the EOCs with the antibiotics against 10 randomly selected Coryne. striatum strains were determined by checkerboard method. EOCs, CIN, and CAR and antibiotics, LZD, VAN, GEN, CIP, and CLN were detected to have antibacterial activity against Coryne. striatum strains alone and either synergistic interactions were observed in combinations of the antibiotics with EOCs. CONCLUSIONS: All Coryne. striatum strains were determined to be susceptible to VAN and LZD and resistant to GEN, PEN, CIP, and CLN. Synergistic interactions were observed in all combinations of antibiotics tested with CAR and CIN.


Acrolein , Acrolein/analogs & derivatives , Anti-Bacterial Agents , Corynebacterium , Drug Resistance, Multiple, Bacterial , Drug Synergism , Microbial Sensitivity Tests , Monoterpenes , Oils, Volatile , Anti-Bacterial Agents/pharmacology , Corynebacterium/drug effects , Oils, Volatile/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Acrolein/pharmacology , Monoterpenes/pharmacology , Cymenes/pharmacology , Ciprofloxacin/pharmacology , Gentamicins/pharmacology , Vancomycin/pharmacology , Linezolid/pharmacology , Limonene/pharmacology , Eucalyptol/pharmacology , Thymol/pharmacology , Clindamycin/pharmacology , Humans , Penicillins/pharmacology , Terpenes/pharmacology , Cyclohexenes/pharmacology , Corynebacterium Infections/microbiology
14.
Org Lett ; 26(16): 3424-3428, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38630577

Penihemeroterpenoids A-C, the first meroterpenoids with an unprecedented 6/5/6/5/5/6/5 heptacyclic ring system, together with precursors penihemeroterpenoids D-F, were co-isolated from the fungus Penicillium herquei GZU-31-6. Among them, penihemeroterpenoids C-F exhibited lipid-lowering effects comparable to those of the positive control simvastatin by the activation of the AMPK/ACC/SREBP-1c signaling pathway, downregulated the mRNA levels of lipid synthesis genes FAS and PNPLA3, and increased the level of mRNA expression of the lipid export gene MTTP.


AMP-Activated Protein Kinases , Penicillium , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , Terpenes , Penicillium/chemistry , Terpenes/chemistry , Terpenes/pharmacology , Signal Transduction/drug effects , Humans , Sterol Regulatory Element Binding Protein 1/metabolism , AMP-Activated Protein Kinases/metabolism , Molecular Structure , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/antagonists & inhibitors , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/chemistry
15.
Mar Drugs ; 22(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38667800

Two new meroterpenoids, hyrtamide A (1) and hyrfarnediol A (2), along with two known ones, 3-farnesyl-4-hydroxybenzoic acid methyl ester (3) and dictyoceratin C (4), were isolated from a South China Sea sponge Hyrtios sp. Their structures were elucidated by NMR and MS data. Compounds 2-4 exhibited weak cytotoxicity against human colorectal cancer cells (HCT-116), showing IC50 values of 41.6, 45.0, and 37.3 µM, respectively. Furthermore, compounds 3 and 4 significantly suppressed the invasion of HCT-116 cells while also downregulating the expression of vascular endothelial growth factor receptor 1 (VEGFR-1) and vimentin proteins, which are key markers associated with angiogenesis and epithelial-mesenchymal transition (EMT). Our findings suggest that compounds 3 and 4 may exert their anti-invasive effects on tumor cells by inhibiting the expression of VEGFR-1 and impeding the process of EMT.


Antineoplastic Agents , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Porifera , Terpenes , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Porifera/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Terpenes/pharmacology , Terpenes/isolation & purification , Terpenes/chemistry , Epithelial-Mesenchymal Transition/drug effects , HCT116 Cells , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vimentin/metabolism , Cell Line, Tumor , China
16.
Mar Drugs ; 22(4)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38667803

Three novel meroterpenoids, taladrimanins B-D (1-3), were isolated from the marine-derived fungus Talaromyces sp. M27416, alongside three biogenetically related compounds (4-6). We delineated taladrimanin B's (1) structure using HRESIMS and NMR, confirmed its configuration via quantum chemical NMR analysis and DP4+ methodology, and verified it through X-ray crystallography. ECD calculations determined the absolute configuration of compound 1, while comparative NMR and ECD analyses elucidated the absolute configurations of 2 and 3. These compounds are drimane-type meroterpenoids with a C10 polyketide unit (8R-configuration). We proposed a biosynthetic pathway and noted that compound 1 showed cytotoxic activity against MKN-45 and 5637 cell lines and selective antibacterial effects against Staphylococcus aureus CICC 10384.


Anti-Bacterial Agents , Staphylococcus aureus , Talaromyces , Terpenes , Talaromyces/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Humans , Cell Line, Tumor , Staphylococcus aureus/drug effects , Terpenes/pharmacology , Terpenes/chemistry , Terpenes/isolation & purification , Crystallography, X-Ray , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Microbial Sensitivity Tests , Aquatic Organisms , Molecular Structure , Magnetic Resonance Spectroscopy
17.
Int J Biol Macromol ; 266(Pt 2): 131145, 2024 May.
Article En | MEDLINE | ID: mdl-38574932

Extracellular matrix (ECM) contains hyaluronic acid (HA) as its integral part that is involved in numerous functional activities within the body. Degradation of HA by hyaluronidase enzyme involved in many pathophysiological conditions such as asthma, arthritis, COPD and in venom spreading during envenomation. Inhibitor of hyaluronidase enzyme has a wide range of application along with the hyaluronan-hyaluronidase system. In this present study, we have evaluated the inhibitory effect of garcinol against hyaluronidase from Hippasa partita spider venom (HPHyal), bovine testicular hyaluronidase (BTH) and human serum hyaluronidase. Garcinia indica fruit rind has been used to isolate the active component garcinol. Garcinol has been used in treatment of diverse ailments. Garcinol has exhibited anti-oxidant, anti-inflammatory, HAT inhibition and miRNA deregulator in development and progression of cancers. Experimental data have shown that garcinol completely inhibited all the three tested hyaluronidase enzymes. The inhibition was found to be non-competitive pattern with reversible type. In the docking study, garcinol with hyaluronidase enzyme has been stabilized by hydrogen bonding and hydrophobic interactions. Thus, garcinol could be a potent novel inhibitor of hyaluronidase enzyme which can be further used for pharmacotherapeutic applications.


Enzyme Inhibitors , Hyaluronoglucosaminidase , Molecular Docking Simulation , Terpenes , Hyaluronoglucosaminidase/antagonists & inhibitors , Hyaluronoglucosaminidase/metabolism , Humans , Terpenes/pharmacology , Terpenes/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Animals , Cattle
18.
Fitoterapia ; 175: 105945, 2024 Jun.
Article En | MEDLINE | ID: mdl-38575091

Four previously undescribed isoprenoid flavonoids (2-5) were isolated from Sophora davidii, along with five known analogues. The structures of the compounds were established through comprehensive analysis of spectroscopic data, including HRESIMS, 1D and 2D NMR, and absolute configurations determined by theoretical calculations, including ECD and NMR calculation. The cytotoxic effects of the isolated compounds on human HT29 colon cancer cells were evaluated using the MTT assay, compound 1 exhibited cytotoxicity against human HT29 colon cancer cells with an IC50 value of 8.39 ± 0.09 µM. Studies conducted with compound 1 in HT29 cells demonstrated that it may induce apoptosis and autophagy in HT29 by promoting the phosphorylation of P38 MAPK and inhibiting the phosphorylation of Erk MAPK.


Antineoplastic Agents, Phytogenic , Apoptosis , Autophagy , Flavonoids , Sophora , Humans , Sophora/chemistry , Autophagy/drug effects , Apoptosis/drug effects , HT29 Cells , Molecular Structure , Flavonoids/pharmacology , Flavonoids/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , China , p38 Mitogen-Activated Protein Kinases/metabolism , Terpenes/pharmacology , Terpenes/isolation & purification , Phosphorylation
19.
Bioorg Chem ; 147: 107354, 2024 Jun.
Article En | MEDLINE | ID: mdl-38599054

Pregnane X receptor (PXR) has been considered as a promising therapeutic target for cholestasis due to its crucial regulation in bile acid biosynthesis and metabolism. To search promising natural PXR agonists, the PXR agonistic activities of five traditional Chinese medicines (TCMs) with hepatoprotective efficacy were assayed, and Hypericum japonicum as the most active one was selected for subsequent phytochemical investigation, which led to the isolation of eight nonaromatic acylphloroglucinol-terpenoid adducts including seven new compounds (1 - 4, 5a, 5b and 6). Their structures including absolute configurations were determined by comprehensive spectroscopic, computational and X-ray diffraction analysis. Meanwhile, the PXR agonistic activities of aplenty compounds were evaluated via dual-luciferase reporter assay, RT-qPCR and immunofluorescence. Among them, compounds 1 - 4 showed more potent activity than the positive drug rifampicin. Furthermore, the molecular docking revealed that 1 - 4 were docked well on the PXR ligand binding domain and formed hydrogen bonds with amino acid residues Gln285, Ser247 and His409. This investigation revealed that H. japonicum may serve as a rich source of natural PXR agonists.


Hypericum , Molecular Docking Simulation , Phloroglucinol , Pregnane X Receptor , Hypericum/chemistry , Pregnane X Receptor/agonists , Pregnane X Receptor/metabolism , Humans , Phloroglucinol/pharmacology , Phloroglucinol/chemistry , Phloroglucinol/analogs & derivatives , Structure-Activity Relationship , Molecular Structure , Terpenes/pharmacology , Terpenes/chemistry , Terpenes/isolation & purification , Dose-Response Relationship, Drug , Drug Discovery , Hep G2 Cells
20.
Behav Pharmacol ; 35(4): 161-171, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38660819

Cannabis is a pharmacologically complex plant consisting of hundreds of potentially active compounds. One class of compounds present in cannabis that has received little attention are terpenes. Traditionally thought to impart aroma and flavor to cannabis, it has become increasingly recognized that terpenes might exert therapeutic effects themselves. Several recent reports have also indicated terpenes might behave as cannabinoid type 1 (CB1) receptor agonists. This study aimed to investigate whether several terpenes present in cannabis produce discriminative stimulus effects similar to or enhance the effects of Δ 9 -tetrahydrocannabinol (THC). Subsequent experiments explored other potential cannabimimetic effects of these terpenes. Rats were trained to discriminate THC from vehicle while responding under a fixed-ratio 10 schedule of food presentation. Substitution testing was performed with the CB receptor agonist JWH-018 and the terpenes linalool, limonene, γ-terpinene and α-humulene alone. Terpenes were also studied in combination with THC. Finally, THC and terpenes were tested in the tetrad assay to screen for CB1-receptor agonist-like effects. THC and JWH-018 dose-dependently produced responding on the THC-paired lever. When administered alone, none of the terpenes produced responding predominantly on the THC-paired lever. When administered in combination with THC, none of the terpenes enhanced the potency of THC, and in the case of α-humulene, decreased the potency of THC to produce responding on the THC-paired lever. While THC produced effects in all four tetrad components, none of the terpenes produced effects in all four components. Therefore, the terpenes examined in this report do not have effects consistent with CB1 receptor agonist properties in the brain.


Cannabis , Dronabinol , Terpenes , Animals , Terpenes/pharmacology , Rats , Dronabinol/pharmacology , Male , Cannabinoids/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Indoles/pharmacology , Naphthalenes/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Rats, Sprague-Dawley , Dose-Response Relationship, Drug , Discrimination Learning/drug effects , Discrimination, Psychological/drug effects
...