Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 977
1.
Biosens Bioelectron ; 258: 116349, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38705072

Detection of cancer-related exosomes in body fluids has become a revolutionary strategy for early cancer diagnosis and prognosis prediction. We have developed a two-step targeting detection method, termed PS-MIPs-NELISA SERS, for rapid and highly sensitive exosomes detection. In the first step, a phospholipid polar site imprinting strategy was employed using magnetic PS-MIPs (phospholipids-molecularly imprinted polymers) to selectively isolate and enrich all exosomes from urine samples. In the second step, a nanozyme-linked immunosorbent assay (NELISA) technique was utilized. We constructed Au/Na7PMo11O39 nanoparticles (NPs) with both surface-enhanced Raman scattering (SERS) property and peroxidase catalytic activity, followed by the immobilization of CD9 antibodies on the surface of Au/Na7PMo11O39 NPs. The Au/Na7PMo11O39-CD9 antibody complexes were then used to recognize CD9 proteins on the surface of exosomes enriched by magnetic PS-MIPs. Lastly, the high sensitivity detection of exosomes was achieved indirectly via the SERS activity and peroxidase-like activity of Au/Na7PMo11O39 NPs. The quantity of exosomes in urine samples from pancreatic cancer patients obtained by the PS-MIPs-NELISA SERS technique showed a linear relationship with the SERS intensity in the range of 6.21 × 107-2.81 × 108 particles/mL, with a limit of detection (LOD) of 5.82 × 107 particles/mL. The SERS signal intensity of exosomes in urine samples from pancreatic cancer patients was higher than that of healthy volunteers. This bidirectional MIPs-NELISA-SERS approach enables noninvasive, highly sensitive, and rapid detection of cancer, facilitating the monitoring of disease progression during treatment and opening up a new avenue for rapid early cancer screening.


Biosensing Techniques , Exosomes , Gold , Spectrum Analysis, Raman , Humans , Exosomes/chemistry , Gold/chemistry , Spectrum Analysis, Raman/methods , Phospholipids/chemistry , Phospholipids/urine , Limit of Detection , Molecular Imprinting , Molecularly Imprinted Polymers/chemistry , Epitopes/immunology , Epitopes/chemistry , Metal Nanoparticles/chemistry , Tetraspanin 29/urine , Tetraspanin 29/analysis , Antibodies, Immobilized/chemistry
2.
Sci Adv ; 10(19): eadi9156, 2024 May 10.
Article En | MEDLINE | ID: mdl-38718108

Exosomes are secreted vesicles of ~30 to 150 nm diameter that play important roles in human health and disease. To better understand how cells release these vesicles, we examined the biogenesis of the most highly enriched human exosome marker proteins, the exosomal tetraspanins CD81, CD9, and CD63. We show here that endocytosis inhibits their vesicular secretion and, in the case of CD9 and CD81, triggers their destruction. Furthermore, we show that syntenin, a previously described exosome biogenesis factor, drives the vesicular secretion of CD63 by blocking CD63 endocytosis and that other endocytosis inhibitors also induce the plasma membrane accumulation and vesicular secretion of CD63. Finally, we show that CD63 is an expression-dependent inhibitor of endocytosis that triggers the vesicular secretion of lysosomal proteins and the clathrin adaptor AP-2 mu2. These results suggest that the vesicular secretion of exosome marker proteins in exosome-sized vesicles occurs primarily by an endocytosis-independent pathway.


Endocytosis , Exosomes , Tetraspanin 30 , Exosomes/metabolism , Humans , Tetraspanin 30/metabolism , Biomarkers/metabolism , Syntenins/metabolism , Syntenins/genetics , Tetraspanin 28/metabolism , Cell Membrane/metabolism , Adaptor Protein Complex 2/metabolism , Tetraspanin 29/metabolism
3.
Med Oncol ; 41(4): 86, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38472425

Tongue cancer is distinguished by aggressive behavior, a high risk of recurrence, lymph, and distant metastases. Hypoxia-Induced Factor 1 α functions as a CD9 transcription factor. CD9 is a transmembrane protein that may be found on the cell membrane. It can modulate the expression of the Epidermal Growth Factor Receptor (EGFR) pathway. ELISA was used to measure serum CD9, p-EGFR, and p-Akt levels in 70 tongue cancer patients and 35 healthy controls. RT-PCR was used to analyze the gene expression of the related genes. The gene as well as protein expression of CD9, EGFR/p-EGFR, and Akt/p-Akt was significantly higher in case subjects when compared with the controls. The expression of CD9 was higher in case subjects who were smokers/alcoholics when to control subjects who were smokers/alcoholics. Overexpression of CD9 due to hypoxic conditions leads to the activation of EGFR-signaling pathway resulting in cancer progression, resistance to chemotherapy. Hence, CD9 could be a potential target to suppress cancer progression.


Proto-Oncogene Proteins c-akt , Tongue Neoplasms , Humans , Cell Line, Tumor , Epidermal Growth Factor/metabolism , ErbB Receptors/genetics , Tetraspanin 29
4.
Leukemia ; 38(2): 250-257, 2024 02.
Article En | MEDLINE | ID: mdl-38001171

The outcomes of children with acute lymphoblastic leukemia (ALL) have been incrementally improved with risk-directed chemotherapy but therapy responses remain heterogeneous. Parameters with added prognostic values are warranted to refine the current risk stratification system and inform appropriate therapies. CD9, implicated by our prior single-center study, holds promise as one such parameter. To determine its precise prognostic significance, we analyzed a nationwide, multicenter, uniformly treated cohort of childhood ALL cases, where CD9 status was defined by flow cytometry on diagnostic samples of 3781 subjects. CD9 was expressed in 88.5% of B-ALL and 27.9% of T-ALL cases. It conferred a lower 5-year EFS and a higher CIR in B-ALL but not in T-ALL patients. The prognostic impact of CD9 was most pronounced in the intermediate/high-risk arms and those with minimal residual diseases, particularly at day 19 of remission induction. The adverse impact of CD9 was confined to specific cytogenetics, notably BCR::ABL1+ rather than KMT2A-rearranged leukemia. Multivariate analyses confirmed CD9 as an independent predictor of both events and relapse. The measurement of CD9 offers insights into patients necessitating intervention, warranting its seamless integration into the diagnostic marker panel to inform risk level and timely introduction of therapeutic intervention for childhood ALL.


Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Prognosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Neoplasm, Residual/diagnosis , China , Tetraspanin 29
5.
J Reprod Dev ; 69(6): 308-316, 2023 Dec 08.
Article En | MEDLINE | ID: mdl-37778977

The adenohypophysis is comprised of the anterior and intermediate lobes (AL and IL, respectively). Cluster of differentiation 9 (CD9)- and sex-determining region Y-box 2 (SOX2)-positive cells are stem/progenitor hormone-producing cells in the AL. They are located in the marginal cell layer (MCL) facing Rathke's cleft between the AL and IL (primary niche) and the parenchyma of the AL (secondary niche). We previously showed that, in rats, CD9/SOX2-positive cells in the IL side of the MCL (IL-side MCL) migrate to the AL side (AL-side MCL) and differentiate into prolactin-producing cells (PRL cells) in the AL parenchyma during pregnancy, lactation, and diethylstilbestrol treatment, all of which increase PRL cell turnover. This study examined the changes in CD9/SOX2-positive stem/progenitor cell niches and their proportions by manipulating the turnover of growth hormone (GH)- and thyroid-stimulating hormone (TSH)-producing cells (GH and TSH cells, respectively), which are Pit1 lineage cells, as well as PRL cells. After induction, the isolated CD9/SOX2-positive cells from the IL-side MCL formed spheres and differentiated into GH and TSH cells. We also observed an increased GH cell proportion upon treatment with GH-releasing hormone and recovery from continuous stress and an increased TSH cell proportion upon propylthiouracil treatment, concomitant with alterations in the proportion of CD9/SOX2-positive cells in the primary and secondary niches. These findings suggest that CD9/SOX2-positive cells have the potential to supply GH and TSH when an increase in GH and TSH cell populations is required in the adult pituitary gland.


Pituitary Gland, Anterior , Animals , Female , Rats , Growth Hormone , Pituitary Gland/metabolism , Pituitary Gland, Anterior/metabolism , Prolactin , Thyrotropin , Tetraspanin 29/metabolism , SOXB1 Transcription Factors/metabolism
6.
J Extracell Vesicles ; 12(8): e12352, 2023 08.
Article En | MEDLINE | ID: mdl-37525398

The tetraspanins CD9, CD81 and CD63 are major components of extracellular vesicles (EVs). Yet, their impact on EV composition remains under-investigated. In the MCF7 breast cancer cell line CD63 was as expected predominantly intracellular. In contrast CD9 and CD81 strongly colocalized at the plasma membrane, albeit with different ratios at different sites, which may explain a higher enrichment of CD81 in EVs. Absence of these tetraspanins had little impact on the EV protein composition as analysed by quantitative mass spectrometry. We also analysed the effect of concomitant knock-out of CD9 and CD81 because these two tetraspanins play similar roles in several cellular processes and associate directly with two Ig domain proteins, CD9P-1/EWI-F/PTGFRN and EWI-2/IGSF8. These were the sole proteins significantly decreased in the EVs of double CD9- and CD81-deficient cells. In the case of EWI-2, this is primarily a consequence of a decreased cell expression level. In conclusion, this study shows that CD9, CD81 and CD63, commonly used as EV protein markers, play a marginal role in determining the protein composition of EVs released by MCF7 cells and highlights a regulation of the expression level and/or trafficking of CD9P-1 and EWI-2 by CD9 and CD81.


Extracellular Vesicles , Tetraspanin 28 , Tetraspanin 29 , Tetraspanin 30 , Cell Movement , Extracellular Vesicles/metabolism , Proteomics , Tetraspanin 28/metabolism , Humans , MCF-7 Cells , Tetraspanin 29/metabolism , Tetraspanin 30/metabolism
7.
ACS Sens ; 8(8): 3174-3186, 2023 08 25.
Article En | MEDLINE | ID: mdl-37585601

Cancer progresses silently to the terminal stage of the impossible operable condition. There are many limitations in the treatment options of cancer, but diagnosis in an early stage can improve survival rates and low recurrence. Exosomes are the biomolecules released from cancer cells and are promising candidates for clinical diagnosis. Among them, the cluster of differentiation 9 (CD9) protein is an important exosomal biomarker that can be used for exosome determination. Therefore, here, a CD9 aptamer was first synthesized and applied to an extended-gate field-effect transistor (EGFET)-type biosensor containing a disposable sensing membrane to suggest the possibility of detecting exosomes in a clinical environment. Systematically evaluating ligands using the exponential enrichment (SELEX) technique was performed to select nucleic acid sequences that can specifically target the CD9 protein. Exosomes were detected according to the electrical signal changes on a membrane, which is an extended gate using an Au microelectrode. The fabricated biosensor showed a limit of detection (LOD) of 10.64 pM for CD9 proteins, and the detection range was determined from 10 pM to 1 µM in the buffer. In the case of the clinical test, the LOD and detection ranges of exosomes in human serum samples were 6.41 × 102 exosomes/mL and 1 × 103 to 1 × 107 exosomes/mL, respectively, showing highly reliable results with low error rates. These findings suggest that the proposed aptasensor can be a powerful tool for a simple and early diagnosis of exosomes.


Aptamers, Nucleotide , Biosensing Techniques , Exosomes , Humans , Exosomes/metabolism , Biosensing Techniques/methods , Limit of Detection , Aptamers, Nucleotide/metabolism , Tetraspanin 29/metabolism
8.
mBio ; 14(4): e0148223, 2023 Aug 31.
Article En | MEDLINE | ID: mdl-37486132

Epithelial colonization is a critical first step in bacterial pathogenesis. Staphylococcus aureus can utilize several host factors to associate with cells, including α5ß1 integrin and heparan sulfate proteoglycans, such as the syndecans. Here, we demonstrate that a partner protein of both integrins and syndecans, the host membrane adapter protein tetraspanin CD9, is essential for syndecan-mediated staphylococcal adhesion. Fibronectin is also essential in this process, while integrins are only critical for post-adhesion entry into human epithelial cells. Treatment of epithelial cells with CD9-derived peptide or heparin caused significant reductions in staphylococcal adherence, dependent on both CD9 and syndecan-1. Exogenous fibronectin caused a CD9-dependent increase in staphylococcal adhesion, whereas blockade of ß1 integrins did not affect adhesion but did reduce the subsequent internalization of adhered bacteria. CD9 disruption or deletion increased ß1 integrin-mediated internalization, suggesting that CD9 coordinates sequential staphylococcal adhesion and internalization. CD9 controls staphylococcal adhesion through syndecan-1, using a mechanism that likely requires CD9-mediated syndecan organization to correctly display fibronectin at the host cell surface. We propose that CD9-derived peptides or heparin analogs could be developed as anti-adhesion treatments to inhibit the initial stages of staphylococcal pathogenesis. IMPORTANCE Staphylococcus aureus infection is a significant cause of disease and morbidity. Staphylococci utilize multiple adhesion pathways to associate with epithelial cells, including interactions with proteoglycans or ß1 integrins through a fibronectin bridge. Interference with another host protein, tetraspanin CD9, halves staphylococcal adherence to epithelial cells, although CD9 does not interact directly with bacteria. Here, we define the role of CD9 in staphylococcal adherence and uptake, observing that CD9 coordinates syndecan-1, fibronectin, and ß1 integrins to allow efficient staphylococcal infection. Two treatments that disrupt this action are effective and may provide an alternative to antibiotics. We provide insights into the mechanisms that underlie staphylococcal infection of host cells, linking two known adhesion pathways together through CD9 for the first time.


Staphylococcal Infections , Syndecan-1 , Humans , Syndecan-1/genetics , Fibronectins/metabolism , Cell Adhesion , Integrins , Membrane Proteins , Integrin beta1/metabolism , Heparin , Tetraspanins , Tetraspanin 29
9.
J Extracell Vesicles ; 12(7): e12346, 2023 07.
Article En | MEDLINE | ID: mdl-37422692

Extracellular vesicles (EVs) and their cargo constitute novel biomarkers. EV subpopulations have been defined not only by abundant tetraspanins (e.g., CD9, CD63 and CD81) but also by specific markers derived from their source cells. However, it remains a challenge to robustly isolate and characterize EV subpopulations. Here, we combined affinity isolation with super-resolution imaging to comprehensively assess EV subpopulations from human plasma. Our Single Extracellular VEsicle Nanoscopy (SEVEN) assay successfully quantified the number of affinity-isolated EVs, their size, shape, molecular tetraspanin content, and heterogeneity. The number of detected tetraspanin-enriched EVs positively correlated with sample dilution in a 64-fold range (for SEC-enriched plasma) and a 50-fold range (for crude plasma). Importantly, SEVEN robustly detected EVs from as little as ∼0.1 µL of crude plasma. We further characterized the size, shape and molecular tetraspanin content (with corresponding heterogeneities) for CD9-, CD63- and CD81-enriched EV subpopulations. Finally, we assessed EVs from the plasma of four pancreatic ductal adenocarcinoma patients with resectable disease. Compared to healthy plasma, CD9-enriched EVs from patients were smaller while IGF1R-enriched EVs from patients were larger, rounder and contained more tetraspanin molecules, suggestive of a unique pancreatic cancer-enriched EV subpopulation. This study provides the method validation and demonstrates that SEVEN could be advanced into a platform for characterizing both disease-associated and organ-associated EV subpopulations.


Extracellular Vesicles , Humans , Tetraspanin 29 , Tetraspanins , Biomarkers
10.
Pathol Res Pract ; 248: 154651, 2023 Aug.
Article En | MEDLINE | ID: mdl-37390757

The most prevalent locations for head and neck cancer is the tongue. The surviving patients who are receiving therapy have considerably compromised speech, taste, chewing, and swallowing. CD9 is a cell surface protein that has contradictory role in cancer progression. The objective of the study is to analyze the Cluster of Differentiation 9(CD9), Epidermal Growth Factor Receptor (EGFR) and Phosphorylated Akt (p-Akt) expression in tongue cancer specimens and its clinical significance.50 tongue cancer sections were used to analyze the expression of CD9,EGFR and p-Akt by immunohistochemistry. Data regarding the histological grade of the tumor, age, sex, and habits were recorded, and relation with CD9,EGFR and p-Akt expression was assessed. Data were expressed as mean ± SEM. Categorical data was analyzed by Chi-square test. Student t-test was used to check the significance of data between two groups.A significant increase in the CD9,EGFR and p-Akt expression (1.8 ± 0.11, 2.06 ± 0.18 and 2.3 ± 0.15 respectively) was seen in the tongue cancer specimens. CD9 and p-Akt expression had a significant association with the histological grade (p < 0.004 and p < 0.006 respectively). CD9 expression was higher in patients with the combination of addiction/habit compared to patients with single addictions(1.08 ± 0.11 and 0.75 ± 0.47). Overall a poor rate of survival was observed in CD9 positive patients(p < 0.039). EGFR and p-Akt expression increased with increasing expression of CD9, suggesting its use as a biomarker to track the development of TSCC.


Carcinoma, Squamous Cell , Tongue Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , ErbB Receptors/metabolism , Prognosis , Proto-Oncogene Proteins c-akt , Tetraspanin 29 , Tetraspanins , Tongue/metabolism , Tongue/pathology , Tongue Neoplasms/pathology
11.
Anal Chem ; 95(25): 9520-9530, 2023 06 27.
Article En | MEDLINE | ID: mdl-37307147

Tetraspanins, including CD9, CD63, and CD81, are transmembrane biomarkers that play a crucial role in regulating cancer cell proliferation, invasion, and metastasis, as well as plasma membrane dynamics and protein trafficking. In this study, we developed simple, fast, and sensitive immunosensors to determine the concentration of extracellular vesicles (EVs) isolated from human lung cancer cells using tetraspanins as biomarkers. We employed surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation (QCM-D) as detectors. The monoclonal antibodies targeting CD9, CD63, and CD81 were oriented vertically in the receptor layer using either a protein A sensor chip (SPR) or a cysteamine layer that modified the gold crystal (QCM-D) without the use of amplifiers. The SPR studies demonstrated that the interaction of EVs with antibodies could be described by the two-state reaction model. Furthermore, the EVs' affinity to monoclonal antibodies against tetraspanins decreased in the following order: CD9, CD63, and CD81, as confirmed by the QCM-D studies. The results indicated that the developed immunosensors were characterized by high stability, a wide analytical range from 6.1 × 104 particles·mL-1 to 6.1 × 107 particles·mL-1, and a low detection limit (0.6-1.8) × 104 particles·mL-1. A very good agreement between the results obtained using the SPR and QCM-D detectors and nanoparticle tracking analysis demonstrated that the developed immunosensors could be successfully applied to clinical samples.


Biosensing Techniques , Extracellular Vesicles , Lung Neoplasms , Humans , Surface Plasmon Resonance/methods , Biosensing Techniques/methods , Quartz Crystal Microbalance Techniques , Immunoassay , Tetraspanins , Extracellular Vesicles/chemistry , Biomarkers , Tetraspanin 28 , Tetraspanin 30/analysis , Tetraspanin 29/analysis
12.
Commun Biol ; 6(1): 532, 2023 05 17.
Article En | MEDLINE | ID: mdl-37198427

Extracellular vesicles (EVs) are thought to mediate intercellular communication by transferring cargoes from donor to acceptor cells. The EV content-delivery process within acceptor cells is still poorly characterized and debated. CD63 and CD9, members of the tetraspanin family, are highly enriched within EV membranes and are respectively enriched within multivesicular bodies/endosomes and at the plasma membrane of the cells. CD63 and CD9 have been suspected to regulate the EV uptake and delivery process. Here we used two independent assays and different cell models (HeLa, MDA-MB-231 and HEK293T cells) to assess the putative role of CD63 and CD9 in the EV delivery process that includes uptake and cargo delivery. Our results suggest that neither CD63, nor CD9 are required for this function.


Extracellular Vesicles , Tetraspanins , Humans , Cell Communication , Endosomes/metabolism , Extracellular Vesicles/metabolism , HEK293 Cells , Tetraspanin 29/metabolism , Tetraspanin 30/metabolism , Tetraspanins/metabolism
13.
Clin Exp Med ; 23(6): 2867-2875, 2023 Oct.
Article En | MEDLINE | ID: mdl-36826611

Extracellular vesicles (EVs) are implicated in the pathogenesis of rheumatoid arthritis (RA) but little is known about the composition of specific small EV (sEV) subpopulations. This study aimed to characterize the CD63, CD81 and CD9 tetraspanin profile in the membrane of single EVs in plasma from treatment naïve RA patients and assess potential discrepancies between methotrexate (MTX) responder groups. EVs isolated from plasma were characterized using transmission electron microscopy, and detection of surface markers (CD63, CD81 and CD9) on single EVs was performed on the ExoView platform. All RA patients (N = 8) were newly diagnosed, treatment naïve, females, ACPA positive and former smokers. The controls (N = 5) were matched for age and gender. After three months of MTX treatment, responders (N = 4) were defined as those with ΔDAS28 > 1.2 and DAS28 ≤ 3.2 post-treatment. The isolated EVs were 50-200 nm in size. The RA patients had a higher proportion of both CD9 and CD81 single positive sEVs compared to healthy controls, while there was a decrease in CD81/CD9 double positive sEVs in patients. Stratification of RA patients into MTX responders and non-responders revealed a distinctly higher proportion of CD81 single positive sEVs in the responder group. The proportion of CD81/CD9 double positive sEVs (anti-CD9 captured) was lower in the non-responders, but increased upon 3 months of MTX treatment. Our exploratory study revealed distinct tetraspanin profiles in RA patients suggesting their implication in RA pathophysiology and MTX treatment response.


Arthritis, Rheumatoid , Extracellular Vesicles , Female , Humans , Tetraspanin 29/metabolism , Tetraspanin 28 , Tetraspanins , Extracellular Vesicles/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism
14.
Biomater Adv ; 146: 213283, 2023 Mar.
Article En | MEDLINE | ID: mdl-36640525

As an organizer of multi-molecular membrane complexes, the tetraspanin CD9 has been implicated in a number of biological processes, including cancer metastasis, and is a candidate therapeutic target. Here, we evaluated the suppressive effects of an eight-mer CD9-binding peptide (CD9-BP) on cancer cell metastasis and its mechanisms of action. CD9-BP impaired CD9-related functions by adversely affecting the formation of tetraspanin webs-networks composed of CD9 and its partner proteins. The anti-cancer metastasis effect of CD9-BP was evidenced by the in vitro inhibition of cancer cell migration and invasion as well as exosome secretion and uptake, which are essential processes during metastasis. Finally, using a mouse model, we showed that CD9-BP reduced lung metastasis in vivo. These findings provide insight into the mechanism by which CD9-BP inhibits CD9-dependent functions and highlight its potential application as an alternative therapeutic nano-biomaterial for metastatic cancers.


Neoplasms , Oligopeptides , Tetraspanin 29 , Humans , Neoplasms/pathology , Neoplasms/therapy , Tetraspanin 29/metabolism , Neoplasm Metastasis , Oligopeptides/metabolism , Oligopeptides/therapeutic use
15.
Curr Protein Pept Sci ; 24(3): 240-246, 2023.
Article En | MEDLINE | ID: mdl-36718968

Fertilization is a very sophisticated and unique process involving several key steps resulting in a zygote's formation. Recent research has indicated that some immune system-related cell surface molecules (CD molecules from the tetraspanin superfamily) may have a role in fertilization. Extracellular vesicles are undeniably involved in a variety of cellular functions, including reproduction. Tetraspanin proteins identified in extracellular vesicles are now used mostly as markers; mounting evidence indicates that they also participate in cell targeting, cargo selection, and extracellular vesicle formation. Their significance and potential in mammalian reproduction are currently being studied extensively. Despite the fact that the current data did not establish any theory, the crucial function of tetraspanins in the fertilization process was not ruled out, and the specific role of tetraspanins is still unknown. In this review, we bring insight into the existing knowledge regarding the expression of tetraspanins in spermatozoa and seminal fluid and their role in gamete binding and fusion.


Fertilization , Tetraspanins , Animals , Male , Tetraspanin 29/genetics , Tetraspanin 29/metabolism , Tetraspanins/genetics , Tetraspanins/metabolism , Spermatozoa/metabolism , Genitalia, Male/metabolism , Mammals/metabolism
16.
J Investig Med ; 71(3): 191-201, 2023 03.
Article En | MEDLINE | ID: mdl-36708288

The molecular mechanisms of opium action with regard to coronary artery disease (CAD) have not yet been determined. The aim of this study was to evaluate the effect of opium on the expression of scavenger receptors including CD36, CD68, and CD9 tetraspanin in monocytes and the plasma levels of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), malondialdehyde (MDA), and nitric oxide metabolites (NOx) in CAD patients with and without opium addiction. This case-control study was conducted on three groups: (1) opium-addicted CAD patients (CAD + OA, n = 30); (2) CAD patients with no opium addiction (CAD, n = 30); and (3) individuals without CAD and opium addiction as the control group (Ctrl, n = 17). The protein and mRNA levels of CD9, CD36, and CD68 were evaluated by the flow cytometry and quantitative polymerase chain reaction (RT-qPCR) methods, respectively. The consumption of atorvastatin, aspirin, and glyceryl trinitrate was found be higher in the CAD groups compared with the control group. The plasma level of TNF-α was significantly higher in the CAD + OA group than in the CAD and Ctrl groups (p = 0.001 and p = 0.005, respectively). MDA levels significantly increased in CAD and CAD + OA patients in comparison with the Ctrl group (p = 0.010 and p = 0.002, respectively). No significant differences were found in CD9, CD36, CD68, IFN-γ, and NOx between the three groups. The findings demonstrated that opium did not have a significant effect on the expression of CD36, CD68, and CD9 at gene and protein levels, but it might be involved in the development of CAD by inducing inflammation through other mechanisms.


Coronary Artery Disease , Humans , Case-Control Studies , CD36 Antigens/genetics , Coronary Artery Disease/complications , Inflammation/complications , Opium , Tetraspanin 29/metabolism , Tumor Necrosis Factor-alpha
17.
Anticancer Res ; 43(1): 25-33, 2023 Jan.
Article En | MEDLINE | ID: mdl-36585155

BACKGROUND/AIM: Exosomes secreted by various cells in the tumour microenvironment have been reported to be mediators of intercellular communication that play an important role in cancer progression. In this study, we aimed to investigate the effects of exosomes derived from cancer-associated fibroblasts (CAFs) on the proliferation of malignant melanoma (MM) cells and evaluated their clinicopathological significance. MATERIALS AND METHODS: Three malignant melanoma cell lines, A375, MMAc, and COLO679, and three CAFs established from malignant melanomas at stages 1a, 2b, and 3b, were used. The expression of CD9, CD63, and CD81 in CAF-derived exosomes was examined using western blotting. The effect of exosomes on the proliferative potential of cancer cells was analysed using cell counting and MTT assays. The expression of CD9, CD63, and CD81 was also immunohistochemically analysed in 90 malignant melanoma specimens. RESULTS: CAF-derived exosomes were positive for CD9 and CD63 and remarkably inhibited the proliferative capacity of A375 and MMAc cells. The five-year disease-free survival was significantly better in patients with CAF-derived CD9-positive exosomes than in CD9-negative patients. CONCLUSION: CAF-derived exosomes, especially CD9-positive exosomes, have an inhibitory effect on the proliferation of malignant melanoma cells. These findings suggest that CD9 expression in CAFs is a promising prognostic marker for patients with malignant melanoma.


Exosomes , Melanoma , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Proliferation , Exosomes/metabolism , Fibroblasts/metabolism , Melanoma/metabolism , Melanoma/pathology , Tetraspanin 29/analysis , Tetraspanin 29/metabolism , Tumor Microenvironment , Biomarkers, Tumor , Prognosis , Melanoma, Cutaneous Malignant
18.
Drug Deliv ; 30(1): 2162161, 2023 Dec.
Article En | MEDLINE | ID: mdl-36579638

Extracellular vesicles (EVs) are lipid membrane-bound particles involved in cell-to-cell communication through a delivery of regulatory molecules essential for physiological processes. Since EVs efficiently vectorize specific cargo molecules, they have been proposed as suitable vehicles for therapeutic agents. Drug loading into EVs can be achieved by active, exogenous strategies or by genetic modifications of vesicle-producing cells. With the aim to produce EVs conveying therapeutic proteins, we genetically engineered and compared HEK293 to tumor cells. Tetraspanin-based RFP fusions were found to be more stable and preferentially sorted into EVs in HEK293. EVs isolated from genetically modified HEK293 cells media were captured by cancer cells, efficiently delivering their cargo. Cathepsin B cleavage site introduced between CD9/CD81 and RFP was recognized by tumor specific proteases allowing the release of the reporter protein. Our results indicate HEK293 cells as a preferential system for the production of EVs and pave the way to the development of nano-platforms for the efficient delivery of therapeutic proteins and prodrugs to tumor cells.


Extracellular Vesicles , Neoplasms , Humans , HEK293 Cells , Extracellular Vesicles/metabolism , Proteins/metabolism , Protein Transport , Neoplasms/metabolism , Cell Communication , Tetraspanin 28/metabolism , Tetraspanin 29/metabolism
19.
Reprod Domest Anim ; 58(1): 81-88, 2023 Jan.
Article En | MEDLINE | ID: mdl-36107170

Fertilization proteins JUNO and CD9 play vital roles in sperm-egg fusion, but little is known about their expression patterns during in vitro maturation (IVM) and their function during in vitro fertilization (IVF) of bovine oocytes. In this study, qRT-PCR and immunofluorescence staining were used to detect the mRNA and protein expression levels of JUNO and CD9 genes in bovine oocytes and cumulus cells. Then, fertilization rate of MII oocytes treated with (i) JUNO antibody (1, 5 and 25 µg/ml) or (ii) CD9 antibody (1, 5 and 25 µg/ml) or (iii) CD9 antibody (5 µg/ml) + JUNO antibody (5 µg/ml) were recorded. Our results showed that the mRNA and protein expression levels of JUNO and CD9 genes significantly increased from bovine GV oocytes to MII oocytes, and similar mRNA expression patterns of JUNO and CD9 were also detected in cumulus cells. All groups of oocytes treated with CD9 antibody or JUNO antibody showed significantly decreased fertilization rates (p < .05). Particularly, the fertilization ability of oocytes treated with CD9 antibody (5 µg/ml) + JUNO antibody (5 µg/ml) sharply decreased to 3.48 ± 0.11%. In conclusion, our study revealed the expression levels of JUNO and CD9 genes in oocytes and cumulus cells increased during IVM of bovine oocytes, with JUNO protein playing a major role in the fertilization of bovine oocytes.


Oocytes , Semen , Animals , Cattle , Female , Male , Antibodies , Cumulus Cells , Fertilization in Vitro/veterinary , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/metabolism , Spermatozoa/metabolism , Tetraspanin 29/metabolism , Receptors, Cell Surface/metabolism , Egg Proteins/metabolism
20.
PLoS One ; 17(11): e0277274, 2022.
Article En | MEDLINE | ID: mdl-36355782

In mice, CD9 expression on the egg is required for efficient sperm-egg fusion and no effects on ovulation or male fertility are observed in CD9 null animals. Here we show that cd9b knockout zebrafish also appear to have fertility defects. In contrast to mice, fewer eggs were laid by cd9b knockout zebrafish pairs and, of the eggs laid, a lower percentage were fertilised. These effects could not be linked to primordial germ cell numbers or migration as these were not altered in the cd9b mutants. The decrease in egg numbers could be rescued by exchanging either cd9b knockout partner, male or female, for a wildtype partner. However, the fertilisation defect was only rescued by crossing a cd9b knockout female with a wildtype male. To exclude effects of mating behaviour we analysed clutch size and fertilisation using in vitro fertilisation techniques. Number of eggs and fertilisation rates were significantly reduced in the cd9b mutants suggesting the fertility defects are not solely due to courtship behaviours. Our results indicate that CD9 plays a more complex role in fish fertility than in mammals, with effects in both males and females.


Sperm-Ovum Interactions , Zebrafish , Male , Female , Mice , Animals , Zebrafish/genetics , Tetraspanin 29/genetics , Tetraspanin 29/metabolism , Semen , Fertility/genetics , Tetraspanins/metabolism , Spermatozoa/metabolism , Mammals
...