Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.148
1.
Immunol Lett ; 267: 106862, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702033

BACKGROUND: Diabetic retinopathy (DR) stands as a prominent complication of diabetes. Berberine (BBR) has reported to be effective to ameliorate the retinal damage of DR. Studying the potential immunological mechanisms of BBR on the streptozotocin (STZ) induced DR mouse model will explain the therapeutic mechanisms of BBR and provide theoretical basis for the clinical application of this drug. METHODS: C57BL/6 J mice were induced into a diabetic state using a 50 mg/(kg·d) dose of STZ over a 5-day period. Subsequently, they were subjected to a high-fat diet (HFD) for one month. Following a 5-week treatment with 100 mg/(kg·d) BBR, the concentrations of inflammatory factors in the mice's peripheral blood were determined using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin staining was employed to scrutinize pathological changes in the mice's retinas, while flow cytometry assessed the proportions of T-lymphocyte subsets and the activation status of dendritic cells (DCs) in the spleen and lymph nodes. CD4+T cells and DC2.4 cell lines were utilized to investigate the direct and indirect effects of BBR on T cells under high glucose conditions in vitro. RESULTS: Following 5 weeks of BBR treatment in the streptozotocin (STZ) mouse model of DR, we observed alleviation of retinal lesions and a down-regulation in the secretion of inflammatory cytokines, namely TNF-α, IL-1ß, and IL-6, in the serum of these mice. And in the spleen and lymph nodes of these mice, BBR inhibited the proportion of Th17 cells and promoted the proportion of Treg cells, thereby down-regulating the Th17/Treg ratio. Additionally, in vitro experiments, BBR directly inhibited the expression of the transcription factor RORγt and promoted the expression of the transcription factor Foxp3 in T cells, resulting in a down-regulation of the Th17/Treg ratio. Furthermore, BBR indirectly modulated the Th17/Treg ratio by suppressing the secretion of TNF-α, IL-1ß, and IL-6 by DCs and enhancing the secretion of indoleamine 2,3-dioxygenase (IDO) and transforming growth factor-beta (TGF-ß) by DCs. This dual action inhibited Th17 cell differentiation while promoting Treg cells. CONCLUSION: Our findings indicate that BBR regulate T cell subpopulation differentiation, reducing the Th17/Treg ratio by directly or indirectly pathway. This represents a potential therapeutic avenue of BBR for improving diabetic retinopathy.


Berberine , Diabetes Mellitus, Experimental , Diabetic Retinopathy , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Berberine/pharmacology , Berberine/therapeutic use , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/immunology , Diabetic Retinopathy/etiology , Th17 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/metabolism , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Male , Cytokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Retina/pathology , Retina/immunology , Retina/drug effects , Retina/metabolism
2.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 373-377, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710521

Patients with Hashimoto's thyroiditis had increased numbers of Th17 cells in serum and thyroid tissue, significantly elevated levels of interleukin 17 (IL-17), and an imbalance in the ratio of Th17 cells to regulatory T cells (Tregs). The reduced Tregs' ratio leads to a reduction in immunosuppressive function within the thyroid gland, while Th17 cells are involved in the development of HT by regulating the expression of pro-inflammatory cytokines in the thyroid gland and mediating thyroid tissue fibrosis through the secretion of IL-17.


Hashimoto Disease , Interleukin-17 , T-Lymphocytes, Regulatory , Th17 Cells , Hashimoto Disease/immunology , Hashimoto Disease/blood , Hashimoto Disease/metabolism , Humans , Interleukin-17/metabolism , Interleukin-17/blood , Th17 Cells/immunology , Th17 Cells/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Thyroid Gland/immunology , Thyroid Gland/metabolism , Animals
3.
J Neuroinflammation ; 21(1): 126, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734662

Myasthenia gravis (MG) is an immune-mediated disease frequently associated with thymic changes. Increased T helper 17 (Th17) cell activity and dysfunctional regulatory T (Treg) cells have been demonstrated in subgroups of MG. On the other hand, hypoxia-inducible factor 1 (HIF-1) has been shown to regulate the Th17/Treg balance by inducing Th17 differentiation while attenuating Treg development. To identify the underlying mechanisms of different thymic pathologies in MG development, we evaluated thymic samples from thymoma-associated myasthenia gravis (TAMG), MG with hyperplasia (TFH-MG) and thymoma without MG (TOMA) patients. Differential gene expression analysis revealed that TAMG and TFH-MG cells are associated with different functional pathways. A higher RORC/FOXP3 ratio provided evidence for Th17/Treg imbalance in TAMG potentially related to increased HIF1A. The hypoxic microenvironment in thymoma may be a driver of TAMG by increasing HIF1A. These findings may lead to new therapeutic approaches targeting HIF1A in the development of TAMG.


Hypoxia-Inducible Factor 1, alpha Subunit , Myasthenia Gravis , T-Lymphocytes, Regulatory , Th17 Cells , Thymoma , Thymus Gland , Thymus Neoplasms , Myasthenia Gravis/genetics , Myasthenia Gravis/immunology , Myasthenia Gravis/pathology , Thymoma/complications , Thymoma/genetics , Thymoma/immunology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/immunology , Th17 Cells/metabolism , Th17 Cells/immunology , Thymus Gland/pathology , Male , Female , Thymus Neoplasms/complications , Thymus Neoplasms/genetics , Adult , Middle Aged , Aged
4.
Sci Rep ; 14(1): 10340, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710764

This study aims to evaluate the role of trefoil factor 3 (TFF3) peptides in type 2 diabetes mellitus (T2DM) from an inflammatory perspective. The focus was on exploring how TFF3 affects the function of T cells. TFF3 overexpression model was constructed using lentivirus in Jurkat cell lines. We evaluated the impact of TFF3 on the proliferation, apoptosis, and IL-17A levels of Jurkat cells cultured in high glucose. The T2DM model was induced in TFF3 knockout (KO) mice through streptozotocin combined with high-fat diet. The measurements included glucose tolerance, insulin tolerance, inflammation markers, Th17 cell proportion, and pancreatic pathological changes. The T2DM modeling led to splenomegaly in mice, and increased expression of TFF3 in their spleens. Overexpression of TFF3 increased the proportion of IL-17+ T cells and the levels of Th17-related cytokines in Jurkat cells. There was no difference in body weight and blood glucose levels between wild-type and TFF3 KO mice. However, T2DM mice lacking the TFF3 gene showed improved glucose utilization, ameliorated pancreatic pathology, decreased inflammation levels, and reduced Th17 cell ratio. TFF3 may be involved in the chronic inflammatory immune response in T2DM. Its mechanism may be related to the regulation of the RORγt/IL-17 signaling pathway and its impact on T cell proliferation and apoptosis.


Diabetes Mellitus, Type 2 , Mice, Knockout , Th17 Cells , Trefoil Factor-3 , Th17 Cells/immunology , Th17 Cells/metabolism , Animals , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/immunology , Mice , Trefoil Factor-3/metabolism , Trefoil Factor-3/genetics , Jurkat Cells , Interleukin-17/metabolism , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Male , Cell Proliferation , Apoptosis , Diet, High-Fat/adverse effects
5.
Arch Dermatol Res ; 316(5): 176, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758283

Psoriasis is a chronic immune mediated inflammatory skin disease with systemic manifestations. It has been reported that caloric restriction could improve severity of psoriasis patients. However, the mechanism of intermittent fasting effects on psoriasis has not been investigated. Caloric restriction is known to reduce the number of circulating inflammatory monocytes in a CCL2-dependent manner. However, it is still unknown whether caloric restriction can improve psoriasis by regulating monocytes through CCL2. In this study, we used imiquimod (IMQ)-induced psoriasis-like mouse model to explore the effects and the mechanisms of intermittent fasting on psoriasis-like dermatitis. We found that intermittent fasting could significantly improve IMQ-induced psoriasis-like dermatitis, and reduce the number of γδT17 cells and IL-17 production in draining lymph nodes and psoriatic lesion via inhibiting proliferation and increasing death of γδT17 cells. Furthermore, intermittent fasting could significantly decrease monocytes in blood, and this was associated with decreased monocytes, macrophages and DC in psoriasis-like skin inflammation. Reduced monocytes in circulation and increased monocytes in BM of fasting IMQ-induced psoriasis-like mice is through reducing the production of CCL2 from BM to inhibit monocyte egress to the periphery. Our above data shads light on the mechanisms of intermittent fasting on psoriasis.


Chemokine CCL2 , Disease Models, Animal , Fasting , Imiquimod , Monocytes , Psoriasis , Animals , Psoriasis/immunology , Psoriasis/chemically induced , Psoriasis/pathology , Monocytes/immunology , Monocytes/metabolism , Mice , Fasting/blood , Chemokine CCL2/metabolism , Th17 Cells/immunology , Interleukin-17/metabolism , Skin/pathology , Skin/immunology , Humans , Mice, Inbred C57BL , Male , Cell Proliferation , Caloric Restriction , Intermittent Fasting
6.
FASEB J ; 38(10): e23667, 2024 May 31.
Article En | MEDLINE | ID: mdl-38742812

Immunity imbalance of T helper 17 (Th17)/regulatory T (Treg) cells is involved in the pathogenesis of Crohn's disease (CD). Complanatuside A (CA), a flavonol glycoside, exerts anti-inflammatory activities and our study aimed to identify its effect on TNBS-induced colitis and the possible mechanisms. We found that CA alleviated the symptoms of colitis in TNBS mice, as demonstrated by prevented weight loss and colon length shortening, as well as decreased disease activity index scores, inflammatory scores, and levels of proinflammatory factors. Flow cytometry analysis showed that CA markedly reduced the percentage of Th17 cells while increasing the percentage of Treg cells in TNBS mice. Under Th17 cell polarizing conditions, CA inhibited the differentiation of Th17 cells while the Treg cell differentiation was elevated under Treg cell polarizing conditions. Furthermore, it was observed that JAK2 interacted with CA through six hydrogen bonds via molecular docking. The phosphorylation of JAK2/STAT3 was reduced by CA, which might be correlated with the protective effect of CA on colitis. In conclusion, CA reduced the imbalance of Th17/Treg cells by inhibiting the JAK2/STAT3 signaling pathway in TNBS-induced colitis, which may provide novel strategies for CD treatment.


Colitis , Janus Kinase 2 , STAT3 Transcription Factor , Signal Transduction , T-Lymphocytes, Regulatory , Th17 Cells , Trinitrobenzenesulfonic Acid , Animals , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/metabolism , Janus Kinase 2/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , STAT3 Transcription Factor/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Mice , Signal Transduction/drug effects , Trinitrobenzenesulfonic Acid/toxicity , Male , Mice, Inbred BALB C , Cell Differentiation/drug effects
7.
Elife ; 132024 May 09.
Article En | MEDLINE | ID: mdl-38722677

Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.


Cell Differentiation , Down-Regulation , MicroRNAs , Nuclear Receptor Subfamily 1, Group F, Member 3 , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Humans , Th17 Cells/immunology , Th17 Cells/metabolism , Pulmonary Emphysema/genetics , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/pathology , Emphysema/genetics , Emphysema/metabolism , Mice, Inbred C57BL , Lung/pathology , Lung/metabolism , Male , Interleukin-17/metabolism , Interleukin-17/genetics , Female
8.
PLoS One ; 19(5): e0301687, 2024.
Article En | MEDLINE | ID: mdl-38718078

In the monitoring of human Toxoplasma gondii infection, it is crucial to confirm the development of a specific Th1/Th17 immune response memory. The use of a simple, specific, and sensitive assay to follow the T-cell activation is thus required. Current protocols are not always specific as stimulation with peptides is Human Leukocyte Antigen (HLA)-dependent, while stimulation with total-lysis antigens tends to stimulate seronegative donors resulting to false positives. Here, an improved ELISPOT protocol is reported, using peripheral blood mononuclear cells (PBMC) of T.gondii-infected donors, incubated with the inactivated parasite. The results showed that, contrary to standard protocols, a pre-incubation step at high cell density in presence of the inactivated parasite allowed a specific Th1/Th17 response with the secretion of IFN-γ, IL-2, IL-12 and IL-17 cytokines. This protocol allows to evaluate precisely the immune response after a T.gondii infection.


Enzyme-Linked Immunospot Assay , Th1 Cells , Th17 Cells , Toxoplasma , Toxoplasmosis , Humans , Th1 Cells/immunology , Th17 Cells/immunology , Enzyme-Linked Immunospot Assay/methods , Toxoplasmosis/immunology , Toxoplasma/immunology , Cytokines/immunology , Cytokines/metabolism , Leukocytes, Mononuclear/immunology , Interferon-gamma/immunology , Interferon-gamma/metabolism
9.
J Interferon Cytokine Res ; 44(5): 208-220, 2024 May.
Article En | MEDLINE | ID: mdl-38691831

Intestinal damage and secondary bacterial translocation are caused by the inflammatory response induced by sepsis. Tongfu Lifei (TLF) decoction has a protective effect on sepsis-related gastrointestinal function injury. However, the relation between gut microbiota, immune barrier, and sepsis under the treatment of TLF have not been well clarified yet. Here, rats were subjected to cecal ligation and puncture (CLP) to create a sepsis model. Subsequently, the TLF decoction was given to CLP rats by gavage, fecal microbiota transplantation (FMT), and antibiotic were used as positive control. TLF suppressed the inflammatory response and improved the pathological changes in the intestines of CLP rats. Besides, TLF promoted the balance of the percentage of the Th17 and Treg cells. Intestinal barrier function was also improved by TLF through enhancing ZO-1, and Occludin and Claudin 1 expression, preventing the secondary translocation of other gut microbiota. TLF dramatically boosted the gut microbiota's alpha- and beta-diversity in CLP rats. Moreover, it increased the relative abundance of anti-inflammatory gut microbiota and changed the progress of the glucose metabolism. In short, TLF regulated the gut microbiota to balance the ratio of Th17/Treg cells, reducing the inflammation in serum and intestinal mucosal injury in rats.


Drugs, Chinese Herbal , Gastrointestinal Microbiome , Intestinal Mucosa , Sepsis , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Gastrointestinal Microbiome/drug effects , Sepsis/immunology , Sepsis/drug therapy , Sepsis/complications , Th17 Cells/immunology , Th17 Cells/drug effects , Rats , Drugs, Chinese Herbal/pharmacology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/microbiology , Male , Rats, Sprague-Dawley
10.
Sci Immunol ; 9(95): eabq1558, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701190

Steroid resistance poses a major challenge for the management of autoimmune neuroinflammation. T helper 17 (TH17) cells are widely implicated in the pathology of steroid resistance; however, the underlying mechanisms are unknown. In this study, we identified that interleukin-1 receptor (IL-1R) blockade rendered experimental autoimmune encephalomyelitis (EAE) mice sensitive to dexamethasone (Dex) treatment. Interleukin-1ß (IL-1ß) induced a signal transducer and activator of transcription 5 (STAT5)-mediated steroid-resistant transcriptional program in TH17 cells, which promoted inflammatory cytokine production and suppressed Dex-induced anti-inflammatory genes. TH17-specific deletion of STAT5 ablated the IL-1ß-induced steroid-resistant transcriptional program and rendered EAE mice sensitive to Dex treatment. IL-1ß synergized with Dex to promote the STAT5-dependent expression of CD69 and the development of central nervous system (CNS)-resident CD69+ TH17 cells. Combined IL-1R blockade and Dex treatment ablated CNS-resident TH17 cells, reduced EAE severity, and prevented relapse. CD69+ tissue-resident TH17 cells were also detected in brain lesions of patients with multiple sclerosis. These findings (i) demonstrate that IL-1ß-STAT5 signaling in TH17 cells mediates steroid resistance and (ii) identify a therapeutic strategy for reversing steroid resistance in TH17-mediated CNS autoimmunity.


Dexamethasone , Encephalomyelitis, Autoimmune, Experimental , Interleukin-1beta , STAT5 Transcription Factor , Th17 Cells , Animals , Th17 Cells/immunology , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/immunology , Mice , Interleukin-1beta/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Mice, Inbred C57BL , Drug Resistance , Signal Transduction/immunology , Mice, Knockout , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/drug therapy , Female , Humans
11.
Arch Dermatol Res ; 316(6): 205, 2024 May 24.
Article En | MEDLINE | ID: mdl-38787409

Previous studies demonstrated that Th1 cytokines like IL-2, IL-12 and IFN-γ have initiatory role in alopecia areata (AA) and positive correlation with disease severity. They informed that serum levels of Th17 cytokines, IL-17, IL-22, IL-23 increased in active AA patients and corelated, particularly IL-17, with disease severity. In recent reports it was showed the balance between Th17 and Treg cells is crucial for maintaining tolerance to self-antigens, and an imbalance towards Th17 may contribute to the development of autoimmune diseases like AA. But research on serum Treg markers in AA is limited. It was aimed to investigate whether the Treg cells have a role in the pathogenesis of AA analyzing the serum levels of Treg cytokines IL-35 and TGF-ß in the patients with AA. 42 AA patients and 38 healthy controls were enrolled. Patient demographics, clinical data, disease severity assessed by Severity of Alopecia Tool (SALT) scores were recorded. Serum samples were collected and analyzed for TGF-ß and IL-35 levels using ELISA kits. The cytokine levels in both groups were statistically compared. Their relation with parameters of demographic and severity of disease was evaluated. The patient and control groups had no statistically significant difference, there was 71.4% males and 28.6% females in patient group, while the control group had 63.2% males and 36.8% females, Severity analysis classified 18 patients with mild AA, 19 with moderate AA, and 5 with alopecia totalis/areata universalis. While TGF-ß levels exhibited no significant difference between groups, IL-35 levels were significantly elevated in AA patients (p = 0.002). Logistic regression identified IL-35 as a significant parameter influencing disease status (OR = 1.055). Correlation analysis revealed a weak positive correlation between patient age and IL-35 levels (r = 0.436; p = 0.004). Notably, IL-35 levels displayed a significant decrease in individuals with antinuclear antibody (ANA) positivity. No correlations were identified between cytokine levels and disease severity, prognosis, or disease activity. Elevated IL-35 levels suggest that IL-35 and specific Treg cell subsets can play a role in AA pathogenesis. The nuanced roles of TGF-ß and IL-35 highlight the need for comprehensive studies to interpret their implications in the complex immunopathogenesis of AA. These findings open avenues for further research, positioning IL-35 as a prospective target for investigating and potentially intervening in AA pathogenesis.


Alopecia Areata , Interleukins , Severity of Illness Index , T-Lymphocytes, Regulatory , Transforming Growth Factor beta , Humans , Alopecia Areata/blood , Alopecia Areata/immunology , Alopecia Areata/diagnosis , Female , Male , Interleukins/blood , Adult , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/blood , Young Adult , Middle Aged , Case-Control Studies , Adolescent , Th17 Cells/immunology , Biomarkers/blood
12.
Front Immunol ; 15: 1355824, 2024.
Article En | MEDLINE | ID: mdl-38799447

Objectives: IL26 levels are elevated in the blood and synovial fluid of patients with inflammatory arthritis. IL26 can be produced by Th17 cells and locally within joints by tissue-resident cells. IL26 induces osteoblast mineralization in vitro. As osteoproliferation and Th17 cells are important factors in the pathogenesis of axial spondyloarthritis (axSpA), we aimed to clarify the cellular sources of IL26 in spondyloarthritis. Methods: Serum, peripheral blood mononuclear cells (n = 15-35) and synovial tissue (n = 3-9) of adult patients with axSpA, psoriatic arthritis (PsA) and rheumatoid arthritis (RA) and healthy controls (HCs, n = 5) were evaluated by ELISA, flow cytometry including PrimeFlow assay, immunohistochemistry and immunofluorescence and quantitative PCR. Results: Synovial tissue of axSpA patients shows significantly more IL26-positive cells than that of HCs (p < 0.01), but numbers are also elevated in PsA and RA patients. Immunofluorescence shows co-localization of IL26 with CD68, but not with CD3, SMA, CD163, cadherin-11, or CD90. IL26 is elevated in the serum of RA and PsA (but not axSpA) patients compared with HCs (p < 0.001 and p < 0.01). However, peripheral blood CD4+ T cells from axSpA and PsA patients show higher positivity for IL26 in the PrimeFlow assay compared with HCs. CD4+ memory T cells from axSpA patients produce more IL26 under Th17-favoring conditions (IL-1ß and IL-23) than cells from PsA and RA patients or HCs. Conclusion: IL26 production is increased in the synovial tissue of SpA and can be localized to CD68+ macrophage-like synoviocytes, whereas circulating IL26+ Th17 cells are only modestly enriched. Considering the osteoproliferative properties of IL26, this offers new therapeutic options independent of Th17 pathways.


Antigens, CD , Arthritis, Psoriatic , Interleukins , Synoviocytes , Humans , Arthritis, Psoriatic/immunology , Arthritis, Psoriatic/metabolism , Synoviocytes/metabolism , Synoviocytes/immunology , Synoviocytes/pathology , Male , Adult , Female , Antigens, CD/metabolism , Interleukins/metabolism , Interleukins/blood , Middle Aged , Antigens, Differentiation, Myelomonocytic/metabolism , Axial Spondyloarthritis/immunology , Th17 Cells/immunology , Th17 Cells/metabolism , Synovial Membrane/immunology , Synovial Membrane/metabolism , Synovial Membrane/pathology , Joints/pathology , Joints/immunology , Joints/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/pathology
13.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791096

UICC stage IV small-cell lung cancer (SCLC) is a highly aggressive malignancy without curative treatment options. Several randomized trials have demonstrated improved survival rates through the addition of checkpoint inhibitors to first-line platin-based chemotherapy. Consequently, a combination of chemo- and immunotherapy has become standard palliative treatment. However, no reliable predictive biomarkers for treatment response exist. Neither PD-L1 expression nor tumor mutational burden have proven to be effective predictive biomarkers. In this study, we compared the cellular immune statuses of SCLC patients to a healthy control cohort and investigated changes in peripheral blood B, T, and NK lymphocytes, as well as several of their respective subsets, during treatment with immunochemotherapy (ICT) using flow cytometry. Our findings revealed a significant decrease in B cells, while T cells showed a trend to increase throughout ICT. Notably, high levels of exhausted CD4+ and CD8+ cells, alongside NK subsets, increased significantly during treatment. Furthermore, we correlated decreases/increases in subsets after two cycles of ICT with survival. Specifically, a decrease in Th17 cells indicated a better overall survival. Based on these findings, we suggest conducting further investigation into Th17 cells as a potential early predictive biomarkers for response in patients receiving palliative ICT for stage IV SCLC.


Biomarkers, Tumor , Lung Neoplasms , Small Cell Lung Carcinoma , Th17 Cells , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Male , Female , Middle Aged , Aged , Th17 Cells/immunology , Th17 Cells/metabolism , Neoplasm Staging , Immunotherapy/methods , Lymphocyte Subsets/metabolism , Lymphocyte Subsets/immunology , Lymphocyte Subsets/drug effects , Adult , Prognosis
14.
Biomolecules ; 14(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38785955

Psoriasis is a lifelong, systemic, immune mediated inflammatory skin condition, affecting 1-3% of the world's population, with an impact on quality of life similar to diseases like cancer or diabetes. Genetics are the single largest risk factor in psoriasis, with Genome-Wide Association (GWAS) studies showing that many psoriasis risk genes lie along the IL-23/Th17 axis. Potential psoriasis risk genes determined through GWAS can be annotated and characterised using functional genomics, allowing the identification of novel drug targets and the repurposing of existing drugs. This review is focused on the IL-23/Th17 axis, providing an insight into key cell types, cytokines, and intracellular signaling pathways involved. This includes examination of currently available biological treatments, time to relapse post drug withdrawal, and rates of primary/secondary drug failure, showing the need for greater understanding of the underlying genetic mechanisms of psoriasis and how they can impact treatment. This could allow for patient stratification towards the treatment most likely to reduce the burden of disease for the longest period possible.


Genome-Wide Association Study , Genomics , Psoriasis , Humans , Psoriasis/genetics , Psoriasis/drug therapy , Interleukin-23/genetics , Interleukin-23/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Signal Transduction/genetics , Genetic Predisposition to Disease
15.
Immunity ; 57(5): 1005-1018.e7, 2024 May 14.
Article En | MEDLINE | ID: mdl-38697116

Cytokine expression during T cell differentiation is a highly regulated process that involves long-range promoter-enhancer and CTCF-CTCF contacts at cytokine loci. Here, we investigated the impact of dynamic chromatin loop formation within the topologically associating domain (TAD) in regulating the expression of interferon gamma (IFN-γ) and interleukin-22 (IL-22); these cytokine loci are closely located in the genome and are associated with complex enhancer landscapes, which are selectively active in type 1 and type 3 lymphocytes. In situ Hi-C analyses revealed inducible TADs that insulated Ifng and Il22 enhancers during Th1 cell differentiation. Targeted deletion of a 17 bp boundary motif of these TADs imbalanced Th1- and Th17-associated immunity, both in vitro and in vivo, upon Toxoplasma gondii infection. In contrast, this boundary element was dispensable for cytokine regulation in natural killer cells. Our findings suggest that precise cytokine regulation relies on lineage- and developmental stage-specific interactions of 3D chromatin architectures and enhancer landscapes.


CCCTC-Binding Factor , Cell Differentiation , Interferon-gamma , Interleukin-22 , Interleukins , Th1 Cells , Animals , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Th1 Cells/immunology , Mice , Cell Differentiation/immunology , Interferon-gamma/metabolism , Binding Sites , Interleukins/metabolism , Interleukins/genetics , Enhancer Elements, Genetic/genetics , Mice, Inbred C57BL , Chromatin/metabolism , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Toxoplasmosis/genetics , Gene Expression Regulation , Toxoplasma/immunology , Cytokines/metabolism , Cell Lineage , Th17 Cells/immunology
16.
Sci Rep ; 14(1): 11243, 2024 05 16.
Article En | MEDLINE | ID: mdl-38755179

Immune thrombocytopenia (ITP) is an autoimmune disease caused by T-cell dysfunction. Recently, several studies have shown that a disturbed Th17/Treg balance contributes to the development of ITP. MicroRNAs (miRNAs) are small noncoding RNA moleculesthat posttranscriptionally regulate gene expression. Emerging evidences have demonstrated that miRNAs play an important role in regulating the Th17/Treg balance. In the present study, we found that miR-641 was upregulated in ITP patients. In primary T cells, overexpression of miR-641 could cause downregulation of its target genes STIM1 and SATB1, thus inducing a Th17 (upregulated)/Treg (downregulated) imbalance. Inhibition of miR-641 by a miR-641 sponge in primary T cells of ITP patients or by antagomiR-641 in an ITP murine model could cause upregulation of STIM1 and SATB1, thus restoring Th17/Treg homeostasis. These results suggested that the miR-641-STIM/SATB1 axis plays an important role in regulating the Th17/Treg balance in ITP.


Matrix Attachment Region Binding Proteins , MicroRNAs , Purpura, Thrombocytopenic, Idiopathic , Stromal Interaction Molecule 1 , T-Lymphocytes, Regulatory , Th17 Cells , MicroRNAs/genetics , MicroRNAs/metabolism , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Humans , Animals , Mice , Purpura, Thrombocytopenic, Idiopathic/immunology , Purpura, Thrombocytopenic, Idiopathic/genetics , Purpura, Thrombocytopenic, Idiopathic/metabolism , Female , Male , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Adult , Middle Aged , Gene Expression Regulation , Disease Models, Animal
17.
Food Funct ; 15(10): 5641-5654, 2024 May 20.
Article En | MEDLINE | ID: mdl-38726659

Exposure to food allergens elicits fast changes in the intestinal microenvironment, which guides the development of allergic reactions. Investigating the key information about these changes may help in better understanding food allergies. In this research, we explored the relationship between a food allergy and extracellular adenosine triphosphate (ATP), a danger molecule that has been proved to regulate the onset of allergic asthma and dermatitis but has not been studied in food allergies, by developing a unique animal model through allergen-containing diet feeding. After consuming an allergen-containing diet for 7 days, the allergic mice exhibited severe enteritis with elevated luminal ATP levels. The dysregulated luminal ATP worsened food-induced enteritis by enhancing Th17 cell responses and increasing mucosal neutrophil accumulation. In vitro experiments demonstrated that ATP intervention facilitated Th17 cell differentiation and neutrophil activation. In addition, the diet-induced allergy showed noticeable gut dysbiosis, characterized by decreased microbial diversity and increased diet-specific microbiota signatures. As the first, we show that food-induced enteritis is associated with an elevated concentration of luminal ATP. The dysregulated extracellular ATP exacerbated the enteritis of mice to a food challenge by manipulating intestinal Th17 cells and neutrophils.


Adenosine Triphosphate , Food Hypersensitivity , Neutrophil Activation , Neutrophils , Th17 Cells , Animals , Adenosine Triphosphate/metabolism , Mice , Food Hypersensitivity/immunology , Th17 Cells/immunology , Neutrophils/immunology , Neutrophils/metabolism , Disease Models, Animal , Female , Gastrointestinal Microbiome , Mice, Inbred C57BL , Allergens/immunology , Enteritis/immunology , Mice, Inbred BALB C , Humans
18.
Front Immunol ; 15: 1327051, 2024.
Article En | MEDLINE | ID: mdl-38807599

Introduction: The CC chemokine ligand 18 (CCL18) is a chemokine highly expressed in chronic inflammation in humans. Recent observations of elevated CCL18 plasma levels in patients with acute cardiovascular syndromes prompted an investigation into the role of CCL18 in the pathogenesis of human and mouse atherosclerosis. Methods and results: CCL18 was profoundly upregulated in ruptured human atherosclerotic plaque, particularly within macrophages. Repeated administration of CCL18 in Western-type diet-fed ApoE -/- mice or PCSK9mut-overexpressing wild type (WT) mice led to increased plaque burden, enriched in CD3+ T cells. In subsequent experimental and molecular modeling studies, we identified CCR6 as a functional receptor mediating CCL18 chemotaxis, intracellular Ca2+ flux, and downstream signaling in human Jurkat and mouse T cells. CCL18 failed to induce these effects in vitro in murine spleen T cells with CCR6 deficiency. The ability of CCR6 to act as CCL18 receptor was confirmed in vivo in an inflammation model, where subcutaneous CCL18 injection induced profound focal skin inflammation in WT but not in CCR6-/- mice. This inflammation featured edema and marked infiltration of various leukocyte subsets, including T cells with a Th17 signature, supporting CCR6's role as a Th17 chemotactic receptor. Notably, focal overexpression of CCL18 in plaques was associated with an increased presence of CCR6+ (T) cells. Discussion: Our studies are the first to identify the CCL18/CCR6 axis as a regulator of immune responses in advanced murine and human atherosclerosis.


Atherosclerosis , Chemokines, CC , Receptors, CCR6 , Animals , Humans , Atherosclerosis/immunology , Atherosclerosis/metabolism , Mice , Receptors, CCR6/metabolism , Receptors, CCR6/genetics , Chemokines, CC/metabolism , Chemokines, CC/genetics , Disease Models, Animal , Mice, Inbred C57BL , Jurkat Cells , Plaque, Atherosclerotic/immunology , Mice, Knockout , Male , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Female , Mice, Knockout, ApoE
19.
JCI Insight ; 9(9)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38716729

Atopic dermatitis (AD) is an inflammatory skin condition with a childhood prevalence of up to 25%. Microbial dysbiosis is characteristic of AD, with Staphylococcus aureus the most frequent pathogen associated with disease flares and increasingly implicated in disease pathogenesis. Therapeutics to mitigate the effects of S. aureus have had limited efficacy and S. aureus-associated temporal disease flares are synonymous with AD. An alternative approach is an anti-S. aureus vaccine, tailored to AD. Experimental vaccines have highlighted the importance of T cells in conferring protective anti-S. aureus responses; however, correlates of T cell immunity against S. aureus in AD have not been identified. We identify a systemic and cutaneous immunological signature associated with S. aureus skin infection (ADS.aureus) in a pediatric AD cohort, using a combined Bayesian multinomial analysis. ADS.aureus was most highly associated with elevated cutaneous chemokines IP10 and TARC, which preferentially direct Th1 and Th2 cells to skin. Systemic CD4+ and CD8+ T cells, except for Th2 cells, were suppressed in ADS.aureus, particularly circulating Th1, memory IL-10+ T cells, and skin-homing memory Th17 cells. Systemic γδ T cell expansion in ADS.aureus was also observed. This study suggests that augmentation of protective T cell subsets is a potential therapeutic strategy in the management of S. aureus in AD.


Dermatitis, Atopic , Staphylococcal Skin Infections , Staphylococcus aureus , Dermatitis, Atopic/immunology , Dermatitis, Atopic/microbiology , Humans , Staphylococcus aureus/immunology , Child , Female , Staphylococcal Skin Infections/immunology , Staphylococcal Skin Infections/microbiology , Male , Child, Preschool , Skin/microbiology , Skin/immunology , Skin/pathology , Chemokine CXCL10/immunology , Chemokine CXCL10/metabolism , Th1 Cells/immunology , Th2 Cells/immunology , Th17 Cells/immunology , Bayes Theorem , CD8-Positive T-Lymphocytes/immunology , Interleukin-10/metabolism , Interleukin-10/immunology , Intraepithelial Lymphocytes/immunology , Antigens, Differentiation, T-Lymphocyte , Membrane Glycoproteins
20.
Int Immunopharmacol ; 134: 112183, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38705031

Psoriasis is a chronic inflammatory skin disease substantially affecting the quality of life, with no complete cure owing to its complex pathogenesis. Cornuside, a major bioactive compound present in Cornus officinalis Sieb. et Zucc., which is a well-known traditional Chinese medicine with a variety of biological and pharmacological activities, such as anti-apoptotic, antioxidant, and anti-inflammatory properties. However, its effects on psoriasis remain unclear. Our preliminary analysis of network pharmacology showed that cornuside may be involved in psoriasis by regulating the inflammatory response and IL-17 signaling pathway. Thus, we investigated the protective role and mechanism of cornuside in the pathogenesis of psoriasis in an imiquimod (IMQ)-induced psoriasis mouse model. In-vivo experiments demonstrated that cornuside-treated mice had reduced skin erythema, scales, thickness, and inflammatory infiltration. The Psoriasis Area Severity Index score was significantly lower than that of the IMQ group. Flow cytometry analysis indicated that cornuside effectively inhibited Th1- and Th17-cell infiltration and promoted aggregation of Th2 cells in skin tissues. Cornuside also inhibited the infiltration of macrophages to the skin. Furthermore, in-vitro experiments indicated that cornuside also decreased the polarization of M1 macrophages and reduced the levels of associated cytokines. Western blotting demonstrated that cornuside suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular receptor kinase (ERK) in bone marrow-derived macrophages. Our findings indicate that cornuside has a protective effect against IMQ-induced psoriasis by inhibiting M1 macrophage polarization through the ERK and JNK signaling pathways and modulating the infiltration of immune cells as well as the expression of inflammatory factors.


Anti-Inflammatory Agents , Imiquimod , Mice, Inbred BALB C , Psoriasis , Skin , Th17 Cells , Animals , Psoriasis/drug therapy , Psoriasis/chemically induced , Psoriasis/immunology , Skin/drug effects , Skin/pathology , Skin/immunology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Mice , Th17 Cells/immunology , Th17 Cells/drug effects , Disease Models, Animal , Macrophages/drug effects , Macrophages/immunology , Cornus/chemistry , Humans , Interleukin-17/metabolism , Cytokines/metabolism , Female , Signal Transduction/drug effects , Th1 Cells/immunology , Th1 Cells/drug effects , Male
...