Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.728
Filter
1.
Nat Commun ; 15(1): 5788, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987558

ABSTRACT

The development of neural circuits has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, periodic EEG power features and aperiodic components were examined from longitudinal EEGs collected from 592 healthy 2-44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Developmental changes in periodic peaks include (1) the presence and then absence of a 9-10 Hz alpha peak between 2-6 months, (2) nonlinear changes in high beta peaks (20-30 Hz) between 4-18 months, and (3) the emergence of a low beta peak (12-20 Hz) in some infants after six months of age. We hypothesized that the emergence of the low beta peak may reflect maturation of thalamocortical network development. Infant anesthesia studies observe that GABA-modulating anesthetics do not induce thalamocortical mediated frontal alpha coherence until 10-12 months of age. Using a small cohort of infants (n = 23) with EEG before and during GABA-modulating anesthesia, we provide preliminary evidence that infants with a low beta peak have higher anesthesia-induced alpha coherence compared to those without a low beta peak.


Subject(s)
Brain , Electroencephalography , Humans , Infant , Male , Female , Child, Preschool , Brain/growth & development , Brain/drug effects , Brain/physiology , Child Development/physiology , Child Development/drug effects , Beta Rhythm/drug effects , Beta Rhythm/physiology , Thalamus/drug effects , Thalamus/physiology , Thalamus/growth & development , Anesthesia , Longitudinal Studies , Alpha Rhythm/drug effects , Alpha Rhythm/physiology
2.
ACS Chem Neurosci ; 15(14): 2654-2661, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38916752

ABSTRACT

The extent of changes in functional connectivity (FC) within functional networks as a common feature across hallucinogenic drug classes is under-explored. This work utilized fMRI to assess the dissociative hallucinogens Psilocybin, a classical serotonergic psychedelic, and Salvinorin-A, a kappa-opioid receptor (KOR) agonist, on resting-state FC in nonhuman primates. We highlight overlapping and differing influence of these substances on FC relative to the thalamus, claustrum, prefrontal cortex (PFC), default mode network (DMN), and DMN subcomponents. Analysis was conducted on a within-subject basis. Findings support the cortico-claustro-cortical network model for probing functional effects of hallucinogens regardless of serotonergic potential, with a potential key paradigm centered around the claustrum, PFC, anterior cingulate cortices (ACC), and angular gyrus relationship. Thalamo-cortical networks are implicated but appear dependent on 5-HT2AR activation. Acute desynchronization relative to the DMN for both drugs was also shown. Our findings provide a framework to understand broader mechanisms at which hallucinogens in differing classes may impact subjects regardless of the target receptor.


Subject(s)
Diterpenes, Clerodane , Hallucinogens , Magnetic Resonance Imaging , Psilocybin , Hallucinogens/pharmacology , Diterpenes, Clerodane/pharmacology , Animals , Psilocybin/pharmacology , Male , Magnetic Resonance Imaging/methods , Prefrontal Cortex/drug effects , Brain/drug effects , Brain/metabolism , Macaca mulatta , Default Mode Network/drug effects , Thalamus/drug effects , Thalamus/diagnostic imaging , Thalamus/metabolism , Neural Pathways/drug effects , Nerve Net/drug effects , Nerve Net/diagnostic imaging
3.
Addict Biol ; 29(5): e13402, 2024 05.
Article in English | MEDLINE | ID: mdl-38797559

ABSTRACT

Increases in harmful drinking among older adults indicate the need for a more thorough understanding of the relationship between later-life alcohol use and brain health. The current study investigated the relationships between alcohol use and progressive grey and white matter changes in older adults using longitudinal data. A total of 530 participants (aged 70 to 90 years; 46.0% male) were included. Brain outcomes assessed over 6 years included total grey and white matter volume, as well as volume of the hippocampus, thalamus, amygdala, corpus callosum, orbitofrontal cortex and insula. White matter integrity was also investigated. Average alcohol use across the study period was the main exposure of interest. Past-year binge drinking and reduction in drinking from pre-baseline were additional exposures of interest. Within the context of low-level average drinking (averaging 11.7 g per day), higher average amount of alcohol consumed was associated with less atrophy in the left (B = 7.50, pFDR = 0.010) and right (B = 5.98, pFDR = 0.004) thalamus. Past-year binge-drinking was associated with poorer white matter integrity (B = -0.013, pFDR = 0.024). Consuming alcohol more heavily in the past was associated with greater atrophy in anterior (B = -12.73, pFDR = 0.048) and posterior (B = -17.88, pFDR = 0.004) callosal volumes over time. Across alcohol exposures and neuroimaging markers, no other relationships were statistically significant. Within the context of low-level drinking, very few relationships between alcohol use and brain macrostructure were identified. Meanwhile, heavier drinking was negatively associated with white matter integrity.


Subject(s)
Alcohol Drinking , Atrophy , Brain , Gray Matter , Magnetic Resonance Imaging , White Matter , Humans , Male , Aged , Female , Longitudinal Studies , Brain/diagnostic imaging , Brain/pathology , Brain/drug effects , White Matter/diagnostic imaging , White Matter/pathology , White Matter/drug effects , Aged, 80 and over , Gray Matter/pathology , Gray Matter/diagnostic imaging , Gray Matter/drug effects , Atrophy/pathology , Aging/pathology , Aging/physiology , Binge Drinking/pathology , Binge Drinking/diagnostic imaging , Thalamus/diagnostic imaging , Thalamus/pathology , Thalamus/drug effects , Hippocampus/diagnostic imaging , Hippocampus/pathology , Hippocampus/drug effects , Amygdala/diagnostic imaging , Amygdala/pathology , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Corpus Callosum/drug effects
4.
Eur J Pharmacol ; 972: 176561, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38580182

ABSTRACT

Neuronal depression in the thalamus underlies anesthetic-induced loss of consciousness, while the precise sub-thalamus nuclei and molecular targets involved remain to be elucidated. The present study investigated the role of extrasynaptic GABAA receptors in the central medial thalamic nucleus (CM) in anesthesia induced by gaboxadol (THIP) and diazepam (DZP) in rats. Local lesion of the CM led to a decrease in the duration of loss of righting reflex induced by THIP and DZP. CM microinjection of THIP but not DZP induced anesthesia. The absence of righting reflex in THIP-treated rats was consistent with the increase of low frequency oscillations in the delta band in the medial prefrontal cortex. CM microinjection of GABAA receptor antagonist SR95531 significantly attenuated the anesthesia induced by systemically-administered THIP, but not DZP. Moreover, the rats with declined expression of GABAA receptor δ-subunit in the CM were less responsive to THIP or DZP. These findings explained a novel mechanism of THIP-induced loss of consciousness and highlighted the role of CM extrasynaptic GABAA receptors in mediating anesthesia.


Subject(s)
Anesthesia , Isoxazoles , Receptors, GABA-A , Animals , Receptors, GABA-A/metabolism , Male , Rats , Isoxazoles/pharmacology , Diazepam/pharmacology , Rats, Sprague-Dawley , Mediodorsal Thalamic Nucleus/drug effects , Mediodorsal Thalamic Nucleus/metabolism , Mediodorsal Thalamic Nucleus/physiology , Reflex, Righting/drug effects , Synapses/drug effects , Synapses/metabolism , Thalamus/drug effects , Thalamus/metabolism
5.
Epilepsy Res ; 202: 107359, 2024 May.
Article in English | MEDLINE | ID: mdl-38582072

ABSTRACT

PURPOSE: In developmental and epileptic encephalopathy with spike-and-wave activation in sleep (DEE-SWAS), the thalamocortical network is suggested to play an important role in the pathophysiology of the progression from focal epilepsy to DEE-SWAS. Ethosuximide (ESM) exerts effects by blocking T-type calcium channels in thalamic neurons. With the thalamocortical network in mind, we studied the prediction of ESM effectiveness in DEE-SWAS treatment using phase-amplitude coupling (PAC) analysis. METHODS: We retrospectively enrolled children with DEE-SWAS who had an electroencephalogram (EEG) recorded between January 2009 and September 2022 and were prescribed ESM at Okayama University Hospital. Only patients whose EEG showed continuous spike-and-wave during sleep were included. We extracted 5-min non-rapid eye movement sleep stage N2 segments from EEG recorded before starting ESM. We calculated the modulation index (MI) as the measure of PAC in pair combination comprising one of two fast oscillation types (gamma, 40-80 Hz; ripples, 80-150 Hz) and one of five slow-wave bands (delta, 0.5-1, 1-2, 2-3, and 3-4 Hz; theta, 4-8 Hz), and compared it between ESM responders and non-responders. RESULTS: We identified 20 children with a diagnosis of DEE-SWAS who took ESM. Fifteen were ESM responders. Regarding gamma oscillations, significant differences were seen only in MI with 0.5-1 Hz slow waves in the frontal pole and occipital regions. Regarding ripples, ESM responders had significantly higher MI in coupling with all slow waves in the frontal pole region, 0.5-1, 3-4, and 4-8 Hz slow waves in the frontal region, 3-4 Hz slow waves in the parietal region, 0.5-1, 2-3, 3-4, and 4-8 Hz slow waves in the occipital region, and 3-4 Hz slow waves in the anterior-temporal region. SIGNIFICANCE: High MI in a wider area of the brain may represent the epileptic network mediated by the thalamus in DEE-SWAS and may be a predictor of ESM effectiveness.


Subject(s)
Anticonvulsants , Electroencephalography , Ethosuximide , Sleep , Humans , Ethosuximide/therapeutic use , Ethosuximide/pharmacology , Male , Female , Electroencephalography/methods , Retrospective Studies , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Child, Preschool , Child , Sleep/drug effects , Sleep/physiology , Infant , Brain Waves/drug effects , Brain Waves/physiology , Thalamus/drug effects , Thalamus/physiopathology , Spasms, Infantile/drug therapy , Spasms, Infantile/physiopathology
6.
Schizophr Res ; 267: 451-461, 2024 May.
Article in English | MEDLINE | ID: mdl-38643726

ABSTRACT

The methylazoxymethanol acetate (MAM) rodent model is used to study aspects of schizophrenia. However, numerous studies that have employed this model have used only males, resulting in a dearth of knowledge on sex differences in brain function and behaviour. The purpose of this study was to determine whether differences exist between male and female MAM rats in neuronal oscillatory function within and between the prefrontal cortex (PFC), ventral hippocampus (vHIP) and thalamus, behaviour, and in proteins linked to schizophrenia neuropathology. We showed that female MAM animals exhibited region-specific alterations in theta power, elevated low and high gamma power in all regions, and elevated PFC-thalamus high gamma coherence. Male MAM rats had elevated beta and low gamma power in PFC, and elevated vHIP-thalamus coherence. MAM females displayed impaired reversal learning whereas MAM males showed impairments in spatial memory. Glycogen synthase kinase-3 (GSK-3) was altered in the thalamus, with female MAM rats displaying elevated GSK-3α phosphorylation. Male MAM rats showed higher expression and phosphorylation GSK-3α, and higher expression of GSK-ß. Sex-specific changes in phosphorylated Tau levels were observed in a region-specific manner. These findings demonstrate there are notable sex differences in behaviour, oscillatory network function, and GSK-3 signaling in MAM rats, thus highlighting the importance of inclusion of both sexes when using this model to study schizophrenia.


Subject(s)
Disease Models, Animal , Methylazoxymethanol Acetate , Schizophrenia , Sex Characteristics , Animals , Methylazoxymethanol Acetate/pharmacology , Schizophrenia/physiopathology , Schizophrenia/chemically induced , Schizophrenia/metabolism , Female , Male , Rats , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiopathology , Prefrontal Cortex/metabolism , Glycogen Synthase Kinase 3/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiopathology , Thalamus/drug effects , Thalamus/physiopathology , Thalamus/metabolism , Phosphorylation/drug effects , tau Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Neurons/pathology , Rats, Sprague-Dawley
7.
Mult Scler ; 30(6): 687-695, 2024 May.
Article in English | MEDLINE | ID: mdl-38469809

ABSTRACT

BACKGROUND: Loss of brain gray matter fractional volume predicts multiple sclerosis (MS) progression and is associated with worsening physical and cognitive symptoms. Within deep gray matter, thalamic damage is evident in early stages of MS and correlates with physical and cognitive impairment. Natalizumab is a highly effective treatment that reduces disease progression and the number of inflammatory lesions in patients with relapsing-remitting MS (RRMS). OBJECTIVE: To evaluate the effect of natalizumab on gray matter and thalamic atrophy. METHODS: A combination of deep learning-based image segmentation and data augmentation was applied to MRI data from the AFFIRM trial. RESULTS: This post hoc analysis identified a reduction of 64.3% (p = 0.0044) and 64.3% (p = 0.0030) in mean percentage gray matter volume loss from baseline at treatment years 1 and 2, respectively, in patients treated with natalizumab versus placebo. The reduction in thalamic fraction volume loss from baseline with natalizumab versus placebo was 57.0% at year 2 (p < 0.0001) and 41.2% at year 1 (p = 0.0147). Similar findings resulted from analyses of absolute gray matter and thalamic fraction volume loss. CONCLUSION: These analyses represent the first placebo-controlled evidence supporting a role for natalizumab treatment in mitigating gray matter and thalamic fraction atrophy among patients with RRMS. CLINICALTRIALS.GOV IDENTIFIER: NCT00027300URL: https://clinicaltrials.gov/ct2/show/NCT00027300.


Subject(s)
Atrophy , Gray Matter , Immunologic Factors , Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting , Natalizumab , Thalamus , Humans , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Natalizumab/pharmacology , Natalizumab/therapeutic use , Gray Matter/pathology , Gray Matter/diagnostic imaging , Gray Matter/drug effects , Adult , Thalamus/pathology , Thalamus/diagnostic imaging , Thalamus/drug effects , Male , Female , Immunologic Factors/pharmacology , Atrophy/pathology , Middle Aged , Deep Learning
8.
Br J Anaesth ; 132(2): 334-342, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044237

ABSTRACT

BACKGROUND: Delayed emergence from general anaesthesia poses a significant perioperative safety hazard. Subanaesthetic doses of ketamine not only deepen anaesthesia but also accelerate recovery from isoflurane anaesthesia; however, the mechanisms underlying this phenomenon remain elusive. Esketamine exhibits a more potent receptor affinity and fewer adverse effects than ketamine and exhibits shorter recovery times after brief periods of anaesthesia. As the paraventricular thalamus (PVT) plays a pivotal role in regulating wakefulness, we studied its role in the emergence process during combined esketamine and isoflurane anaesthesia. METHODS: The righting reflex and cortical electroencephalography were used as measures of consciousness in mice during isoflurane anaesthesia with coadministration of esketamine. The expression of c-Fos was used to determine neuronal activity changes in PVT neurones after esketamine administration. The effect of esketamine combined with isoflurane anaesthesia on PVT glutamatergic (PVTGlu) neuronal activity was monitored by fibre photometry, and chemogenetic technology was used to manipulate PVTGlu neuronal activity. RESULTS: A low dose of esketamine (5 mg kg-1) accelerated emergence from isoflurane general anaesthesia (474 [30] s vs 544 [39] s, P=0.001). Esketamine (5 mg kg-1) increased PVT c-Fos expression (508 [198] vs 258 [87], P=0.009) and enhanced the population activity of PVTGlu neurones (0.03 [1.7]% vs 6.9 [3.4]%, P=0.002) during isoflurane anaesthesia (1.9 [5.7]% vs -5.1 [5.3]%, P=0.016) and emergence (6.1 [6.2]% vs -1.1 [5.0]%, P=0.022). Chemogenetic suppression of PVTGlu neurones abolished the arousal-promoting effects of esketamine (459 [33] s vs 596 [33] s, P<0.001). CONCLUSIONS: Our results suggest that esketamine promotes recovery from isoflurane anaesthesia by activating PVTGlu neurones. This mechanism could explain the rapid arousability exhibited upon treatment with a low dose of esketamine.


Subject(s)
Anesthetics, Inhalation , Isoflurane , Ketamine , Thalamus , Animals , Mice , Anesthesia, General , Anesthetics, Inhalation/pharmacology , Isoflurane/pharmacology , Ketamine/pharmacology , Thalamus/drug effects
9.
Sci Rep ; 11(1): 15060, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34301974

ABSTRACT

Evidence suggests that selective serotonin reuptake inhibitors (SSRIs) reorganize neural networks via a transient window of neuroplasticity. While previous findings support an effect of SSRIs on intrinsic functional connectivity, little is known regarding the influence of SSRI-administration on connectivity during sequence motor learning. To investigate this, we administered 20 mg escitalopram or placebo for 1-week to 60 healthy female participants undergoing concurrent functional magnetic resonance imaging and sequence motor training in a double-blind randomized controlled design. We assessed task-modulated functional connectivity with a psycho-physiological interaction (PPI) analysis in the thalamus, putamen, cerebellum, dorsal premotor, primary motor, supplementary motor, and dorsolateral prefrontal cortices. Comparing an implicit sequence learning condition to a control learning condition, we observed decreased connectivity between the thalamus and bilateral motor regions after 7 days of escitalopram intake. Additionally, we observed a negative correlation between plasma escitalopram levels and PPI connectivity changes, with higher escitalopram levels being associated with greater thalamo-cortico decreases. Our results suggest that escitalopram enhances network-level processing efficiency during sequence motor learning, despite no changes in behaviour. Future studies in more diverse samples, however, with quantitative imaging of neurochemical markers of excitation and inhibition, are necessary to further assess neural responses to escitalopram.


Subject(s)
Citalopram/administration & dosage , Learning/drug effects , Neuronal Plasticity/drug effects , Selective Serotonin Reuptake Inhibitors/administration & dosage , Adult , Cerebellum/diagnostic imaging , Cerebellum/drug effects , Female , Humans , Magnetic Resonance Imaging , Male , Motor Neurons/drug effects , Nerve Net/diagnostic imaging , Nerve Net/drug effects , Putamen/diagnostic imaging , Putamen/drug effects , Thalamus/diagnostic imaging , Thalamus/drug effects , Young Adult
10.
Neuropharmacology ; 196: 108676, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34216585

ABSTRACT

The mouse model of beta-amyloid (Aß) deposition, APP/PS1-21, exhibits high brain uptake of the tau-tracer (S)-[18F]THK5117, although no neurofibrillary tangles are present in this mouse model. For this reason we investigated (S)-[18F]THK5117 off-target binding to Aß plaques and MAO-B enzyme in APP/PS1-21 transgenic (TG) mouse model of Aß deposition. APP/PS1-21 TG and wild-type (WT) control mice in four different age groups (2-26 months) were imaged antemortem by positron emission tomography with (S)-[18F]THK5117, and then brain autoradiography. Additional animals were used for immunohistochemical staining and MAO-B enzyme blocking study with deprenyl pre-treatment. Regional standardized uptake value ratios for the cerebellum revealed a significant temporal increase in (S)-[18F]THK5117 uptake in aged TG, but not WT, brain. Immunohistochemical staining revealed a similar increase in Aß plaques but not endogenous hyper-phosphorylated tau or MAO-B enzyme, and ex vivo autography showed that uptake of (S)-[18F]THK5117 co-localized with the amyloid pathology. Deprenyl hydrochloride pre-treatment reduced the binding of (S)-[18F]THK5117 in the neocortex, hippocampus, and thalamus. This study's findings suggest that increased (S)-[18F]THK5117 binding in aging APP/PS1-21 TG mice is mainly due to increasing Aß deposition, and to a lesser extent binding to MAO-B enzyme, but not hyper-phosphorylated tau.


Subject(s)
Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Monoamine Oxidase/metabolism , Plaque, Amyloid/diagnostic imaging , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Aniline Compounds , Animals , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Hippocampus/diagnostic imaging , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Mice, Transgenic , Monoamine Oxidase Inhibitors/pharmacology , Neocortex/diagnostic imaging , Neocortex/drug effects , Neocortex/metabolism , Plaque, Amyloid/metabolism , Positron-Emission Tomography , Presenilin-1/genetics , Quinolines , Radiopharmaceuticals , Selegiline/pharmacology , Thalamus/diagnostic imaging , Thalamus/drug effects , Thalamus/metabolism
11.
J Psychiatry Neurosci ; 46(4): E459-E471, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34318655

ABSTRACT

Background: Orexin-A (OrxA) administration in the posterior paraventricular nucleus of the thalamus (pPVT) reinstates extinguished cocaine-seeking behaviour following extended access to the drug (a model of dependence). The pPVT receives and integrates information associated with emotionally salient events and sends excitatory inputs to brain regions involved in the expression of emotional states, such as those driving cocaine-seeking behaviour (i.e., the nucleus accumbens, the central nucleus of the amygdala [CeA], the basolateral amygdala, the bed nucleus of the stria terminalis [BNST] and the prefrontal cortex). Methods: We monitored the activation pattern of these regions (measured by Fos) during cocaine-seeking induced by OrxA administered to the pPVT. The BNST and CeA emerged as being selectively activated. To test whether the functionality of these regions was pivotal during OrxA-induced cocaine-seeking behaviour, we transiently inactivated these regions concomitantly with OrxA administration to the pPVT. We then tested the participation of corticotropin-releasing factor receptors (CRF1) in the CeA during OrxA-induced cocaine-seeking using the CRF1 antagonist CP154526. Results: We observed selective activation of the CeA and BNST during cocaine-seeking induced by OrxA administered to the pPVT, but only transient inactivation of the CeA prevented cocaine-seeking behaviour. Administration of CP154526 to the CeA prevented OrxAinduced cocaine-seeking behaviour. Limitations: The use of only male rats could have been a limitation. Other limitations could have been the use of an indirect approach to test the hypothesis that administration of OrxA to the pPVT drives cocaine-seeking via CRF1 signalling in the CeA, and a lack of analysis of the participation of CeA subregions. Conclusion: Cocaine-seeking behaviour induced by OrxA administered to the pPVT is driven by activation of the CeA via CRF1 signalling.


Subject(s)
Central Amygdaloid Nucleus/drug effects , Cocaine-Related Disorders/prevention & control , Cocaine , Orexins/pharmacology , Paraventricular Hypothalamic Nucleus/drug effects , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Thalamus/drug effects , Animals , Cocaine/pharmacology , Male , Orexins/administration & dosage , Rats
12.
Front Neural Circuits ; 15: 659280, 2021.
Article in English | MEDLINE | ID: mdl-34322001

ABSTRACT

Corticofugal projections outnumber subcortical input projections by far. However, the specific role for signal processing of corticofugal feedback is still less well understood in comparisonto the feedforward projection. Here, we lesioned corticothalamic (CT) neurons in layers V and/or VI of the auditory cortex of Mongolian gerbils by laser-induced photolysis to investigate their contribution to cortical activation patterns. We have used laminar current-source density (CSD) recordings of tone-evoked responses and could show that, particularly, lesion of CT neurons in layer VI affected cortical frequency processing. Specifically, we found a decreased gain of best-frequency input in thalamocortical (TC)-recipient input layers that correlated with the relative lesion of layer VI neurons, but not layer V neurons. Using cortical silencing with the GABA a -agonist muscimol and layer-specific intracortical microstimulation (ICMS), we found that direct activation of infragranular layers recruited a local recurrent cortico-thalamo-cortical loop of synaptic input. This recurrent feedback was also only interrupted when lesioning layer VI neurons, but not cells in layer V. Our study thereby shows distinct roles of these two types of CT neurons suggesting a particular impact of CT feedback from layer VI to affect the local feedforward frequency processing in auditory cortex.


Subject(s)
Apoptosis/physiology , Auditory Cortex/physiology , Feedback, Physiological/physiology , Lasers/adverse effects , Neurons/physiology , Thalamus/physiology , Acoustic Stimulation/methods , Animals , Apoptosis/drug effects , Auditory Cortex/drug effects , Auditory Cortex/pathology , Feedback, Physiological/drug effects , GABA-A Receptor Agonists/pharmacology , Gerbillinae , Male , Neural Pathways/drug effects , Neural Pathways/pathology , Neural Pathways/physiology , Neurons/drug effects , Neurons/pathology , Thalamus/drug effects , Thalamus/pathology
13.
Sci Rep ; 11(1): 12613, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131204

ABSTRACT

Secondary injury following cortical stroke includes delayed gliosis and eventual neuronal loss in the thalamus. However, the effects of aging and the potential to ameliorate this gliosis with NMDA receptor (NMDAR) antagonism are not established. We used the permanent distal middle cerebral artery stroke model (pdMCAO) to examine secondary thalamic injury in young and aged mice. At 3 days post-stroke (PSD3), slight microgliosis (IBA-1) and astrogliosis (GFAP) was evident in thalamus, but no infarct. Gliosis increased dramatically through PSD14, at which point degenerating neurons were detected. Flow cytometry demonstrated a significant increase in CD11b+/CD45int microglia (MG) in the ipsilateral thalamus at PSD14. CCR2-RFP reporter mouse further demonstrated that influx of peripheral monocytes contributed to the MG/Mϕ population. Aged mice demonstrated reduced microgliosis and astrogliosis compared with young mice. Interestingly, astrogliosis demonstrated glial scar-like characteristics at two years post-stroke, but not by 6 weeks. Lastly, treatment with memantine (NMDAR antagonist) at 4 and 24 h after stroke significantly reduced gliosis at PSD14. These findings expand our understanding of gliosis in the thalamus following cortical stroke and demonstrate age-dependency of this secondary injury. Additionally, these findings indicate that delayed treatment with memantine (an FDA approved drug) provides significant reduction in thalamic gliosis.


Subject(s)
Gliosis/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Memantine/pharmacology , Stroke/drug therapy , Aging/drug effects , Aging/pathology , Animals , Brain Ischemia/complications , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Disease Models, Animal , Gliosis/etiology , Gliosis/pathology , Humans , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/pathology , Mice , Neuroprotective Agents/pharmacology , Stroke/complications , Thalamus/drug effects , Thalamus/pathology
14.
Elife ; 102021 04 27.
Article in English | MEDLINE | ID: mdl-33904411

ABSTRACT

The specific circuit mechanisms through which anesthetics induce unconsciousness have not been completely characterized. We recorded neural activity from the frontal, parietal, and temporal cortices and thalamus while maintaining unconsciousness in non-human primates (NHPs) with the anesthetic propofol. Unconsciousness was marked by slow frequency (~1 Hz) oscillations in local field potentials, entrainment of local spiking to Up states alternating with Down states of little or no spiking activity, and decreased coherence in frequencies above 4 Hz. Thalamic stimulation 'awakened' anesthetized NHPs and reversed the electrophysiologic features of unconsciousness. Unconsciousness is linked to cortical and thalamic slow frequency synchrony coupled with decreased spiking, and loss of higher-frequency dynamics. This may disrupt cortical communication/integration.


Subject(s)
Anesthetics, Intravenous/pharmacology , Cerebral Cortex/drug effects , Hypnotics and Sedatives/pharmacology , Macaca mulatta/physiology , Propofol/pharmacology , Thalamus/drug effects , Unconsciousness/chemically induced , Animals , Cerebral Cortex/physiology , Female , Male , Recovery of Function/drug effects , Recovery of Function/physiology , Thalamus/physiology
15.
J Psychiatry Neurosci ; 46(3): E319-E327, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33904667

ABSTRACT

Background: Selective serotonin reuptake inhibitors (SSRIs) show acute effects on the neural processes associated with negative affective bias in healthy people and people with depression. However, whether and how SSRIs also affect reward and punishment processing on a similarly rapid time scale remains unclear. Methods: We investigated the effects of an acute and clinically relevant dose (20 mg) of the SSRI escitalopram on brain response during reward and punishment processing in 19 healthy participants. In a doubleblind, placebo-controlled study using functional MRI, participants performed a well-established monetary reward task at 3 time points: at baseline; after receiving placebo or escitalopram; and after receiving placebo or escitalopram following an 8-week washout period. Results: Acute escitalopram administration reduced blood-oxygen-level-dependent (BOLD) response during punishment feedback in the right thalamus (family-wise error corrected [FWE] p = 0.013 at peak level) and the right caudate head (pFWE = 0.011 at peak level) compared to placebo. We did not detect any significant BOLD changes during reward feedback. Limitations: We included only healthy participants, so interpretation of findings are limited to the healthy human brain and require future testing in patient populations. The paradigm we used was based on monetary stimuli, and results may not be generalizable to other forms of reward. Conclusion: Our findings extend theories of rapid SSRI action on the neural processing of rewarding and aversive stimuli and suggest a specific and acute effect of escitalopram in the punishment neurocircuitry.


Subject(s)
Caudate Nucleus/drug effects , Escitalopram/administration & dosage , Escitalopram/pharmacology , Neurons/drug effects , Punishment , Reward , Thalamus/drug effects , Adult , Caudate Nucleus/cytology , Female , Humans , Magnetic Resonance Imaging , Male , Selective Serotonin Reuptake Inhibitors/administration & dosage , Selective Serotonin Reuptake Inhibitors/pharmacology , Thalamus/cytology , Young Adult
16.
Int J Mol Sci ; 22(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923533

ABSTRACT

It has been established that the selective α2A adrenoceptor agonist guanfacine reduces hyperactivity and improves cognitive impairment in patients with attention-deficit/hyperactivity disorder (ADHD). The major mechanisms of guanfacine are considered to involve the activation of the postsynaptic α2A adrenoceptor of glutamatergic pyramidal neurons in the frontal cortex, but the effects of chronic guanfacine administration on catecholaminergic and glutamatergic transmissions associated with the orbitofrontal cortex (OFC) are yet to be clarified. The actions of guanfacine on catecholaminergic transmission, the effects of acutely local and systemically chronic (for 7 days) administrations of guanfacine on catecholamine release in pathways from the locus coeruleus (LC) to OFC, the ventral tegmental area (VTA) and reticular thalamic-nucleus (RTN), from VTA to OFC, from RTN to the mediodorsal thalamic-nucleus (MDTN), and from MDTN to OFC were determined using multi-probe microdialysis with ultra-high performance liquid chromatography. Additionally, the effects of chronic guanfacine administration on the expression of the α2A adrenoceptor in the plasma membrane fraction of OFC, VTA and LC were examined using a capillary immunoblotting system. The acute local administration of therapeutically relevant concentrations of guanfacine into the LC decreased norepinephrine release in the OFC, VTA and RTN without affecting dopamine release in the OFC. Systemically, chronic administration of therapeutically relevant doses of guanfacine for 14 days increased the basal release of norepinephrine in the OFC, VTA, RTN, and dopamine release in the OFC via the downregulation of the α2A adrenoceptor in the LC, OFC and VTA. Furthermore, systemically, chronic guanfacine administration did not affect intrathalamic GABAergic transmission, but it phasically enhanced thalamocortical glutamatergic transmission. The present study demonstrated the dual actions of guanfacine on catecholaminergic transmission-acute attenuation of noradrenergic transmission and chronic enhancement of noradrenergic transmission and thalamocortical glutamatergic transmission. These dual actions of guanfacine probably contribute to the clinical effects of guanfacine against ADHD.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/pharmacology , Attention Deficit Disorder with Hyperactivity/drug therapy , Guanfacine/pharmacology , Prefrontal Cortex/drug effects , Synaptic Transmission/drug effects , Thalamus/drug effects , Adrenergic alpha-2 Receptor Agonists/administration & dosage , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Animals , Dopamine/metabolism , Glutamic Acid/metabolism , Guanfacine/administration & dosage , Guanfacine/therapeutic use , Male , Norepinephrine/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, alpha-2/genetics , Receptors, Adrenergic, alpha-2/metabolism , Thalamus/metabolism , Thalamus/physiopathology , gamma-Aminobutyric Acid/metabolism
17.
J Psychopharmacol ; 35(4): 469-482, 2021 04.
Article in English | MEDLINE | ID: mdl-33645311

ABSTRACT

BACKGROUND: The reticular thalamus gates thalamocortical information flow via finely tuned inhibition of thalamocortical cells in the mediodorsal thalamus. Brain imaging studies in humans show that the psychedelic lysergic acid diethylamide (LSD) modulates activity and connectivity within the cortico-striato-thalamo-cortical (CSTC) circuit, altering consciousness. However, the electrophysiological effects of LSD on the neurons in these brain areas remain elusive. METHODS: We employed in vivo extracellular single-unit recordings in anesthetized adult male mice to investigate the dose-response effects of cumulative LSD doses (5-160 µg/kg, intraperitoneal) upon reticular thalamus GABAergic neurons, thalamocortical relay neurons of the mediodorsal thalamus, and pyramidal neurons of the infralimbic prefrontal cortex. RESULTS: LSD decreased spontaneous firing and burst-firing activity in 50% of the recorded reticular thalamus neurons in a dose-response fashion starting at 10 µg/kg. Another population of neurons (50%) increased firing and burst-firing activity starting at 40 µg/kg. This modulation was accompanied by an increase in firing and burst-firing activity of thalamocortical neurons in the mediodorsal thalamus. On the contrary, LSD excited infralimbic prefrontal cortex pyramidal neurons only at the highest dose tested (160 µg/kg). The dopamine D2 receptor (D2) antagonist haloperidol administered after LSD increased burst-firing activity in the reticular thalamus neurons inhibited by LSD, decreased firing and burst-firing activity in the mediodorsal thalamus, and showed a trend towards further increasing the firing activity of neurons of the infralimbic prefrontal cortex. CONCLUSION: LSD modulates firing and burst-firing activity of reticular thalamus neurons and disinhibits mediodorsal thalamus relay neurons at least partially in a D2-mediated fashion. These effects of LSD on thalamocortical gating could explain its consciousness-altering effects in humans.


Subject(s)
Dose-Response Relationship, Drug , Electrophysiological Phenomena , Lysergic Acid Diethylamide/pharmacology , Prefrontal Cortex , Thalamus , Animals , Consciousness Disorders/chemically induced , Consciousness Disorders/metabolism , Dopamine D2 Receptor Antagonists/pharmacology , Hallucinogens/pharmacology , Male , Mice , Neural Pathways/drug effects , Neural Pathways/physiology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Receptors, Dopamine D2/metabolism , Thalamus/drug effects , Thalamus/metabolism
18.
J Nippon Med Sch ; 88(5): 485-495, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-33692297

ABSTRACT

BACKGROUND: Modafinil improves wakefulness and attention, is approved in Japan for treatment of narcolepsy, and was reported to be effective for attention-deficit/hyperactivity disorder. However, it was reported to induce emotional instability, including mania, depression, and suicidal ideation. Such side effects may be related to changes in cognitive behavior caused by the effects of modafinil on emotional recognition. However, the effects of modafinil on the neural basis of emotional processing have not been fully verified. We used functional magnetic resonance imaging to investigate the effects of modafinil on the neural basis of auditory emotional processing. METHODS: This study adopted a placebo-controlled within-subject crossover design. Data from 14 participants were analyzed. The effects of modafinil on cerebral activation and task performance during an emotional judgement task were analyzed. RESULTS: Task accuracy decreased significantly and response time of emotional judgement was significantly delayed by modafinil, as compared with placebo. Right thalamic activation in auditory emotional processing was significantly less in the modafinil condition than in the placebo condition. In addition, reduction of right thalamic activation by modafinil was positively correlated with accuracy of emotional judgement. CONCLUSIONS: Our findings suggest that modafinil acts on the right thalamus and changes behavior and brain function associated with auditory emotional processing. These results indicate that modafinil might change emotional recognition by reducing emotional activation related to social communication.


Subject(s)
Affect/drug effects , Central Nervous System Stimulants/therapeutic use , Emotions/physiology , Modafinil/therapeutic use , Thalamus/drug effects , Cross-Over Studies , Evoked Potentials, Auditory , Humans , Magnetic Resonance Imaging , Thalamus/diagnostic imaging
19.
Neuroimage ; 232: 117919, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33652141

ABSTRACT

Unilateral damage to the frontoparietal network typically impairs saccade target selection within the contralesional visual hemifield. Severity of deficits and the degree of recovery have been associated with widespread network dysfunction, yet it is not clear how these behavioural and functional brain changes relate with the underlying structural white matter tracts. Here, we investigated whether recovery after unilateral prefrontal cortex (PFC) lesions was associated with changes in white matter microstructure across large-scale frontoparietal cortical and thalamocortical networks. Diffusion-weighted imaging was acquired in four male rhesus macaques at pre-lesion, week 1, and week 8-16 post-lesion when target selection deficits largely recovered. Probabilistic tractography was used to reconstruct cortical frontoparietal fiber tracts, including the superior longitudinal fasciculus (SLF) and transcallosal fibers connecting the PFC or posterior parietal cortex (PPC), as well as thalamocortical fiber tracts connecting the PFC and PPC to thalamic nuclei. We found that the two animals with small PFC lesions showed increased fractional anisotropy in both cortical and thalamocortical fiber tracts when behaviour had recovered. However, we found that fractional anisotropy decreased in cortical frontoparietal tracts after larger PFC lesions yet increased in some thalamocortical tracts at the time of behavioural recovery. These findings indicate that behavioural recovery after small PFC lesions may be supported by both cortical and subcortical areas, whereas larger PFC lesions may have induced widespread structural damage and hindered compensatory remodeling in the cortical frontoparietal network.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Recovery of Function/physiology , Thalamus/diagnostic imaging , White Matter/diagnostic imaging , Animals , Macaca mulatta , Male , Nerve Net/drug effects , Nerve Net/physiology , Photic Stimulation/methods , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Recovery of Function/drug effects , Thalamus/drug effects , Thalamus/physiology , Vasoconstrictor Agents/toxicity , White Matter/drug effects , White Matter/physiology
20.
Sci Rep ; 11(1): 6345, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737568

ABSTRACT

The medial (DMS) and lateral (DLS) dorsal striatum differentially drive goal-directed and habitual/compulsive behaviors, respectively, and are implicated in a variety of neuropsychiatric disorders. These subregions receive distinct inputs from cortical and thalamic regions which uniquely determine dorsal striatal activity and function. Adenosine A1 receptors (A1Rs) are prolific within striatum and regulate excitatory glutamate transmission. Thus, A1Rs may have regionally-specific effects on neuroadaptive processes which may ultimately influence striatally-mediated behaviors. The occurrence of A1R-driven plasticity at specific excitatory inputs to dorsal striatum is currently unknown. To better understand how A1Rs may influence these behaviors, we first sought to understand how A1Rs modulate these distinct inputs. We evaluated A1R-mediated inhibition of cortico- and thalamostriatal transmission using in vitro whole-cell, patch clamp slice electrophysiology recordings in medium spiny neurons from both the DLS and DMS of C57BL/6J mice in conjunction with optogenetic approaches. In addition, conditional A1R KO mice lacking A1Rs at specific striatal inputs to DMS and DLS were generated to directly determine the role of these presynaptic A1Rs on the measured electrophysiological responses. Activation of presynaptic A1Rs produced significant and prolonged synaptic depression (A1R-SD) of excitatory transmission in the both the DLS and DMS of male and female animals. Our findings indicate that A1R-SD at corticostriatal and thalamostriatal inputs to DLS can be additive and that A1R-SD in DMS occurs primarily at thalamostriatal inputs. These findings advance the field's understanding of the functional roles of A1Rs in striatum and implicate their potential contribution to neuropsychiatric diseases.


Subject(s)
Compulsive Behavior/genetics , Corpus Striatum/physiology , Long-Term Synaptic Depression/genetics , Receptor, Adenosine A1/genetics , Adenosine/pharmacology , Animals , Behavior, Animal/physiology , Excitatory Postsynaptic Potentials , Female , Long-Term Synaptic Depression/physiology , Male , Mice , Mice, Knockout , Neurons/pathology , Neurons/physiology , Patch-Clamp Techniques , Synapses/physiology , Synaptic Transmission , Thalamus/drug effects , Thalamus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...