Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
1.
Mol Biol Rep ; 51(1): 529, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637422

BACKGROUND: TGF-ß1 and SMAD3 are particularly pathogenic in the progression of renal fibrosis. AIM: This study aimed to evaluate the kidney protective potentials of silymarin (SM) and exosomes of mesenchymal stem cells against the nephrotoxin thioacetamide (TAA) in rats. METHODS: 32 female rats were randomly assigned into four groups: the control group, the TAA group, the TAA + SM group, and the TAA + Exosomes group. The kidney homogenates from all groups were examined for expression levels of TGF-ß receptors I and II using real-time PCR, expression levels of collagen type I and CTGF proteins using ELISA, and the expression levels of nuclear SMAD2/3/4, cytoplasmic SMAD2/3, and cytoplasmic SMAD4 proteins using the western blot technique. RESULTS: Compared to the control group, the injection of TAA resulted in a significant increase in serum levels of urea and creatinine, gene expression levels of TßRI and TßRII, protein expression levels of both collagen I and CTGF proteins, cytoplasmic SMAD2/3 complex, and nuclear SMAD2/3/4 (p-value < 0.0001), with significantly decreased levels of the co-SMAD partner, SMAD4 (p-value < 0.0001). Those effects were reversed considerably in both treatment groups, with the superiority of the exosomal treatment regarding the SMAD proteins and the expression levels of the TßRI gene, collagen I, and CTGF proteins returning to near-control values (p-value > 0.05). CONCLUSION: Using in vitro and in vivo experimental approaches, the research discovered a reno-protective role of silymarin and exosomes of BM-MSCs after thioacetamide-induced renal fibrosis in rats, with the advantage of exosomes.


Exosomes , Kidney Diseases , Silymarin , Rats , Female , Animals , Transforming Growth Factor beta/metabolism , Thioacetamide/toxicity , Thioacetamide/metabolism , Silymarin/pharmacology , Exosomes/metabolism , Fibrosis , Transforming Growth Factor beta1/metabolism , Kidney Diseases/pathology , Collagen Type I/metabolism , Smad Proteins/metabolism
2.
Phytother Res ; 38(3): 1367-1380, 2024 Mar.
Article En | MEDLINE | ID: mdl-38217097

Liver fibrosis affects approximately 800 million patients worldwide, with over 2 million deaths each year. Nevertheless, there are no approved medications for treating liver fibrosis. In this study, we investigated the impacts of ginkgetin on liver fibrosis and the underlying mechanisms. The impacts of ginkgetin on liver fibrosis were assessed in mouse models induced by thioacetamide or bile duct ligation. Experiments on human LX-2 cells and primary mouse hepatic stellate cells (HSCs) were performed to explore the underlying mechanisms, which were also validated in the mouse models. Ginkgetin significantly decreased hepatic extracellular matrix deposition and HSC activation in the fibrotic models induced by thioacetamide (TAA) and bile duct ligation (BDL). Beneficial effects also existed in inhibiting hepatic inflammation and improving liver function. In vitro experiments showed that ginkgetin markedly inhibited HSC viability and induced HSC apoptosis dose-dependently. Mechanistic studies revealed that the antifibrotic effects of ginkgetin depend on STAT1 activation, as the effects were abolished in vitro after STAT1 silencing and in vivo after inhibiting STAT1 activation by fludarabine. Moreover, we observed a meaningful cross-talk between HSCs and hepatocytes, in which IL-6, released by ginkgetin-induced apoptotic HSCs, enhanced hepatocyte proliferation by activating STAT3 signaling. Ginkgetin exhibits antifibrotic effects by inducing HSC apoptosis via STAT1 activation and enhances hepatocyte proliferation secondary to HSC apoptosis via the IL-6/STAT3 pathway.


Biflavonoids , Hepatic Stellate Cells , Thioacetamide , Mice , Animals , Humans , Thioacetamide/metabolism , Thioacetamide/pharmacology , Thioacetamide/therapeutic use , Interleukin-6/metabolism , Liver Cirrhosis/drug therapy , Disease Models, Animal , Apoptosis , Liver/metabolism , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/pharmacology
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(11): 1892-1900, 2023 Nov 20.
Article Zh | MEDLINE | ID: mdl-38081607

OBJECTIVE: To explore the effect of oridonin (ORI) for suppressing thioacetamide (TAA)-induced osteoclast differentiation of RAW264.7 cells and antagonizing the inhibitory effect of TAA on osteogenic differentiation of bone mesenchymal stem cells (BMSCs). METHODS: The effects of TAA and ORI on the proliferation of RAW264.7 cells and SD rat BMSCs were examined using CCK-8 assay. TRAP staining and immunofluorescence staining were used to observe the effects of TAA and ORI on osteoclast differentiation in RAW264.7 cells. The expressions of osteoclast-specific proteins in the treated cells were detected using Western blotting, and p65 nuclear translocation and reactive oxygen species (ROS) production in the cells were assessed with immunofluorescence assay and flow cytometry. Alkaline phosphatase (ALP) staining and alizarin red staining were used to examine the effects of TAA and ORI on osteogenic differentiation of BMSCs, and the expressions of osteogenic and apoptosis-related proteins in the cells were detected with Western blotting. RESULTS: Compared with RAW264.7 cells treated with TAA alone, the cells with the combined treatment with TAA and ORI showed decreased osteoclast differentiation (P < 0.01) and significant inhibition of the MAPK/NF-κB pathway (P < 0.01) with reduced p65 nuclear translocation and intracellular ROS production (P < 0.01). In rat BMSCs, treatment with TAA alone significantly inhibited ALP activity and formation of calcified nodules (P < 0.01) and induced obvious cell apoptosis. Compared with TAA-treated BMSCs, the cells treated with both TAA and ORI showed upregulated expressions of the BMP-2/RUNX2 pathway with enhanced ALP activity (P < 0.01) and calcium deposition (P < 0.01) and a lowered cell apoptosis level. CONCLUSION: ORI inhibits TAA-induced osteoclast differentiation via regulating the MAPK/NF-κB pathway and antagonizes TAA-induced inhibition of bone formation by regulating the BMP-2/RUNX2 pathway.


Mesenchymal Stem Cells , Osteoporosis , Rats , Animals , Osteogenesis , Osteoclasts , Thioacetamide/metabolism , NF-kappa B/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Reactive Oxygen Species/metabolism , Rats, Sprague-Dawley , Cells, Cultured , Cell Differentiation , Osteoblasts
4.
Horm Mol Biol Clin Investig ; 44(4): 371-377, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-38124628

OBJECTIVES: Liver cirrhosis is one of the most important causes of death from liver diseases. Nowadays, the use of herbal medicines has increased due to its availability, less side effects and cheapness for the treatment of liver diseases. The present study was conducted to examine therapeutic effects of hydroalcoholic extract of Scrophularia striata (S. striata) on thioacetamide-induced liver cirrhosis in rats through evaluate its effects on oxidative stress markers and the expression of metalloproteinase 1 (TIMP 1), toll-like receptor-4 (TLR-4), and Mitofusin (MFN2) genes. METHODS: 24 male rats were selected by simple random sampling. Rats were randomly assigned to four groups: group I: healthy rats, group II: thioacetamide (TAA) injected rats, group III: TAA injected rats+100 mg/kg bw of S. striata and group IV: TAA injected rats+200 mg/kg bw of S. striata. Liver cirrhosis was induced in rats by a 300 mg/kg bw TAA administration twice with an interval of 24 h. After 8 weeks of treatment by S. striata at doses of 100 and 200 mg/kg bw, biochemical factors and oxidative stress markers (SOD, TAC, GPX, CAT and MDA) were measured using spectrophotometric methods. Also, gene expression of TIMP 1, TLR-4, and MFN2 were analyzed using real-time PCR. ANOVA and Bonferroni post hoc test analysis were applied to evaluate the data. RESULTS: The results showed the S. striata extract significantly improve the serum ALT, AST and ALP levels, TIMP 1, TLR-4, and MFN2 genes and oxidative stress markers (SOD, TAC, GPX, CAT and MDA) in the liver tissues when compared to control group (p<0.05). Also, it was found that the beneficial effects of the S. striata were dose-dependent. CONCLUSIONS: Based on the results obtained S. striata by reducing the expression of TIMP 1, TLR-4, and MFN2 genes and improving oxidative stress might be used as adjuvant treatment for liver cirrhosis.


Liver Diseases , Scrophularia , Rats , Male , Animals , Thioacetamide/metabolism , Thioacetamide/pharmacology , Scrophularia/metabolism , Toll-Like Receptor 4/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/pharmacology , Rats, Wistar , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Oxidative Stress , Liver/metabolism , Liver Diseases/metabolism , Liver Diseases/pathology , Superoxide Dismutase/metabolism
5.
Curr Pharm Des ; 29(37): 2988-2995, 2023.
Article En | MEDLINE | ID: mdl-37936451

INTRODUCTION: The incidence of non-alcoholic fatty liver disease (NAFLD) has increased in recent years. Hepatic fibrosis (HF) is an important step in the progression of NAFLD to cirrhosis and even carcinoma and is also recognized as a possible reversal phase. AIMS: We previously found that the aqueous extract of Sedum Lineare Thunb. has hepatoprotective effects. This study investigated the hepatoprotective effect and mechanism of the Sedum Lineare Thunb. n-butanol phase (SLNP) on HF in rats. METHODS: Animals were intraperitoneally injected with thioacetamide solution twice a week for 8 weeks to prepare an HF model and were administered the corresponding drugs or an equal volume of normal saline by intragastric administration once a day for 8 weeks. Liver function, hydroxyproline and malondialdehyde (MDA) content, superoxide dismutase (SOD), Na+-K+-ATPase, and Ca2+-Mg2+-ATPase were analyzed using colorimetric methods. Moreover, mRNA expression and protein levels in the liver tissue were detected via quantitative polymerase chain reaction and western blotting, respectively. RESULTS: The results showed that SLNP could effectively improve the liver function of rats with HF and significantly reduce the content of hydroxyproline; the mRNA expression and protein levels of alpha-smooth muscle actin (α-SMA), collagen I, III, and IV, transforming growth factor beta 1 (TGF-ß1), Smad2/3, and Smad4 were also significantly reduced. Simultaneously, SLNP significantly increased the activities of SOD, Na+-K+- ATPase, and Ca2+-Mg2+-ATPase in the rat liver tissues, whereas it reduced the levels of MDA and SOD in the serum and liver tissues. CONCLUSION: This study revealed that SLNP elicits an anti-fibrotic effect by inhibiting oxidative stress and stellate cell activation, thereby reducing the formation and deposition of the extracellular matrix. The TGF-ß1/Smads signaling pathway may be involved in this process.


Non-alcoholic Fatty Liver Disease , Transforming Growth Factor beta1 , Rats , Animals , Transforming Growth Factor beta1/metabolism , Thioacetamide/toxicity , Thioacetamide/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Hydroxyproline/adverse effects , Hydroxyproline/metabolism , Signal Transduction , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver , Superoxide Dismutase/adverse effects , Superoxide Dismutase/metabolism , RNA, Messenger/metabolism , Adenosine Triphosphatases/adverse effects , Adenosine Triphosphatases/metabolism
6.
J Toxicol Sci ; 48(6): 323-332, 2023.
Article En | MEDLINE | ID: mdl-37258237

We have developed an early detection method for bladder carcinogens with high sensitivity and specificity using immunohistochemistry of γ-H2AX, a well-known marker of DNA damage. To investigate the potential application of γ-H2AX as a biomarker for early detection of hepatocarcinogens, we examined γ-H2AX formation in the liver of rats treated with several different chemicals for 28 days. Six-week-old male F344 rats were orally treated for 28 days with five hepatocarcinogens: N-nitrosodiethylamine (DEN), di(2-ethylhexyl) phthalate, 1,4-dioxane (DO), 3,3'-dimethylbenzidine dihydrochloride, or thioacetamide (TAA), or with two non-hepatocarcinogens: 4-chloro-o-phenylenediamine and N-ethyl-N-nitrosourea. At the end of the treatment period, immunohistochemistry for γ-H2AX and Ki67 and expression analysis of DNA repair-related genes were performed. Significant increases in γ-H2AX-positive hepatocytes with upregulation of Rad51 mRNA expression were induced by three of five hepatocarcinogens (DEN, DO, and TAA), whereas no changes were seen for the other two hepatocarcinogens and the two non-hepatocarcinogens. Significant increases in Ki67 expression with upregulation of Brip1, Xrcc5, and Lig4 were observed in rats treated with TAA, a nongenotoxic hepatocarcinogen, suggesting that both direct DNA damage and secondary DNA damage due to cell replication stress may be associated with γ-H2AX formation. These results suggest that γ-H2AX immunostaining has potential value for early detection of hepatocarcinogens, but examination of the effects of more chemicals is needed, as is whether γ-H2AX immunostaining should be combined with other markers to increase sensitivity. γ-H2AX immunostaining using formalin-fixed paraffin-embedded specimens can be easily incorporated into existing 28-day repeated-dose toxicity studies, and further improvements in this method are expected.


Carcinogenesis , Carcinogens , Rats , Male , Animals , Rats, Inbred F344 , Immunohistochemistry , Ki-67 Antigen/metabolism , Carcinogenesis/metabolism , Carcinogens/toxicity , Liver/metabolism , Thioacetamide/toxicity , Thioacetamide/metabolism , Histones/metabolism , Histones/pharmacology , Phosphoproteins/metabolism
7.
Calcif Tissue Int ; 112(6): 704-715, 2023 06.
Article En | MEDLINE | ID: mdl-37032340

Osteoporosis, an age-related metabolic bone disease, is mainly caused by an imbalance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. At present, there are many osteoporosis drugs that can promote bone formation or inhibit bone resorption. However, there were few therapeutic drugs that can simultaneously promote bone formation and inhibit bone resorption. Oridonin (ORI), a tetracyclic diterpenoid compound isolated from Rabdosia rubescens, has been proved to have anti-inflammatory, anti-tumor effects. However, little is known about the osteoprotective effect of oridonin. Thioacetamide (TAA) is a common organic compound with significant hepatotoxicity. Recent studies have found that there was a certain association between TAA and bone injury. In this work, we investigated the effect and mechanism of ORI on TAA-induced osteoclastogenesis and inhibition of osteoblast differentiation. The results showed that TAA could promote the osteoclastogenesis of RAW264.7 by promoting the MAPK/NF-κB pathway, and also promoted p65 nuclear translocation and activated intracellular ROS generation, and ORI can inhibit these effects to inhibit TAA-induced osteoclastogenesis. Moreover, ORI can also promote the osteogenic differentiation pathway and inhibit adipogenic differentiation of BMSCs to promote bone formation. In conclusion, our results revealed that ORI, as a potential therapeutic drug for osteoporosis, could protect against TAA-induced bone loss and TAA-inhibited bone formation.


Bone Resorption , Osteoporosis , Humans , Osteogenesis , NF-kappa B/metabolism , Thioacetamide/metabolism , Thioacetamide/pharmacology , Thioacetamide/therapeutic use , Core Binding Factor Alpha 1 Subunit/metabolism , Osteoclasts/metabolism , Bone Resorption/metabolism , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Cell Differentiation , RANK Ligand/metabolism
8.
Environ Toxicol Pharmacol ; 99: 104093, 2023 Apr.
Article En | MEDLINE | ID: mdl-36870405

Thioacetamide (TAA) undergoes bioactivation in the liver by the CYP450 2E1 enzyme, resulting in the formation of TAA-S-oxide and TAA-S-dioxide. TAA-S-dioxide induces oxidative stress via lipid peroxidation of the hepatocellular membrane. A single TAA dose (50-300 mg/kg) administration initiates hepatocellular necrosis around the pericentral region after its covalent binding to macromolecules in the liver. Intermittent TAA administration (150-300 mg/kg, weekly thrice, for 11-16 weeks) activates transforming growth factor (TGF)-ß/smad3 downstream signaling in injured hepatocytes, causing hepatic stellate cells (HSCs) to acquire myofibroblast like phenotype. The activated HSCs synthesize a variety of extracellular matrix, leading to liver fibrosis, cirrhosis, and portal hypertension. The TAA induced liver injury varies depending on the animal model, dosage, frequency, and routes of administration. However, TAA induces hepatotoxicity in a reproducible manner, and it is an ideal model to evaluate the antioxidant, cytoprotective, and antifibrotic compounds in experimental animals.


Liver , Thioacetamide , Animals , Thioacetamide/toxicity , Thioacetamide/metabolism , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Hepatocytes/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Transforming Growth Factor beta
9.
Turk J Gastroenterol ; 34(3): 254-261, 2023 03.
Article En | MEDLINE | ID: mdl-36635913

BACKGROUND: The aim of this study was to investigate the prophylactic and therapeutic effects of Arum dioscoridis (tirsik) plant extract against thioacetamide-induced experimental liver toxicity. METHODS: In this study, 35 male Wistar-Albino rats, of 12-14 weeks old, weighing between 200 and 270 g, were used. Rats were divided into 5 groups of 7 each. The first group was determined as the control group, the second group as the hepatotoxicity group, the third group as the prophylaxis group, the fourth group as the intraperitoneal treatment group, and the fifth group as the oral treatment group. Hepatotoxicity was achieved with a single intraperitoneal dose of 350 mg/kg of thioacetamide (TAA). On the seventh day, the rats were sacrificed under general anesthesia. Their blood was taken and liver enzymes were studied. Malondialdehyde (MDA), glutathyon peroxi dase (GPx), catalase (CAT), superoxit dismutase (SOD) enzymes were studied from liver tissues. In addition, liver tissues were evaluated histopathologically. RESULTS: With Arum dioscoridis treatment and prophylaxis, improvements in all parameters and increases in tissue antioxidant levels were detected. CONCLUSION: It was determined that Arum dioscoridis plant extract has prophylactic and therapeutic effects on liver toxicity. In cases of acute liver injury and hepatotoxicity, we suggest the potential application of Arum dioscoridis for effective and inexpensive treatment.


Arum , Chemical and Drug Induced Liver Injury , Animals , Rats , Thioacetamide/toxicity , Thioacetamide/metabolism , Rats, Wistar , Antioxidants/pharmacology , Antioxidants/therapeutic use , Liver/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/prevention & control , Plant Extracts/pharmacology , Oxidative Stress
10.
J Nutr Biochem ; 115: 109267, 2023 05.
Article En | MEDLINE | ID: mdl-36641072

Deep-frying is a common cooking practice worldwide, and after repeated heating's, the oil undergoes various chemical reactions, including hydrolysis, polymerization, lipid oxidation, and the Maillard reaction. Studies have pointed out that oxidized dietary frying oil may cause teratogenesis in mice and increase cancer and cardiovascular risks. The liver is the main organ involved in dietary nutrient catabolism, detoxification, bile production, and lipid metabolism. Nevertheless, the effects of oxidized frying oil exposure on the activation of hepatic stellate cells (HSCs) and liver fibrosis are still unclear. In this study, we showed that exposure to oxidized frying oil enhanced the sensitivity of HSCs to transforming growth factor (TGF)-ß1-induced α-smooth muscle actin (α-SMA), collagen 1a2, collagen 1a1, metalloproteinase-2, and phosphorylated smad2/3 activation. In both carbon tetrachloride (CCl4)- and thioacetamide (TAA)-induced liver fibrosis mouse models, we showed that long-term administration of a 10% fried oil-containing diet significantly upregulated fibrogenesis genes expression and deposition of hepatic collagen. Furthermore, long-term fried oil exposure not only promoted macrophage infiltration and increased inflammatory-related gene expression, but also accumulated excess cholesterol and lipid peroxidation in the liver tissues. In conclusion, our study demonstrated that feeding a fried oil-containing diet may trigger TGF-ß1-induced HSCs activation and thereby promote liver damage and fibrosis progression through enhancing the inflammatory response and lipid peroxidation.


Dietary Fats, Unsaturated , Hepatic Stellate Cells , Mice , Animals , Hepatic Stellate Cells/metabolism , Carbon Tetrachloride/adverse effects , Thioacetamide/toxicity , Thioacetamide/metabolism , Dietary Fats, Unsaturated/adverse effects , Matrix Metalloproteinase 2/metabolism , Liver Cirrhosis/metabolism , Liver/metabolism , Transforming Growth Factor beta1/metabolism
11.
Food Chem Toxicol ; 172: 113602, 2023 Feb.
Article En | MEDLINE | ID: mdl-36610474

The endoplasmic reticulum (ER) controls many biological functions besides maintaining the function of liver cells. Various studies reported the role of the ER stress and UPR signaling pathway in various liver diseases via triggering hepatocytes apoptosis. This study aims to investigate the suppressive effect of ß-sitosterol (ßS) on apoptosis associated with liver injury and ER stress. METHODS: Liver damage in rats was induced by TAA (150 mg/kg I.P twice a week/3 weeks) and γ-irradiation (single dose 3.5 Gy) and treated with ßS (20 mg/kg daily for 30 days). Serum aminotransferase activity, lipid profile and lipid metabolic factors were measured beside liver oxidative stress and inflammatory markers. Moreover, the hepatic expression of ER stress markers (inositol-requiring enzyme 1 alpha (IRE1α), X-box-binding protein 1 (XBP1) and CCAAT/enhancer binding protein homologous protein (CHOP) and apoptotic markers were detected together with histopathological examination. RESULTS: ßS diminished the aminotransferase activity, the oxidative stress markers as well as the inflammatory mediators. Furthermore, ßS lowered the circulating TG and TC and the hepatic lipotoxicity via the suppression of lipogenesis (Srebp-1c) and improved the ß-oxidation (Pparα and Cpt1a) together with the mitochondrial biogenesis (Pgc-1 α). Moreover, the upregulated levels of ER stress markers were reduced upon treatment with ßS, which consequently attenuated hepatic apoptosis. CONCLUSION: ßS relieves hepatic injury, ameliorates mitochondrial biogenesis, and reduces lipotoxicity and apoptosis via inhibition of CHOP and ER stress response.


Chemical and Drug Induced Liver Injury , Endoplasmic Reticulum Stress , Endoribonucleases , Hepatocytes , Sitosterols , Animals , Rats , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Hepatocytes/drug effects , Liver/pathology , Protein Serine-Threonine Kinases/metabolism , Sitosterols/pharmacology , Thioacetamide/metabolism , Thioacetamide/pharmacology , Transaminases/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism
12.
Biomarkers ; 28(2): 160-167, 2023 Mar.
Article En | MEDLINE | ID: mdl-36420657

Context: Oxidative stress leads to deleterious processes in the liver that resulted in liver diseases.Objective: To evaluate antioxidant activity and hepatoprotective potential of ethanolic leaves extract of Citrus reticulate against hepatic dysfunction induced by thioacetamide (TAA).Materials and Methods: Flavonoid constituents were isolated from the ethanol extract by chromatographic techniques and identified by the spectroscopic analyses. Antioxidant activity was determined using DPPH assay. Hepatotoxicity was induced in rats via intraperitoneal injection of TAA and the ethanol extract was orally administrated at a dose of 100 mg/kg/day for four weeks. Serum biomarkers, hepatic antioxidant enzymes, tumour necrosis factor-alpha (TNF-α), hepatic hydroxyproline levels, and histopathology were examined.Results: Ten known flavonoids were identified, among of them, 6,3`-dimethoxyluteolin and 8,3`-dimethoxyluteolin possessed the highest antioxidant activity. The substantially elevated serum enzymatic levels of ALT, ALP, and bilirubin were found to be restored towards normalisation significantly by the plant extract. Furthermore, the markers including MDA, GSH, SOD, NO, and protein carbonyl which were close to oxidative damage, were restored. Meanwhile, the extract treatment decreased TNF-α level and also was able to reverse the induced fibrosis by significantly reducing the hydroxyproline content. Moreover, histopathological studies further substantiate the protective effect of the extract.Conclusion: C. reticulate leaves extract is a rich source of phytochemicals with in vitro and in vivo protective effects.


Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Citrus , Rats , Animals , Antioxidants/metabolism , Thioacetamide/toxicity , Thioacetamide/analysis , Thioacetamide/metabolism , Flavonoids/pharmacology , Flavonoids/analysis , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury, Chronic/pathology , Tumor Necrosis Factor-alpha/metabolism , Citrus/metabolism , Hydroxyproline/analysis , Hydroxyproline/metabolism , Hydroxyproline/pharmacology , Liver/metabolism , Plant Extracts/chemistry , Oxidative Stress , Plant Leaves/chemistry , Ethanol/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism
13.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5882-5889, 2022 Nov.
Article Zh | MEDLINE | ID: mdl-36472007

This study aims to investigate the therapeutic effect of icariin(ICA) on thioacetamide(TAA)-induced femoral osteolysis in rats. RAW264.7 cells were treated with TAA and ICA. Cell counting kit-8(CCK-8) assay was used to detect cell proliferation, and tartrate-resistant acid phosphatase(TRAP) staining to examine the formation of osteoclasts. The expression of TRAP, cathepsin K, c-FOS, and NFATc1 in RAW264.7 cells was determined by Western blot and immunofluorescence method. Thirty-two SD rats were randomized into the control group, TAA group(intraperitoneal injection of TAA at 300 mg·kg~(-1)), ICA group(gavage of ICA at 600 mg·kg~(-1)) and TAA + ICA group(intraperitoneal injection of TAA at 300 mg·kg~(-1) and gavage of ICA at 600 mg·kg~(-1)). Administration was performed every other day for 6 weeks. Body weight and length of femur were recorded at execution. Pathological injury and osteoclast differentiation of femur were observed based on hematoxylin-eosin(HE) staining and TRAP staining, and the changes of bone metabolism-related indexes alkaline phosphatase(ALP), calcium(Ca), phosphorus(P), magnesium(Mg), and cross-linked N-telopeptide of type Ⅰ collagen(NTX-Ⅰ) in serum were detected. Three-point bending test and micro-CT were applied to evaluate the quality of femur, and Western blot to detect the levels of osteoclast-related proteins TRAP, cathepsin K, RANK, RANKL, p38, p-p38, ERK, p-ERK, JNK, p-JNK, c-Fos, and NFATc1. The results showed ICA could inhibit TAA-induced production of TRAP-positive cells, the expression of osteoclast-related proteins, and nuclear translocation of NFATc1. ICA alleviated the weight loss, reduction of femur length, and growth inhibition induced by TAA in SD rats. ICA ameliorated the decline of femur elastic modulus caused by TAA and significantly restored trabecular bone mineral density(BMD), trabecular pattern factor(Tb.Pf), trabecular number(Tb.N), trabecular thickness(Tb.Th), and structure model index(SMI), thus improving bone structure. Western blot results showed ICA suppressed femoral osteoclast differentiation induced by TAA through RANKL-p38/ERK-NFATc1 signaling pathway. ICA inhibits osteoclast differentiation and prevents TAA-induced osteolysis by down-regulating RANKL-p38/ERK-NFAT signaling pathway.


Bone Resorption , Osteolysis , Rats , Animals , Osteoclasts , Cathepsin K/genetics , Cathepsin K/metabolism , Cathepsin K/pharmacology , Thioacetamide/metabolism , Thioacetamide/pharmacology , Bone Resorption/metabolism , Bone Resorption/pathology , Osteolysis/metabolism , Osteolysis/pathology , Cell Differentiation , Rats, Sprague-Dawley , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism
14.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(9): 1324-1334, 2022 Sep 20.
Article Zh | MEDLINE | ID: mdl-36210705

OBJECTIVE: To explore the changes in Yes-associated protein (YAP) activity at the early stage of nonalcoholic steatohepatitis (NASH) and the spatiotemporal relationship between YAP and ductular reaction (DR). METHODS: Male C57BL/6J mouse models of NASH were established by feeding with a methionine- and choline-deficient (MCD) diet or a thioacetamide (TAA) diet for 12 weeks. At different time points during the feeding, liver histology of the mice was observed with HE and Masson trichrome staining. The mRNA expressions of YAP and its target genes (Ctgf, Cyr61, Acta2) were determined by qPCR, and the total protein expression level of YAP was measured with immunoblotting. The expression and distribution of YAP and the markers of DR (K19 and Sox9) were observed with immunohistochemical staining. RESULTS: At the early stage of NASH induced by MCD diet (1 to 4 weeks), the mRNA expression of YAP and its target genes and the total protein expression of YAP increased significantly (P < 0.01). The number of YAP-positive hepatocytes reached the peak level of 90.8 (cells per ×400 field of view) at week 2 and then decreased to 30.8 at week 4 (P < 0.001); YAP-positive ductular cells appeared near the portal area, where DR began to occur. From 8 to 12 weeks, numerous K19/Sox9-positive DR cells were observed in the hepatic lobules around the central vein (P < 0.01), while only a few YAP-positive hepatocytes were present in the liver tissue (P > 0.05), and the number of YAP-positive ductular cells gradually increased with time (P < 0.001). At the early stage of NASH induced by TAA diet (3 days to 2 weeks), the mRNA expression of YAP and its target genes and the total protein expression of YAP increased significantly (P < 0.05), and the number of YAP-positive hepatocytes reached the peak of 69.2 at week 2 and then decreased to 55.2 at week 4 (P < 0.001); YAP-positive ductular cells first appeared at the initial location of DR near the central vein. From 6 to 12 weeks, numerous K19/Sox9-positive DR cells occurred in the hepatic lobules around the central vein (P < 0.01). While the number of YAP-positive hepatocytes decreased (P < 0.001), the number of YAP-positive ductular cells continued to increase (P < 0.001). CONCLUSION: During the development of NASH, YAP activation occurs earlier than DR but they are spatiotemporally correlated. YAP activation in hepatocytes may participate in DR by promoting hepatocyte dedifferentiation.


Non-alcoholic Fatty Liver Disease , Animals , Choline , Disease Models, Animal , Hepatocytes , Liver/metabolism , Male , Methionine/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , RNA, Messenger/metabolism , Thioacetamide/metabolism , YAP-Signaling Proteins
15.
Int J Med Sci ; 19(12): 1806-1815, 2022.
Article En | MEDLINE | ID: mdl-36313224

Hepatocellular carcinoma (HCC) is a primary liver cancer commonly found in adults. Previously, we showed the anticancer effects of Thai herbal plant extract, Dioscorea membranacea Pierre (DM), in HCC-bearing rats. In the present study, we further examined the proposed mechanism of DM, including apoptosis and antioxidant activity. Moreover, we used RNA sequencing (RNA-seq) to analyze molecular pathways in the rat model in which HCC was induced by diethylnitrosamine (DEN) and thioacetamide (TAA). The HCC-bearing rats were then treated with 40 mg/kg of DM for 8 weeks, after which experimental and control rats were sacrificed and liver tissues were collected. The RNA-seq data of DEN/TAA-treated rats exhibited upregulation of 16 hallmark pathways, including epithelial mesenchymal transition, inflammatory responses, and angiogenesis (p<0.01). DM extract expanded the Bax protein-positive pericentral zone in the tumor areas and decreased hepatic malondialdehyde levels, implying a decrease in lipid peroxidation in liver. However, DM treatment did not ameliorate the molecular pathways induced in DEN/TAA-treated livers. Our findings indicate that DM extract has antioxidant activity and exerts its pro-apoptotic effect on rat HCCs in vivo at the (post-)translational level.


Carcinoma, Hepatocellular , Dioscorea , Liver Neoplasms , Rats , Animals , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Thioacetamide/toxicity , Thioacetamide/metabolism , Diethylnitrosamine/toxicity , Diethylnitrosamine/metabolism , Dioscorea/metabolism , Antioxidants/pharmacology , Liver Neoplasms/chemically induced , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver/pathology , Plant Extracts/adverse effects
16.
Neurotoxicology ; 92: 110-121, 2022 09.
Article En | MEDLINE | ID: mdl-35961375

RATIONALE: Hepatic encephalopathy (HE) is a neuropsychiatric disorder that results from either acute or chronic liver failure. CXCR2 plays an essential role in the pathophysiology of liver and brain diseases. In the present study, the potential beneficial effects of SB332235, a selective inhibitor of CXCR2, against HE were evaluated. METHODS: HE was induced in male rats by thioacetamide injection (200 mg/kg, i.p.) at three alternative days. SB332235 was injected in rats 1 h before TAA at a dose of 1 and 3 mg/kg i.p. RESULTS: SB332235 alleviated oxidative stress as shown by the decreased serum NO and reduced MDA, elevated GSH and SOD levels, and reduced TNF-α and NF-κB levels in both brain and liver tissues of rats. Additionally, SB332235 suppressed brain ASK-1, JNK, IL-8, and caspase-3 expression, and activated PI3K/AKT expression in brain tissues. Markers of brain dysfunction, such as ammonia, and markers of hepatic injury, such as LDH, albumin, bilirubin, γGT, AST, ALT, and ALP, were significantly ameliorated. Also, the protective effect of SB332235 was confirmed by histological examination of both brain and liver tissues. CONCLUSIONS: Both doses (1 and 3 mg/kg) of SB332235 revealed significant hepatic/neuroprotective effects due to their anti-inflammatory, antioxidant, and antiapoptotic activities via activation of the PI3K/AKT pathway. Between the two, the 1 mg/kg dose provided significantly improved outcomes.


Hepatic Encephalopathy , Neuroprotective Agents , Albumins/pharmacology , Ammonia , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Bilirubin , Caspase 3/metabolism , Hepatic Encephalopathy/chemically induced , Hepatic Encephalopathy/drug therapy , Hepatic Encephalopathy/metabolism , Interleukin-8/metabolism , Liver/metabolism , Male , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Superoxide Dismutase/metabolism , Thioacetamide/metabolism , Thioacetamide/toxicity , Tumor Necrosis Factor-alpha/metabolism
17.
Korean J Intern Med ; 37(4): 745-756, 2022 07.
Article En | MEDLINE | ID: mdl-35811365

BACKGROUND/AIMS: Efficient anti-fibrotic therapies are required for the treatment of liver cirrhosis. Hydroxymethylglutaryl-coenzyme A reductase inhibitors (statins) and cyclooxygenase-2 (COX-2) inhibitors have been reported to have anti-fibrotic effects. Here, we investigated whether combined treatment with a statin and a COX-2 inhibitor has synergistic anti-fibrotic effects. METHODS: The effects of treatment strategies incorporating both simvastatin and a COX-2 inhibitor, NS-398, were investigated using an immortalized human hepatic stellate cell line (LX-2) and a hepatic fibrosis mouse model developed using thioacetamide (TAA) in drinking water. Cellular proliferation was investigated via 5-bromo-2-deoxyuridine uptake. Pro- and anti-apoptotic factors were investigated through Western blotting and real-time polymerase chain reaction analysis. RESULTS: The evaluation of the anti-proliferative effects on LX-2 cells showed that the observed effects were more pronounced with combination therapy than with single-drug therapy. Moreover, hepatic fibrosis and collagen deposition decreased significantly in TAA-treated mice in response to the combined treatment strategy. The mechanisms underlying the anti-fibrotic effects of the combination therapy were investigated. The effects of the combination therapy were correlated with increased expression levels of extracellular signal-regulated kinase 1/2 signaling molecules, upregulation of the Bax/Bcl-2 signaling pathway, inhibition of the transforming growth factor-ß signaling pathway, and inhibition of tissue inhibitor of matrix metalloproteinases 1 and 2. CONCLUSION: The combination of simvastatin and NS-398 resulted in a synergistic anti-fibrotic effect through multiple pathways. These findings offer a theoretical insight into the possible clinical application of this strategy for the treatment of advanced liver diseases with hepatic fibrosis.


Cyclooxygenase 2 Inhibitors , Simvastatin , Animals , Cyclooxygenase 2 Inhibitors/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Mice , Nitrobenzenes , Simvastatin/metabolism , Simvastatin/pharmacology , Simvastatin/therapeutic use , Sulfonamides , Thioacetamide/metabolism , Thioacetamide/toxicity
18.
Curr Med Chem ; 29(31): 5254-5267, 2022 08 15.
Article En | MEDLINE | ID: mdl-35400322

BACKGROUND: Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with chemokine properties released by various immune and non-immune cells. It contributes to the pathogenesis of many inflammatory, autoimmune diseases and malignant tumors. OBJECTIVE: Our study aimed to investigate the role of betaine in the modulation of MIF-mediated oxidative stress, inflammation, and fibrogenesis during toxic kidney damage induced by thioacetamide (TAA). METHODS: The experiment is performed on wild-type and knockout MIF-/- C57BL/6 mice. They are randomly divided into groups: Control; Bet-group, received betaine (2% wt/v dissolved in drinking water); MIF-/- mice group; MIF-/- + Bet; TAA-group, treated with TAA (200 mg/kg b.w.), intraperitoneally, 3x/week/8 weeks); TAA+Bet; MIF-/-+TAA, and MIF-/- + TAA+Bet group. After eight weeks of treatment, animals are sacrificed and kidney samples are taken to determine oxidative stress parameters, proinflammatory cytokines, profibrogenic factors, and histopathology of renal tissue. RESULTS: In MIF-/-mice, TAA decreases malondialdehyde (MDA) concentration, IL-6, tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta 1 (TGF-ß1) and platelet-derived growth factor-BB (PDGF-BB) and increases superoxide dismutases (SOD) and catalase (CAT) activities, as well as glutathione (GSH) content in kidneys, compared to TAA group. Betaine alleviates the mechanism of MIF-mediated effects in TAA-induced nephrotoxicity, reducing MDA, IL-6, TNF-α, TGF-ß1, and PDGF-BB, and increasing SOD and CAT activity, as well as GSH levels. CONCLUSION: MIF mediates TAA-induced nephrotoxicity by increasing oxidative stress, inflammation, and profibrogenic mediators. MIF-targeted therapy could potentially alleviate oxidative stress and inflammation in the kidney, as well as pathohistological changes in renal tissue, but the exact mechanism of its action is not completely clear. Betaine alleviates MIF nephrotoxic effects by increasing the antioxidative capacity of kidney cells, and decreasing lipid peroxidation and cytokine production in the renal tissue. It suggests that betaine can be used for the prevention of kidney damage.


Kidney Diseases , Macrophage Migration-Inhibitory Factors , Animals , Antioxidants/pharmacology , Becaplermin/metabolism , Becaplermin/pharmacology , Betaine/metabolism , Betaine/pharmacology , Betaine/therapeutic use , Glutathione/metabolism , Inflammation/metabolism , Interleukin-6/metabolism , Kidney Diseases/metabolism , Liver/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Mice , Mice, Inbred C57BL , Oxidative Stress , Superoxide Dismutase/metabolism , Thioacetamide/metabolism , Thioacetamide/toxicity , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Tumor Necrosis Factor-alpha/metabolism
19.
Immunopharmacol Immunotoxicol ; 44(3): 355-366, 2022 Jun.
Article En | MEDLINE | ID: mdl-35255766

BACKGROUND: Liver fibrosis is a chronic wound-healing response to liver injury of various origins and represents a major health problem. OBJECTIVE: The current study endeavored to investigate the repressing effect of fisetin on hepatic fibrosis induced by thioacetamide (TAA) in rats. MATERIALS AND METHODS: Rats were injected with TAA (200 mg/kg) intraperitoneally twice per week for 6 weeks to induce liver fibrosis. Fisetin (50 and 100 mg/kg/day) or silymarin (50 mg/kg/day) were given orally on a daily basis along with TAA. Liver function parameters, oxidative stress, inflammatory and fibrogenic biomarkers as well as wnt3a, ß-catenin, glycogen synthase kinase 3 (GSK-3ß) and cyclin D1 were estimated. Histoapthological and immunohistochemical examinations were performed. RESULTS: Fisetin restored normal liver functions, increased reduced glutathione (GSH) level and decreased malondialdehyde (MDA), as well as inflammatory biomarkers including; tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6). Additionally, it lessened transforming growth factor ß1 (TGF-ß1), collagen I and tissue inhibitor of metalloproteinase-1 (TIMP-1) levels as well as elevated matrix metalloproteinase-9 (MMP-9) hepatic content. Furthermore, fisetin significantly suppressed wnt3a gene expression associated with decreased ß-catenin and increased GSK-3ß levels. Moreover, fisetin decreased the progress of histologic hepatic fibroplasia and diminished hepatic expression of α-SMA and cyclin D1. CONCLUSION: Fisetin curbed liver fibrosis and exhibited superior activity over silymarin through inhibition of hepatic stellate cells (HSCs) activation and proliferation via suppressing the Wnt/ß-catenin pathway, modulating MMP-9 and TIMP-1, and inhibiting multiple profibrogenic factors, besides its antioxidant and anti-inflammatory effects. Therefore, fisetin is a promising therapeutic candidate for hepatic fibrosis.


Silymarin , Thioacetamide , Animals , Biomarkers/metabolism , Cyclin D1/metabolism , Flavonols , Glycogen Synthase Kinase 3 beta/metabolism , Hepatic Stellate Cells/pathology , Liver , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Matrix Metalloproteinase 9 , Rats , Silymarin/metabolism , Silymarin/pharmacology , Silymarin/therapeutic use , Thioacetamide/metabolism , Thioacetamide/toxicity , Tissue Inhibitor of Metalloproteinase-1 , Wnt Signaling Pathway , beta Catenin
20.
Biomarkers ; 27(4): 375-394, 2022 Jun.
Article En | MEDLINE | ID: mdl-35234557

CONTEXT: Hepatic encephalopathy (HE) is a severe neuropsychiatric syndrome resulting from liver failure. OBJECTIVE: To evaluate the protective effect of Schefflera arboricola L. leaves methanol extract against thioacetamide (TAA) induced HE in rats. MATERIALS AND METHODS: GC/MS, LC-ESI-MS, and the total phenolic and flavonoid contents were determined. The methanol extract was orally administrated (100 and 200 mg/kg body weight) for 21 days. TAA (200 mg/kg body weight) was given intraperitoneally on day 19 and continued for three days. The evaluation was done by measuring alanine aminotransferase (ALT), alkaline phosphatase (ALP), ammonia, reduced glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO), tumour necrosis factor-alpha (TNF-α), toll-like receptor 4 (TLR4), interleukin-1 beta (IL-1ß), interlukin-6 (IL-6), cyclooxygenase 2 (COX2), B cell lymphoma 2 (BCL2), alpha-smooth muscle actin (α-SMA), and the cluster of differentiation 163 (CD163). The histological features of the liver and brain were conducted. RESULTS: Forty-five compounds were identified from the n-hexane fraction, while twenty-nine phenolic compounds were determined from the methanol extract. Pre-treatment with the plant extract returned most of the measurements under investigation to nearly normal. CONCLUSION: Due to its richness with bioactive compounds, Schefflera arboricola L. leaves methanolic extract succeeded to exert anti-fibrotic, anti-inflammatory, and antioxidants properties in TAA-induced HE in rats with more efficacy to its high protective dose.


Araliaceae , Hepatic Encephalopathy , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Body Weight , Hepatic Encephalopathy/chemically induced , Hepatic Encephalopathy/drug therapy , Hepatic Encephalopathy/metabolism , Humans , Liver/metabolism , Methanol , Oxidative Stress , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Rats , Rats, Wistar , Thioacetamide/metabolism , Thioacetamide/toxicity
...