Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Am J Physiol Cell Physiol ; 326(4): C1226-C1236, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38406827

ABSTRACT

Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.


Subject(s)
Cannabidiol , Neoplasms , Humans , Cisplatin/toxicity , Cannabidiol/pharmacology , Cannabidiol/metabolism , Cannabidiol/therapeutic use , Cachexia/metabolism , Catalase/metabolism , Quality of Life , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology , Muscle Fibers, Skeletal/metabolism , Muscular Atrophy/chemically induced , Muscular Atrophy/prevention & control , Muscular Atrophy/drug therapy , Oxidative Stress , Neoplasms/metabolism , RNA, Messenger/metabolism
2.
Libyan J Med ; 18(1): 2281116, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976165

ABSTRACT

This study aimed to investigate the effects of fullerene C60 on rat liver tissue in a liver ischemia reperfusion injury (IRI) model under sevoflurane anesthesia to evaluate the ability of nanoparticles to prevent hepatic complications. A total of 36 adult female Wistar Albino rats were divided into six groups, each containing six groups as follows: sham group (Group S), fullerene C60 group (Group FC60), ischemia-reperfusion group (Group IR), ischemia-reperfusion-sevoflurane group (Group IR-Sevo), ischemia-reperfusion-fullerene C60 group (Group IR-FC60), and ischemia-reperfusion-fullerene C60-sevoflurane group (Group IR-FC60-Sevo). Fullerene C60 100 mg/kg was administered to IR-FC60 and IR-FC60-Sevo groups. In the IR group, 2 h of ischemia and 2 h of reperfusion were performed. At the end of reperfusion, liver tissues were removed for biochemical assays and histopathological examinations. Hepatocyte degeneration, sinusoidal dilatation, prenecrotic cells, and mononuclear cell infiltration in the parenchyma were significantly higher in Group IR than in all other groups. Thiobarbituric acid reactive substances levels were significantly higher in Group IR than in the other groups, and the lowest thiobarbituric acid reactive substances level was in Group IR-FC60 than in the other groups, except for Groups S and FC60. Catalase and Glutathione-S-transferase activities were reduced in the IR group compared to all other groups. Fullerene C60 had protective effects against liver IR injury in rats under sevoflurane anesthesia. The use of fullerene C60 could reduce the adverse effects of IRI and the associated costs of liver transplantation surgery.


Subject(s)
Anesthesia , Reperfusion Injury , Female , Rats , Animals , Sevoflurane/pharmacology , Rats, Wistar , Thiobarbituric Acid Reactive Substances/pharmacology , Liver , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Ischemia/pathology
3.
Clin Exp Pharmacol Physiol ; 50(9): 757-765, 2023 09.
Article in English | MEDLINE | ID: mdl-37452691

ABSTRACT

Multiple myeloma (MM) has a high mortality rate, and the exploration of therapeutic drugs for MM with low side effects is a hot topic at the moment. Ginsenoside Rh4 has been shown to inhibit tumour growth in many cancers. However, the role of ginsenoside Rh4 in MM and its reaction mechanism have not been reported so far. After the treatment with different concentrations of ginsenoside Rh4, the proliferation of NCI-H929 cells was detected by Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine staining. The cell apoptosis and cycle arrest were detected by flow cytometry and western blot. The thiobarbituric acid-reactive substances (TBARS) production was assessed with TBARS assay, whereas Fe2+ fluorescence assay was used for the measurement of Fe2+ level. The production of reactive oxygen species was evaluated with dichloro-dihydro-fluorescein diacetate staining, and western blot was applied for the estimation of ferroptosis-related proteins. The potential targets of ginsenoside Rh4 were predicted by molecular docking technology and verified by western blot. The transfection efficacy of overexpression-SIRT2 was examined with quantitative reverse transcription polymerase chain reaction and western blot. To figure out the detailed reaction mechanism between ginsenoside Rh4 and SIRT2 in MM, rescue experiments were conducted. We found that ginsenoside Rh4 inhibited cell proliferation, induced cell apoptosis, promoted cycle arrest and facilitated ferroptosis in MM. Moreover, ginsenoside Rh4 inhibited SIRT2 expression in MM cells. The overexpression of SIRT2 reversed the effects of ginsenoside Rh4 on cell proliferation, cell apoptosis, cycle arrest and ferroptosis in MM. Overall, ginsenoside Rh4 inhibited the malignant progression of MM and induced ferroptosis by regulating SIRT2.


Subject(s)
Ferroptosis , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Sirtuin 2/pharmacology , Molecular Docking Simulation , Thiobarbituric Acid Reactive Substances/pharmacology , Apoptosis , Cell Proliferation , Cell Line, Tumor
4.
Acta Neurobiol Exp (Wars) ; 83(2): 216-225, 2023.
Article in English | MEDLINE | ID: mdl-37493537

ABSTRACT

This study investigated the effects of sub­chronic administration of lead (Pb) acetate on thiobarbituric acid reactive substances (TBA­RS), total sulfhydryl content, protein carbonyl content, antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH­Px]), acetylcholinesterase (AChE), and Na+K+­ATPase in the cerebral structures of rats. Male Wistar rats aged 60 days were treated with saline (control group) or Pb (treatment group), at various doses, by gavage, once a day for 35 days. The animals were sacrificed twelve hours after the last administration, and the cerebellum, hippocampus and cerebral cortex were removed. The results showed that Pb did not alter the evaluated oxidative stress parameters. Furthermore, Pb (64 and/or 128 mg/kg) altered SOD in the cerebellum, cerebral cortex and hippocampus. Pb (128 mg/kg) altered CAT in the cerebellum and cerebral cortex and GSH­Px in the cerebral cortex. Also, Pb (64 mg/kg and 128 mg/kg) altered GSH­Px in the cerebellum. Moreover, Pb (128 mg/kg) increased AChE in the hippocampus and decreased Na+K+­ATPase in the cerebellum and hippocampus. In conclusion, sub­chronic exposure to Pb (occupational and environmental intoxication) altered antioxidant enzymes, AChE, and Na+K+­ATPase, contributing to cerebral dysfunction.


Subject(s)
Acetylcholinesterase , Antioxidants , Rats , Male , Animals , Antioxidants/metabolism , Acetylcholinesterase/metabolism , Rats, Wistar , Protein Carbonylation , Lead/toxicity , Lead/metabolism , Oxidative Stress , Catalase/metabolism , Cerebral Cortex/metabolism , Superoxide Dismutase/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/pharmacology , Brain/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology
5.
Arch Immunol Ther Exp (Warsz) ; 71(1): 16, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37378741

ABSTRACT

α-Lipoic acid (α-LA) is a naturally occurring organosulfur component. Oxidative stress plays an essential role in the pathogenesis of various diseases, such as kidney and cardiovascular diseases, diabetes, neurodegenerative disorders, cancer and aging. Kidneys are especially vulnerable to oxidative stress and damage. The aim of the study was to evaluate the effect of α-LA on lipopolysaccharide (LPS)-induced oxidative stress parameters in rat kidneys. The experimental rats were divided into four groups: I-control (0.9% NaCl i.v.); II-α-LA (60 mg/kg b.w. i.v.); III-LPS (30 mg/kg b.w. i.v.); and IV-LPS + LA (30 mg/kg b.w. i.v. and 60 mg/kg b.w. i.v., respectively). In kidney homogenates the concentration of thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), sulfhydryl groups (-SH), total protein, superoxide dismutase (SOD), total glutathione (tGSH), reduced glutathione (GSH), glutathione disulphide (GSSG) and the GSH/GSSG ratio were determined. In addition, the levels of tumour necrosis factor (TNF)-α, and interleukin (IL)-6 were measured to assess inflammation and was estimated kidney oedema. Studies have shown that α-LA administered after LPS administration attenuated kidney oedema and significantly decreased TBARS, H2O2, TNF-α, and IL-6 levels in rat kidneys. α-LA also resulted in increase -SH group, total protein, and SOD levels and ameliorated the GSH redox status when compared to the LPS group. The results suggest that α-LA plays an important role against LPS-induced oxidative stress in kidney tissue as well as downregulating the expression of pro-inflammatory cytokines.


Subject(s)
Antioxidants , Thioctic Acid , Rats , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use , Thioctic Acid/metabolism , Lipopolysaccharides/pharmacology , Glutathione Disulfide/metabolism , Glutathione Disulfide/pharmacology , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology , Rats, Wistar , Oxidative Stress , Glutathione/metabolism , Glutathione/pharmacology , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Kidney
6.
Mar Environ Res ; 188: 106011, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37201292

ABSTRACT

Scallops Aequipecten tehuelchus (Patagonia, Argentina) were exposed to 0, 2, 5 and 12 µg Cd/L for 7 and 14 days, causing in digestive gland a significant production of reactive oxygen and nitrogen species (RONS), induction of catalase (CAT) and glutathione S-transferase (GST) activities and metallothioneins (MT) synthesis. In gills, there was inhibition of GST and induction of CAT, MT and α-tocopherol (α-Toc). In muscle, a significant increment of MT was also registered and inhibition of CAT. Lipid peroxidation, measured as TBARS, was not promoted in any tissue. More significant effects were observed in digestive gland than in gills and muscle, evidencing the critical role of digestive gland in Cd accumulation and metabolisation. This research would evidence dose-dependent effects of Cd on MT, GST, CAT and α-Toc in the three organs assayed, as well as a time-dependent effect of Cd on the response of CAT, GST and TBARS in digestive gland.


Subject(s)
Pectinidae , Water Pollutants, Chemical , Animals , Cadmium/toxicity , Cadmium/metabolism , Oxidative Stress , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology , Reactive Oxygen Species/metabolism , Catalase/metabolism , Lipid Peroxidation , Gills , Glutathione Transferase/metabolism , Water Pollutants, Chemical/analysis , Biomarkers/metabolism , Superoxide Dismutase/metabolism
7.
J Nippon Med Sch ; 90(1): 41-49, 2023.
Article in English | MEDLINE | ID: mdl-36908127

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) -a minimally invasive anti-cancer therapy-is undergoing experimental studies to increase its anti-cancer effects. This study investigated the influence of iron on the anti-cancer effects of PDT. METHODS: PDT was performed in a cancer-bearing mouse model, which was created by using a murine colon carcinoma (CT26) cell line after administration of Photolon and iron. Tumor volume and the results of TdT-mediated dUTP-biotin nick end labeling (TUNEL), 8-OHdG, and TBARS assays were used to measure anti-cancer effect. RESULTS: On day 14, tumor volume had increased by 49% in the PDT group and decreased by 72% in the iron+PDT group. The percentage of TUNEL-positive cells in tumor tissues was 45% in the PDT group and 69% in the iron+PDT group, suggesting that the proportion of TUNEL-positive cells had increased in the iron+PDT group. The 8-OHdG content in tumor tissues was 33% higher in the iron+PDT group than in the PDT group. The TBARS content in tumor tissues was 46% higher in the iron+PDT group than in the PDT group. CONCLUSIONS: Iron enhances the anti-cancer effect of PDT using Photolon, most likely by increasing oxidative damage.


Subject(s)
Colonic Neoplasms , Photochemotherapy , Porphyrins , Mice , Animals , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Iron , Thiobarbituric Acid Reactive Substances/pharmacology , Apoptosis , Porphyrins/pharmacology , Disease Models, Animal , Cell Line, Tumor
8.
Microvasc Res ; 146: 104474, 2023 03.
Article in English | MEDLINE | ID: mdl-36592817

ABSTRACT

BACKGROUND: This study aimed to evaluate the coronary function, myocardium, and epicardial adipose tissue (EAT) in female rats with severe type 1 diabetes and the effects of combined treatment with insulin and pyridoxamine (AGEs inhibitor). METHODS: Female Wistar rats were divided into groups: control (CTR, n = 13), type 1 diabetes (DM1, n = 12), type 1 diabetes treated with insulin (DM1 + INS, n = 11), and type 1 diabetes treated with insulin and pyridoxamine (DM1 + INS + PDX, n = 14). The vascular responsiveness was performed in the septal coronary artery and the protein expressions of AGE, RAGE, GPER, NF-kB was evaluated in the left ventricle (LV), as well as the reactive oxygen species (ROS) was measured in LV and in EAT. We analyzed plasma levels of glucose, estradiol, Nε-carboxymethylisine (CML), thiobarbituric acid reactive substances (TBARS), catalase (CAT), and superoxide dismutase (SOD). RESULTS: The maximal responses to ACh were reduced in the DM1 compared with the CTR group, accompanied by an increase in circulating glucose, CML, and TBARS. Additionally, the expression of NF-kB in LV and generation of ROS in the presence of MnTMPyP (SOD mimetic) were increased in the DM1 group compared with CTR. Only the combined treatment was effective for fully re-establish ACh relaxation response, NF-kB protein expression, ROS generation, and increased SOD activity in the DM1 + INS + PDX group. CONCLUSION: The reduction of the endothelium-dependent relaxation response in the septal coronary artery of female rats with severe type 1 diabetes was normalized with the combined treatment with insulin and pyridoxamine, associated with reduced inflammation and oxidative stress in the myocardium and increased circulating antioxidant activity.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Rats , Female , Animals , Insulin/pharmacology , Diabetes Mellitus, Type 1/drug therapy , Pyridoxamine/pharmacology , Reactive Oxygen Species/metabolism , Rats, Wistar , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology , NF-kappa B/metabolism , Diabetes Mellitus, Experimental/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Glucose
9.
Int J Vitam Nutr Res ; 93(3): 241-251, 2023 Jun.
Article in English | MEDLINE | ID: mdl-34013788

ABSTRACT

Aim: This systematic review and meta-analysis aimed to evaluate the effects of chromium supplementation on oxidative stress biomarkers such as superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPX), malondialdehyde (MDA), total antioxidant status (TAS), thiobarbituric acid reactive substances (TBARS), catalase (CAT), nitric oxide (NO), total antioxidant capacity (TAC) and protein carbonyl. Methods: Relevant studies, published from inception until July 2019, were searched through PubMed/Medline, Scopus, ISI Web of Science, Embase, and Google Scholar. All randomized clinical trials investigating the effect of chromium supplementation on oxidative stress were included. Results: Out of 252 citations, 10 trials that enrolled 595 subjects were included. Chromium supplementation resulted in a significant increase in GSH (WMD: 64.79 mg/dl, 95% CI: 22.43 to 107.15; P=0.003) but no significant change in MDA, TAS, TBARS levels, SOD, CAT levels and GPX. Chromium picolinate supplementation resulted in a significant increase in TAC while failing to have a significant effect on NO. Moreover, both chromium picolinate and chromium dinicocysteinate supplementation reduced protein carbonyl levels. Conclusion: Overall, this meta-analysis demonstrated that chromium supplementation increased GSH without any significant changes in the mean of GPX, MDA, TAS, TBARS, CAT and SOD.


Subject(s)
Antioxidants , Oxidative Stress , Antioxidants/pharmacology , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology , Biomarkers/metabolism , Glutathione Peroxidase/metabolism , Dietary Supplements , Superoxide Dismutase/metabolism
10.
Nutr Metab Cardiovasc Dis ; 33(1): 203-209, 2023 01.
Article in English | MEDLINE | ID: mdl-36344308

ABSTRACT

BACKGROUND AND AIMS: Slow, deep breathing (SDB) lowers blood pressure (BP) though the underlying mechanisms are unknown. Redox improvements could facilitate hemodynamic adjustments with SDB though this has not been investigated. The purpose of this randomized, sham-controlled trial was to examine the acute effects of SDB on oxidative stress and endothelial function during a physiological perturbation (high-fat meal) known to induce oxidative stress. METHODS AND RESULTS: Seventeen males (ages 18-35 years) were enrolled, and anthropometric measurements and 7-day physical activity monitoring were completed. Testing sessions consisted of 24-h diet recalls (ASA24), blood sample collection for superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS) analysis, and flow-mediated dilation (FMD). High-fat meals were ingested and 2-min breathing exercises (SDB or sham control breathing) were completed every 15 min during the 4-h postprandial phase. Blood sample collection and FMD were repeated 1-, 2-, and 4-h post meal consumption. Mean body mass index and step counts were 25.6 ± 4.3 kg/m2 and 8165 ± 4405 steps per day, respectively. Systolic and diastolic BP and nutrient intake 24 h prior were similar between conditions. No time or time by condition interaction effects were observed for FMD. The total area under the curve (AUC) for SOD was significantly lower during SDB compared to the sham breathing condition (p < 0.01). No differences were observed in TBARS AUC (p = 0.538). CONCLUSIONS: Findings from the current investigation suggest that SDB alters postprandial redox in the absence of changes in endothelial function in young, healthy males. CLINICAL TRIAL REGISTRATION NUMBER: NCT04864184. CLINICAL TRIALS IDENTIFIER: NCT04864184.


Subject(s)
Blood Glucose , Diet , Male , Humans , Young Adult , Adolescent , Adult , Cross-Over Studies , Thiobarbituric Acid Reactive Substances/analysis , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology , Blood Glucose/metabolism , Oxidative Stress , Postprandial Period/physiology , Endothelium, Vascular
11.
Neurol Res ; 45(5): 423-428, 2023 May.
Article in English | MEDLINE | ID: mdl-36449323

ABSTRACT

BACKGROUND: Humans are constantly exposed to sulfites and their derivatives, both endogenously and exogenously. Recent studies have shown that sulfite and its derivatives can cause oxidative stress. . Ghrelin has been reported to possess antioxidant properties and stimulates neurogenesis in hippocampal progenitor cells. This study aimed to investigate the effects of ghrelin on sulfite-induced changes in hippocampal oxidative status, spatial learning and locomotor activity in rats. METHODS: Forty male albino Wistar rats were randomized into four groups as follows; Group 1: Control (C); Group 2: Sodium metabisulfite (Na2S2O5) treated (S); Group 3: Ghrelin treated (G); Group 4: Na2S2O5 + Ghrelin treated (SG). Sodium metabisulfite (100 mg/kg/day) was given by gastric gavage, and ghrelin (20 µg/kg/day) was administered intraperitoneally for 5 weeks. Thiobarbituric acid reactive substances (TBARS) were measured through fluorometric method. The spatial memory and locomotor activity of the rats were evaluated by Y-maze test. RESULTS: Y-maze results revealed an enhancement of short-term spatial learning and memory in S and SG groups compared to C group. TBARS levels were increased significantly in S group with respect to C group. The increase in TBARS levels induced by sulfite was completely prevented by ghrelin in SG group. CONCLUSION: We suggest that systemic ghrelin administration might ameliorate ingested sodium metabisulfite-induced hippocampal oxidative damage without providing any changes in spatial learning, memory and locomotion. Further investigation concerning the mechanism of ghrelin action in hippocampus might provide valuable information for developing new therapeutic approaches to attenuate oxidative stress in hippocampal tissue.


Subject(s)
Ghrelin , Spatial Memory , Humans , Rats , Male , Animals , Lipid Peroxidation , Ghrelin/pharmacology , Thiobarbituric Acid Reactive Substances/pharmacology , Rats, Wistar , Sulfites/toxicity , Oxidative Stress , Locomotion , Hippocampus
12.
Probiotics Antimicrob Proteins ; 15(2): 411-423, 2023 04.
Article in English | MEDLINE | ID: mdl-36534210

ABSTRACT

Kefir is a probiotic mixture with anxiolytic and antioxidant properties. Chronic stress can lead to anxiety disorders and increase oxidative damage in organs such as the heart and kidney. In this study, we examined whether kefir ameliorates the anxiety-like behavior of mice submitted to chronic unpredictable stress (CUS) by modulating brain-derived neurotrophic factor (BDNF) and corticosterone levels and whether kefir modifies the oxidative parameters in the heart and kidney of mice. Male Swiss mice received kefir (0.3 mL/100 g/day) or milk for 30 days (gavage). On the 10th day, the mice were submitted to CUS. Behavioral analysis was performed using the elevated plus maze and forced swimming tests. BDNF levels were analyzed in brain tissues. Heart and kidney superoxide dismutase (SOD), catalase, glutathione (GSH), thiobarbituric acid reactive substances (TBARS), 3-nitrotyrosine, metalloproteinase-2 (MMP-2), and plasma corticosterone were evaluated. Kefir reverted the CUS-induced decrease in the time spent in the open arms, the increase in grooming frequency, and decrease in the head dipping frequency, but not the reduced immobility time. CUS decreased the cerebellum BDNF levels and increased corticosterone levels, which were restored by Kefir. Neither catalase and SOD activities nor GSH, TBARS, 3-nitrotyrosine, and MMP-2 were modified by CUS in the heart. In the kidney, CUS increased 3-nitrotyrosine and MMP-2. Kefir increased the antioxidant defense in the heart and kidney of control and CUS mice. These results suggest that kefir ameliorated CUS-induced anxiety-like behavior by modulating brain BDNF and corticosterone levels. Kefir also increased the antioxidant defense of mice heart and kidney.


Subject(s)
Antioxidants , Kefir , Mice , Male , Animals , Antioxidants/pharmacology , Catalase/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Matrix Metalloproteinase 2/pharmacology , Corticosterone/pharmacology , Thiobarbituric Acid Reactive Substances/pharmacology , Oxidative Stress , Glutathione/metabolism , Kidney/metabolism , Superoxide Dismutase , Central Nervous System/metabolism , Disease Models, Animal
13.
Int Endod J ; 56(2): 164-178, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36261317

ABSTRACT

AIM: To analyse the effects of melatonin (ME) treatment on oxidative stress and insulin resistance (IR) in rats with apical periodontitis (AP) fed a high-fat diet (HFD). METHODOLOGY: Eighty 60-day-old rats were divided into eight groups: control (CN), AP, HFD with AP (HFDAP), control with ME (CNME), AP with ME (APME), HFD with ME (HFDME) and HFD with AP+ME (HFDAPME). The animals from the HFD groups were fed a HFD throughout the experimental period. On day 7, the animals from the AP groups were subjected to experimental AP, and after 70 days, the ME groups were treated for 30 days. Glycaemia, insulinaemia, homeostatic model assessment for IR index, tumour necrosis factor-α (TNF-α), and interleukin-6 were analysed in plasma using biochemical tests and enzyme-linked immunosorbent assay. Thiobarbituric acid-reactive substances (TBARS), carbonyl protein (CP), superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione (GSH) and total antioxidant capacity (ferric reducing antioxidant power [FRAP]) were analysed in the gastrocnemius muscle. RESULTS: (1) Association of AP and HDF exacerbated IR, and ME treatment improved this alteration; (2) AP and HFD and their association showed increased TNF-α, and ME reversed it; (3) TBARS increased in the AP and HFDAP groups, and ME reversed only in the group with the association of disease and diet; (4) CP increased in all HFD groups and improved in the ME groups; (5) GSH activity decreased in all experimental groups, and ME increased this parameter only in the CN and AP groups; (6) FRAP did not change between the groups, but ME treatment increased its activity in the AP and HFD groups; (7) ME increased SOD in the CN and AP groups. CONCLUSION: Apical periodontitis and HFD promoted IR, and the association of AP with diet promoted IR exacerbation; this resistance might have been caused by an increase in TNF-α. AP promoted more intense changes in lipid oxidative damage than in protein oxidative damage. In non-enzymatic antioxidant defence, it was observed that both AP and HFD and their association promoted a decrease in GSH levels. Overall, ME treatment reversed changes such as oxidative stress and IR.


Subject(s)
Insulin Resistance , Melatonin , Periapical Periodontitis , Rats , Animals , Antioxidants/pharmacology , Melatonin/pharmacology , Melatonin/therapeutic use , Insulin Resistance/physiology , Tumor Necrosis Factor-alpha/metabolism , Diet, High-Fat/adverse effects , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology , Rats, Wistar , Oxidative Stress , Glutathione/metabolism , Superoxide Dismutase/metabolism
14.
Eur Rev Med Pharmacol Sci ; 26(10): 3419-3429, 2022 05.
Article in English | MEDLINE | ID: mdl-35647821

ABSTRACT

OBJECTIVE: Di-n-butyl phthalate (DBP) is a ubiquitous environmental pollutant, extensively used as a plasticizer in many products, including plastics, cosmetics, and medical devices. Naringenin (NAR) is a flavonoid belonging to the flavanones subclass. It is widely distributed in several citrus fruits, bergamot, tomatoes, and other fruits. It is also found in its glycoside form (mainly naringin). Several biological activities have been ascribed to this phytochemical: antioxidant, antitumor, antiviral, antibacterial, anti-inflammatory, antiadipogenic, and cardioprotective effects. This study hypothesized that phthalates' possible reproductive damage mechanism is oxidative attack, and naringenin could have a protective effect against radical forms in the body through its antioxidant properties. MATERIALS AND METHODS: Thirty-two male rats were used in our study (n=8 each). Rats were randomly divided into four groups: Control, DBP, DBP +NAR and NAR. Phthalate (DBP) and NAR were administered through gastric oral gavage (phthalate group 500 mg/kg/day DBP; NAR group 50 mg/kg/day NAR). At the end of four weeks, testis tissue samples were taken under anesthesia. Testis tissue and blood samples were collected from the four groups in this study. Histological, biochemical and spermatological analyses were conducted. RESULTS: Tissue samples from the control and NAR groups showed normal histological appearance on light microscopy. The DBP group exhibited deterioration in seminiferous tubules, vascular congestion in capsule, vascular congestion between the seminiferous tubules, edema in the intestinal area and vacuolization, arrested spermatocytes in different stages of division; sloughing of cells into the seminiferous tubular lumen was observed. It was also observed that NAR treatment significantly inhibited and prevented the histopathological damage caused by DBP. Tissue TBARS, antioxidant parameters, sperm motility, sperm density and abnormal spermatozoon ratios were determined. As a result, it was shown that DBP caused oxidative damage by increasing TBARS levels and decreasing antioxidant parameters, increased abnormal sperm rate and decreased sperm motility, and concentration and histopathological damage, so the antioxidant activity of naringenin inhibited this damage. CONCLUSIONS: DBP had toxic effects in rat testis tissue; NAR treatment ameliorated these effects. Further studies are warranted to confirm our findings.


Subject(s)
Flavanones , Sperm Motility , Animals , Antioxidants/pharmacology , Dibutyl Phthalate/toxicity , Flavanones/pharmacology , Male , Phthalic Acids , Rats , Thiobarbituric Acid Reactive Substances/pharmacology
15.
Clin Oral Investig ; 26(9): 5833-5846, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35556176

ABSTRACT

OBJECTIVES: To investigate the effects of anti-obesity drug sibutramine hydrochloride (SB) on redox state and biochemical parameters in the salivary glands. MATERIALS AND METHODS: Adult male Wistar rats were randomly divided into the following groups (n = 8 per group): control rats treated with vehicle (C) and rats treated with SB (10 mg/kg/day) by intragastric gavage for 28 days. The parotid (PG) and submandibular (SMG) glands were processed using histomorphometric analysis, and total protein, amylase, mucin, and oxidative damage to lipids were determined by measuring the formation of thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC), uric acid (UA), total glutathione (tGSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and AKT phosphorylation. RESULTS: SB decreased the acinar area, and increased the stromal area in PG, while no effect on the morphometric parameters was observed in SMG. SB also increased oxidative damage to lipids (TBARs). The SB group showed lower total protein, amylase, TAC, UA, tGSH, SOD, CAT, and GPx than the C group in PG, while in SMG, SB decreased total protein, mucin, tGSH, SOD, CAT, and GPx. However, increased AKT phosphorylation observed in both salivary glands suggests that SB exerts low-intensity oxidative stress. CONCLUSIONS: SB impaired enzymatic and non-enzymatic antioxidant defenses in the salivary glands of rats. CLINICAL RELEVANCE: Chronic treatment with SB could mitigate salivary gland dysfunction due to disturbance of redox state.


Subject(s)
Anti-Obesity Agents , Antioxidants , Amylases/metabolism , Animals , Anti-Obesity Agents/metabolism , Anti-Obesity Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Cyclobutanes , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/pharmacology , Lipids , Male , Mucins/metabolism , Oxidation-Reduction , Oxidative Stress , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Rats , Rats, Wistar , Salivary Glands , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology
16.
Int J Pharm ; 618: 121683, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35314276

ABSTRACT

Parkinson's disease (PD) is triggered by the formation of free radicals in dopaminergic neurons, which results in oxidative stress-induced neurodegeneration. The objective of the work was to relieve oxidative stress by employing intranasal delivery of Bromocriptine Mesylate (BRM) and Glutathione (GSH) loaded nanoemulsion for the better management of PD. The depth of permeation of the nanoemulsion was assessed through confocal laser scanning microscopy (CLSM) which revealed higher nanoemulsion permeation in contrast to suspension. Biocompatibility of nanoemulsion was confirmed by nasal cilio toxicity study. The DPPH study showed that the nanoemulsion had significant antioxidant activity. Biochemical estimation studies in Wistar rats were carried out in order to determine the effect of nanoemulsion on oxidative stress. The levels of GSH, superoxide dismutase (SOD), and catalase (CAT) were significantly enhanced; and the level of thiobarbituric acid reactive substances (TBARS) was significantly reduced after the intranasal administration of nanoemulsion in the haloperidol-induced model of PD. Furthermore, the levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were also determined which reduced significantly after the administration of nanoemulsion. The oxidative stress levels were lowered with nanoemulsion, showing the combined antioxidant capability of BRM and GSH. The neuroprotective effect of the prepared nanoemulsion was confirmed by histopathological studies. Pharmacokinetic study revealed a higher concentration of BRM and GSH in the brain of Wistar rats after intranasal administration of nanoemulsion with a higher Brain/Plasma ratio. A higher value of AUC(0-8) of nanoemulsion in the brain after intranasal administration revealed that BRM and GSH remained in the brain for a longer period due to sustained release from nanoemulsion. According to the findings, BRM and GSH loaded nanoemulsion has the potential to provide a combined and synergistic anti-oxidant effect for efficient management of PD.


Subject(s)
Parkinson Disease , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Bromocriptine/pharmacology , Catalase/metabolism , Emulsions/chemistry , Glutathione/metabolism , Oxidative Stress , Parkinson Disease/drug therapy , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology
17.
Neurol Res ; 44(7): 659-666, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35129095

ABSTRACT

AIM: We aimed to investigate the effects of erythropoietin, acetyl-l-carnitine, and their combination on nerve regeneration in experimental peripheral nerve injury. METHODS: Rats were randomly divided into five groups - sham-operated (S), sciatic nerve crush injury (C), C + acetyl-l-carnitine (ALCAR), C + erythropoietin (EPO), and C + EPO + ALCAR. ALCAR (50 mg/kg/day) was administered intraperitoneally, and EPO (5000 U/kg) was injected subcutaneously for 10 days. Functional recovery was evaluated using walking track analysis (sciatic functional index [SFI]), somatosensory evoked potentials (SEPs), thiobarbituric acid reactive substance (TBARS) assay, and caspase-3 and S100 immunoreactivities. RESULTS: In SFI analyses, delayed functional recovery was observed in the C group, whereas the functional recovery of rats treated with EPO and ALCAR significantly improved. The latencies of the SEP components were significantly prolonged in C group. In the treatment groups (C + EPO, C + ALCAR, and C + EPO + ALCAR), all recorded values of SEP components significantly decreased. TBARS levels in C group were significantly higher than those in the S group. EPO and ALCAR administration significantly decreased TBARS levels. Caspase-3 immunoreactivity was increased in the C group, whereas it was decreased in the treatment groups. S100 immunolabelling was significantly decreased in the C group. EPO and ALCAR administration caused an increase in the amount of S100-positive cells in all treatment groups. CONCLUSION: EPO and ALCAR administration could accelerate sciatic nerve repair by reducing apoptosis and lipid peroxidation and promoting myelinization. Although both EPO and ALCAR had positive effects on nerve healing, their combined efficacy had no statistically significant effect on peripheral nerve regeneration.


Subject(s)
Erythropoietin , Peripheral Nerve Injuries , Sciatic Neuropathy , Acetylcarnitine/pharmacology , Acetylcarnitine/therapeutic use , Animals , Caspase 3 , Erythropoietin/pharmacology , Erythropoietin/therapeutic use , Nerve Regeneration/physiology , Peripheral Nerve Injuries/drug therapy , Rats , Sciatic Nerve , Sciatic Neuropathy/drug therapy , Thiobarbituric Acid Reactive Substances/pharmacology
18.
Obes Res Clin Pract ; 16(2): 130-137, 2022.
Article in English | MEDLINE | ID: mdl-35183472

ABSTRACT

BACKGROUND: Obesity is accompanied by insulin resistance and glucose intolerance, which favor the onset of complications related to oxidative stress. The aim of this study was to investigate the effects and underlying mechanisms of hydroethanolic extract from Siolmatra brasiliensis stems on insulin resistance, glucose intolerance, advanced glycation end product (AGE) formation, and oxidative stress in mice with induced obesity. METHODS: C57BL-6 J mice were fed a high-fat diet for 14 weeks and treated with 125 or 250 mg/kg S. brasiliensis extract during the last 7 weeks. The study assessed glucose tolerance and insulin sensitivity, lipid profile, plasma levels of thiobarbituric acid reactive substances (TBARS, biomarkers of oxidative damage), fluorescent AGEs (biomarkers of advanced glycation), and paraoxonase 1 (PON1) activity (antioxidant enzyme). The activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in the liver and kidneys were also investigated. RESULTS: Siolmatra brasiliensis extract had antiobesogenic effects; improved insulin sensitivity and glucose tolerance; decreased the total plasma cholesterol levels; decreased the levels of glycoxidative stress biomarkers, including AGEs (plasma, liver, kidneys) and TBARS (liver, kidneys); and also improved endogenous antioxidant defenses by increasing the activities of PON1 (plasma), SOD (kidneys), CAT (liver, kidneys), and GSH-Px (kidneys). CONCLUSION: This study expands on our knowledge about the pharmacological properties of S. brasiliensis and substantiates the potential of this plant species to be used as a complementary therapeutic agent to alleviate the metabolic dysfunctions resulting from dyslipidemia and glycoxidative stress.


Subject(s)
Glucose Intolerance , Insulin Resistance , Animals , Antioxidants/pharmacology , Aryldialkylphosphatase , Biomarkers/metabolism , Diet, High-Fat , Glucose/metabolism , Glucose Intolerance/drug therapy , Glucose Intolerance/metabolism , Humans , Lipid Peroxidation , Liver/metabolism , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism , Oxidative Stress , Plant Extracts/pharmacology , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology
19.
Anim Biotechnol ; 33(5): 842-850, 2022 Oct.
Article in English | MEDLINE | ID: mdl-33164663

ABSTRACT

This study investigated the effect of potato peel extract (PPE), orally administrated to rabbits, on serum blood metabolites and ameliorating oxidative stress induced by cold stress under Egyptian winter conditions. Twenty-four bucks grouped into three treatments (8 animals per group) were used for the experiment. The animals received 1.5 ml of water orally, containing 0 (PPE0), 25 (PPE25) or 50 (PPE50) mg PPE/kg live weight. Bucks were randomly assigned into three homogenous equal groups according to the level of PPE. Treatments were applied to each animal every two days over a period of three months including one month as an adaptation period. At the 8th week of the experiment, blood samples were collected from each buck and at the end of the experiment, bucks were slaughtered, and some organs were collected and weighed. The PPE improved (p < 0.05) blood total protein, albumin, globulin and glucose. The blood concentration of total lipid, cholesterol, triglyceride, low density lipoprotein and very low-density lipoprotein (were increased (p < 0.02) in PPE rabbits. Furthermore, PPE extract doses decreased (p < 0.001) oxidant thiobarbituric reactive substance (TBARS) in both blood and liver. Other liver and blood antioxidant system enzymes such as catalase, glutathione peroxidase, and superoxide dismutase were improved (p < 0.005) by PPE supplementation. Overall, oral administration of PPE up to 50 mg/kg live weight can have positive effects on rabbit health under cold stress.


Subject(s)
Antioxidants , Solanum tuberosum , Administration, Oral , Albumins/metabolism , Albumins/pharmacology , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Catalase/pharmacology , Cholesterol/metabolism , Cold-Shock Response , Glucose/metabolism , Glucose/pharmacology , Glutathione Peroxidase/pharmacology , Lipids , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Liver , Oxidants/metabolism , Oxidants/pharmacology , Oxidative Stress , Plant Extracts/pharmacology , Rabbits , Solanum tuberosum/metabolism , Superoxide Dismutase , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology , Triglycerides/metabolism , Water/metabolism , Water/pharmacology
20.
J Dev Orig Health Dis ; 13(2): 177-186, 2022 04.
Article in English | MEDLINE | ID: mdl-33975670

ABSTRACT

The benefits of consuming soy and its protein have been reported in many studies. However, its phytoestrogen content raises concerns about consumption during lactation and gestation We therefore examined the effects of soybean or soy protein isolate on the parameters-related cardiovascular pathophysiology in lactating mothers and their offsprings at weaning and adulthood. Lactating rats were divided: casein control (C); soy protein isolate (SPI); and soybean (S). At weaning, half of the litter received commercial ration up to 150 days. The levels of 17-ß-estradiol and superoxide dismutase were low in the S mothers. For the SPI mothers, we observed a reduction of thiobarbituric acid reactive substances (TBARS). At weaning, atherogenic indices [1 = total cholesterol (TC)/HDL; 2 = LDL/HDL; 3 = TC-HDL/HDL)] decreased in the S and SPI offsprings compared to the casein control group; TBARS and antioxidant enzymes increased in the S offspring, while reduced/oxidized glutathione ratio increased in the SPI offspring, indicating lower oxidative stress. In adulthood, the SPI offspring showed an increase in liver cholesterol and atherogenic index 1 and 3 (vs. C and S) and 2 (vs. S). In addition, we found a decrease in catecholamines in the adrenal medulla and an increase in caffeine-stimulated secretion, but tyrosine hydroxylase expression remained constant. Maternal consumption of SPI during lactation worsened atherogenic indices of the offsprings in adulthood, which was associated with increased liver cholesterol and decreased catecholamines in the adrenal medulla. Soy consumption had no consistent long-term effects on the evaluated parameters compared to casein consumption. The data suggest that the consumption of SPI during lactation should be done with caution.


Subject(s)
Lactation , Soybean Proteins , Animals , Caseins/adverse effects , Caseins/metabolism , Catecholamines/metabolism , Catecholamines/pharmacology , Cholesterol/metabolism , Diet , Female , Lipid Metabolism , Liver/metabolism , Rats , Soybean Proteins/adverse effects , Soybean Proteins/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Thiobarbituric Acid Reactive Substances/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...