Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 75(11): 3452-3466, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38497815

ABSTRACT

The 2-(2-phenethyl)chromones (PECs) are the signature constituents responsible for the fragrance and pharmacological properties of agarwood. O-Methyltransferases (OMTs) are necessary for the biosynthesis of methylated PECs, but there is little known about OMTs in Aquilaria sinensis. In this study, we identified 29 OMT genes from the A. sinensis genome. Expression analysis showed they were differentially expressed in different tissues and responded to drill wounding. Comprehensive analysis of the gene expression and methylated PEC content revealed that AsOMT2, AsOMT8, AsOMT11, AsOMT16, and AsOMT28 could potentially be involved in methylated PECs biosynthesis. In vitro enzyme assays and functional analysis in Nicotiana benthamiana demonstrated that AsOMT11 and AsOMT16 could methylate 6-hydroxy-2-(2-phenylethyl)chromone to form 6-methoxy-2-(2-phenylethyl)chromone. A transient overexpression experiment in the variety 'Qi-Nan' revealed that AsOMT11 and AsOMT16 could significantly promote the accumulation of three major methylated PECs. Our results provide candidate genes for the mass production of methylated PECs using synthetic biology.


Subject(s)
Methyltransferases , Plant Proteins , Thymelaeaceae , Thymelaeaceae/genetics , Thymelaeaceae/metabolism , Thymelaeaceae/enzymology , Methyltransferases/metabolism , Methyltransferases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Chromones/metabolism , Wood/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Methylation , Gene Expression Regulation, Plant , Flavonoids
2.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474581

ABSTRACT

Endothelial pro-inflammatory activation is pivotal in cardiac ischemia-reperfusion (I/R) injury pathophysiology. The dried flower bud of Edgeworthia gardneri (Wall.) Meisn. (EG) is a commonly utilized traditional Tibetan medicine. However, its role in regulating endothelium activation and cardiac I/R injury has not been investigated. Herein, we showed that the administration of EG ethanolic extract exhibited a potent therapeutic efficacy in ameliorating cardiac endothelial inflammation (p < 0.05) and thereby protecting against myocardial I/R injury in rats (p < 0.001). In line with the in vivo findings, the EG extract suppressed endothelial pro-inflammatory activation in vitro by downregulating the expression of pro-inflammatory mediators (p < 0.05) and diminishing monocytes' firm adhesion to endothelial cells (ECs) (p < 0.01). Mechanistically, we showed that EG extract inhibited the nuclear factor kappa-B (NF-κB), c-Jun N-terminal kinase (JNK), extracellular regulated protein kinase (ERK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways to attenuate EC-mediated inflammation (p < 0.05). Collectively, for the first time, this study demonstrated the therapeutic potential of EG ethanolic extract in alleviating I/R-induced inflammation and the resulting cardiac injury through its inhibitory role in regulating endothelium activation.


Subject(s)
Myocardial Reperfusion Injury , Thymelaeaceae , Rats , Animals , Endothelial Cells/metabolism , NF-kappa B/metabolism , Inflammation/drug therapy , Plant Extracts/pharmacology , Myocardial Reperfusion Injury/drug therapy , Endothelium/metabolism , Thymelaeaceae/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
3.
BMC Plant Biol ; 23(1): 567, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37968605

ABSTRACT

BACKGROUND: Edgeworthia chrysantha, a deciduous shrub endemic to China, is known for its high ornamental value, extensive cultivation history, and wide-ranging applications. However, theoretical research on this plant is severely lacking. While its flowering process displays striking color transitions from green (S1) to yellow (S2) and then to white (S3), the scientific exploration of this phenomenon is limited, and the underlying regulatory mechanisms are yet to be elucidated. RESULTS: Correlation analysis between phenotypic measurements and pigment content revealed that carotenoids and chlorophyll are the key pigments responsible for the color changes. Metabolomic analysis of carotenoids demonstrated that lutein and ß-carotene were present at higher levels in S1, while S2 exhibited increased diversity and quantity of carotenoids compared to other stages. Notably, antheraxanthin, zeaxanthin, lycopene, and α-cryptoxanthin showed significant increases. In S3, apart from the colorless phytoene, other carotenoid metabolites were significantly reduced to extremely low levels. Transcriptomic data indicated that PSY, Z-ISO, crtZ, ZEP, PDS and ZDS are key genes involved in carotenoid biosynthesis and accumulation, while NCED plays a crucial role in carotenoid degradation. SGR was identified as a key gene contributing to the progressive decline in chlorophyll content. Additionally, three transcription factors potentially regulating carotenoid metabolism were also identified. CONCLUSIONS: This study represents the first systematic investigation, spanning from phenotypic to molecular levels, of the color-changing phenomenon in E. chrysantha. The study elucidates the crucial pigments, metabolites, genes, and transcription factors responsible for flower color changes during the flowering process, thereby providing preliminary understanding of the intrinsic regulatory mechanisms. These findings establish a theoretical foundation for the genetic improvement of flower color in E. chrysantha.


Subject(s)
Thymelaeaceae , Transcriptome , Carotenoids/metabolism , Chlorophyll/metabolism , Transcription Factors/genetics , Metabolome , Thymelaeaceae/metabolism , Gene Expression Regulation, Plant
4.
BMC Plant Biol ; 22(1): 464, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36171555

ABSTRACT

BACKGROUND: Agarwood is a valuable Chinese medicinal herb and spice that is produced from wounded Aquilaria spp., is widely used in Southeast Asia and is highly traded on the market. The lack of highly responsive Aquilaria lines has seriously restricted agarwood yield and the development of its industry. In this article, a comparative transcriptome analysis was carried out between ordinary A. sinensis and Chi-Nan germplasm, which is a kind of A. sinensis tree with high agarwood-producing capacity in response to wounding stress, to elucidate the molecular mechanism underlying wounding stress in different A. sinensis germplasm resources and to help identify and breed high agarwood-producing strains. RESULTS: A total of 2427 and 1153 differentially expressed genes (DEGs) were detected in wounded ordinary A. sinensis and Chi-Nan germplasm compared with the control groups, respectively. KEGG enrichment analysis revealed that genes participating in starch metabolism, secondary metabolism and plant hormone signal transduction might play major roles in the early regulation of wound stress. 86 DEGs related to oxygen metabolism, JA pathway and sesquiterpene biosynthesis were identified. The majority of the expression of these genes was differentially induced between two germplasm resources under wounding stress. 13 candidate genes related to defence and sesquiterpene biosynthesis were obtained by WGCNA. Furthermore, the expression pattern of genes were verified by qRT-PCR. The candidate genes expression levels were higher in Chi-Nan germplasm than that in ordinary A. sinensis during early stage of wounding stress, which may play important roles in regulating high agarwood-producing capacity in Chi-Nan germplasm. CONCLUSIONS: Compared with A. sinensis, Chi-Nan germplasm invoked different biological processes in response to wounding stress. The genes related to defence signals and sesquiterepene biosynthesis pathway were induced to expression differentially between two germplasm resources. A total of 13 candidate genes were identified, which may correlate with high agarwood-producting capacity in Chi-Nan germplasm during the early stage of wounding stress. These genes will contribute to the development of functional molecular markers and the rapid breeding highly of responsive Aquilaria lines.


Subject(s)
Sesquiterpenes , Thymelaeaceae , Gene Expression Profiling , Oxygen/metabolism , Plant Breeding , Plant Growth Regulators/metabolism , Sesquiterpenes/metabolism , Starch/metabolism , Thymelaeaceae/genetics , Thymelaeaceae/metabolism
5.
Genome ; 65(8): 443-457, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35849843

ABSTRACT

Aquilaria sinensis is an important non-timber tree species for producing high-value agarwood, which is widely used as a traditional medicine and incense. Agarwood is the product of Aquilaria trees in response to injury and fungal infection. The APETALA2/ethylene responsive factor (AP2/ERF) transcription factors (TFs) play important roles in plant stress responses and metabolite biosynthesis. In this study, 119 AsAP2/ERF genes were identified from the A. sinensis genome and divided into ERF, AP2, RAV, and Soloist subfamilies. Their conserved motif, gene structure, chromosomal localization, and subcellular localization were characterized. A stress/defense-related ERF-associated amphiphilic repression (EAR) motif and an EDLL motif were identified. Moreover, 11 genes that were highly expressed in the agarwood layer in response to whole-tree agarwood induction technique (Agar-Wit) treatment were chosen, and their expression levels in response to methyl jasmonate (MeJA), salicylic acid (SA), or salt treatment were further analyzed using the quantitative real time PCR (qRT-PCR). Among the 11 genes, eight belonged to subgroup B-3. All 11 genes were significantly upregulated under salt treatment, while eight genes were significantly induced by both MeJA and SA. In addition, the gene clusters containing these upregulated genes on chromosomes were observed. The results obtained from this research not only provide useful information for understanding the functions of AP2/ERF genes in A. sinensis but also identify candidate genes and gene clusters to dissect their regulatory roles in agarwood formation for future research.


Subject(s)
Gene Expression Regulation, Plant , Thymelaeaceae , Ethylenes , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Thymelaeaceae/genetics , Thymelaeaceae/metabolism
6.
Microbiol Spectr ; 10(4): e0272221, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35762771

ABSTRACT

The present study aimed to explore the factors that promote persistent agarwood accumulation. To this end, we first investigated the morphological changes and volatile compound distribution in five layers of "Guan Xiang" agarwood. The agarwood-normal transition layer (TL), an essential layer of persistent agarwood accumulation, showed clear metabolic differences by microscopy and GC-MS analysis. Microbiome analysis revealed that Phaeocremonium rubrigenum was the predominant biomarker fungus in the TL of "Guan Xiang" agarwood samples. Among the seven isolated fungi, P. rubrigenum exhibited a significantly heightened ability to induce the production in Aquilaria sinensis seedlings, especially for sesquiterpene. Tracing the proteome profile changes in P. rubrigenum-induced A. sinensis calli for 18 ds showed that the fungus-induced sesquiterpene biosynthesis increased mainly through the mevalonate (MVA) pathway. Specifically, the phosphorylation modification level, instead of the protein abundance of transcription factors (TFs), showed corresponding changes during sesquiterpene biosynthesis, thus indicating that induced phosphorylation is the key reason for enhanced sesquiterpene production. IMPORTANCE Agarwood is an expensive resinous portion derived from Aquilaria plants and has been widely used as medicine, incense, and perfume. The factors involved in steady agarwood accumulation remain elusive. Our current study suggests that as a TL marker fungus, P. rubrigenum could persistently promote agarwood sesquiterpene accumulation by inducing phosphorylation of the TFs-MVA network in A. sinensis. Moreover, our work provides strategies to improve agarwood industry management and sheds light on the potential molecular mechanisms of plant adaptation to native microbial conditions.


Subject(s)
Ascomycota , Sesquiterpenes , Thymelaeaceae , Biomarkers , Phosphorylation , Sesquiterpenes/metabolism , Thymelaeaceae/metabolism , Thymelaeaceae/microbiology
7.
Microsc Res Tech ; 85(8): 2904-2912, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35491427

ABSTRACT

Agarwood, a non-timber fragrant wood, is derived from wounded Aquilaria trees (Thymelaeaceae) and is widely used in traditional medicine, incense and perfume. Agarwood-like substances and programmed cell death (PCD) can be induced by wounding signals in the suspension cells and aerial roots of Aquilaria sinensis. In this study, the dynamic process of wound-induced agarwood formation in stems of A. sinensis was observed, and the occurrence of PCD was synchronously detected using techniques such as 4',6-diamidino-2-phenylindole and dUTP nick-end labeling staining. The results showed that the wounding was a induce signal for agarwood resin formation, meanwhile might induce PCD. Interxylary phloem and xylem ray were the main sites of agarwood resin formation and PCD occurrence. There might be a relationship between the spatiotemporal pattern of PCD and agarwood resin formation: more severe PCD corresponded to a higher rate of resin formation but a shorter resin formation time; conversely, slower PCD progression corresponded to a lower rate of resin formation but a longer resin formation time. Our findings are the first to demonstrate that PCD might occur in the process of wound-induced agarwood formation at the tree level, and the spatiotemporal pattern is closely related to the formation of agarwood resin. This study provides valuable insight for further studies on the relationship between PCD and agarwood formation. HIGHLIGHTS: Programmed cell death (PCD) might occur in the process of wound-induced agarwood formation at the tree level. Interxylary phloem and xylem ray were the main sites of agarwood resin formation and PCD occurrence. Spatiotemporal pattern of PCD might have a strong impact on agarwood resin formation.


Subject(s)
Thymelaeaceae , Apoptosis , Resins, Plant , Thymelaeaceae/metabolism , Wood
8.
Sci Rep ; 12(1): 7194, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35505005

ABSTRACT

The basic helix-loop-helix (bHLH) transcription factors are involved in several biological processes both in plant development and stress responses. Agarwood, a major active and economical product, is only induced and accumulated when the roots, stems, or branches are wounded in Aquilaria sinensis. Although genome-wide comprehensive analyses of the bHLH family have been identified in many plants, no systematic study of the genes in this family has been conducted in A. sinensis. In this study, 105 bHLH genes were identified in A. sinensis through genome-wide analysis and named according to their chromosomal locations. Based on a phylogenetic tree, AsbHLH family proteins were classified into 18 subfamilies. Most of them were distributed on eight chromosomes, with the exception of two genes. Based on the tissue-specific expression characteristics and expression patterns in response to methyl jasmonate (MeJA) treatment, seven AsbHLH genes were likely involved in wound-induced agarwood formation. The results provide comprehensive information on AsbHLHs that can be used to elucidate the molecular functions and physiological roles of these proteins in A. sinensis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Thymelaeaceae , Basic Helix-Loop-Helix Transcription Factors/metabolism , Genome, Plant , Multigene Family , Phylogeny , Thymelaeaceae/genetics , Thymelaeaceae/metabolism
9.
Arch Insect Biochem Physiol ; 110(3): e21892, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35478464

ABSTRACT

To explore the toxicity mechanisms of neochamaejasmin B (NCB) extracted from Stellera chamaejasme L., we first evaluated its cytotoxicity in neuronal cells of Helicoverpa zea (AW1 cells). NCB inhibited cell growth and was cytotoxic to AW1 cells in a dose-dependent manner. Further, transmission electron microscopy (TEM) was used to analyze the microstructure, and typical apoptotic characteristics were observed in AW1 cells treated with NCB. Moreover, the NCB-induced apoptosis was dose dependent. Subsequently, we explored the mechanism of apoptosis. A decline in the mitochondrial membrane potential (MMP) was found. Also, the levels of Bax were increased with increases in drug concentration, but there was no statistical difference in Bcl-2 levels at different NCB doses. Caspase-3 and caspase-10 activity was increased. These findings confirmed that NCB induced apoptosis in AW1 cells through a caspase-10-dependent mechanism. The results provide the basic information needed for understanding the toxicity and mechanisms of action of NCB, which could potentially be used to develop NCB as a new insecticide.


Subject(s)
Thymelaeaceae , Animals , Apoptosis , Biflavonoids , Caspase 10/metabolism , Insecta , Thymelaeaceae/chemistry , Thymelaeaceae/metabolism
10.
J Tradit Chin Med ; 42(2): 187-193, 2022 04.
Article in English | MEDLINE | ID: mdl-35473338

ABSTRACT

OBJECTIVE: To observe the effects of the flower of Edgeworthia gardneri (Wall.) Meisn (EWM) on glucose and lipid metabolism in KK/upj-Ay/J (KKAy) mice and investigate the possible mechanism of EWM in the liver of KKAy mice by transcriptome analysis. METHODS: Forty KKAy mice were fed a high-sugar and high-fat diet for 3 weeks to establish the animal model of metabolic syndrome. After 5 weeks of continuous administration of EWM, serum high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TG), total cholesterol (TC), and free fatty acids (FFA) were detected by radioimmunoassay. Serum fasting insulin (Fins) and adiponectin levels were measured by enzyme-linked immunosorbent assay. Liver tissue fixed with paraformaldehyde was stained with hematoxylin-eosin and oil red O. Transcriptome analysis was used to evaluate the liver tissue. The expressions of lipoprotein lipase (LPL), peroxisome proliferator-activated receptor-γ (PPARγ), adenosine 5'-monophosphate-activated protein kinase (AMPK), sterol regulatory element binding protein-1c (SREBP-1c), and fatty acid synthase (Fas) mRNA and protein in liver tissue were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. RESULTS: EWM slightly reduced FBG and Fins in KKAy mice. Furthermore, EWM was able to downregulate serum LDL, TG, TC, and FFA and upregulate the expression of serum HDL and adiponectin. Transcriptome analysis revealed the following differential pathways: the peroxisome proliferator-activated receptor (PPAR) signaling pathway and the AMPK signaling pathway. RT-PCR and western blot analysis detected the associated genes and proteins. In addition, EWM was able to upregulate the expression of AMPK and downregulate the expression of PPARγ, SREBP1c, and Fas mRNA and protein and upregulate the expression of LPL mRNA. CONCLUSIONS: EWM can alleviate lipid metabolism disorders and to some extent improve glucose metabolism disorders in KKAy mice. These effects may be related to regulating PPARγ/LPL and activating the AMPK/SREBP1c/Fas pathway.


Subject(s)
Lipid Metabolism , Thymelaeaceae , AMP-Activated Protein Kinases/metabolism , Adiponectin/metabolism , Animals , Flowers , Glucose , Humans , Mice , PPAR gamma/genetics , RNA, Messenger/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Thymelaeaceae/metabolism , Triglycerides
11.
Molecules ; 27(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35163893

ABSTRACT

Aquilaria sinensis (Lour.) Spreng is known for its resinous secretion (agarwood), often secreted in defense against injuries. We investigated the effects of A. sinensis flower extract (AF) on peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ), liver X receptor (LXR), glucose uptake, and lipid accumulation (adipogenesis). Activation of PPARα, PPARγ and LXR was determined in hepatic (HepG2) cells by reporter gene assays. Glucose uptake was determined in differentiated muscle (C2C12) cells using 2-NBDG (2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose). Adipogenesis was determined in adipocytes (3T3-L1 cells) by Oil red O staining. At a concentration of 50 µg/mL, AF caused 12.2-fold activation of PPARα and 5.7-fold activation of PPARγ, while the activation of LXR was only 1.7-fold. AF inhibited (28%) the adipogenic effect induced by rosiglitazone in adipocytes and increased glucose uptake (32.8%) in muscle cells at 50 µg/mL. It was concluded that AF acted as a PPARα/γ dual agonist without the undesired effect of adipogenesis and exhibited the property of enhancing glucose uptake. This is the first report to reveal the PPARα/γ dual agonistic action and glucose uptake enhancing property of AF along with its antiadipogenic effect, indicating its potential in ameliorating the symptoms of metabolic syndrome.


Subject(s)
Metabolic Syndrome , Thymelaeaceae , 3T3-L1 Cells , Adipogenesis , Animals , Flowers/metabolism , Metabolic Syndrome/drug therapy , Mice , PPAR gamma/metabolism , Plant Extracts/pharmacology , Thymelaeaceae/metabolism
12.
BMC Plant Biol ; 21(1): 591, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34903180

ABSTRACT

BACKGROUND: Agarwood is a highly sought-after resinous wood for uses in medicine, incense, and perfume production. To overcome challenges associated with agarwood production in Aquilaria sinensis, several artificial agarwood-induction treatments have been developed. However, the effects of these techniques on the metabolome of the treated wood samples are unknown. Therefore, the present study was conducted to evaluate the effects of four treatments: fire drill treatment (F), fire drill + brine treatment (FS), cold drill treatment (D) and cold drill + brine treatment (DS)) on ethanol-extracted oil content and metabolome profiles of treated wood samples from A. sinensis. RESULTS: The ethanol-extracted oil content obtained from the four treatments differed significantly (F < D < DS < FS). A total of 712 metabolites composed mostly of alkaloids, amino acids and derivatives, flavonoids, lipids, phenolic acids, organic acids, nucleotides and derivatives, and terpenoids were detected. In pairwise comparisons, 302, 155, 271 and 363 differentially accumulated metabolites (DAM) were detected in F_vs_FS, D_vs_DS, F_vs_D and FS_vs_DS, respectively. The DAMs were enriched in flavonoid/flavone and flavonol biosynthesis, sesquiterpenoid and triterpenoid biosynthesis. Generally, addition of brine to either fire or cold drill treatments reduced the abundance of most of the metabolites. CONCLUSION: The results from this study offer valuable insights into synthetically-induced agarwood production in A. sinensis.


Subject(s)
Metabolome , Plant Oils/chemistry , Thymelaeaceae/metabolism , Wood/metabolism , Alkaloids/metabolism , Amino Acids/metabolism , Carboxylic Acids/metabolism , Cold Temperature , Ethanol , Fires , Flavones/metabolism , Flavonoids/metabolism , Hydroxybenzoates/metabolism , Lipid Metabolism , Nucleotides/metabolism , Salts/pharmacology , Terpenes/metabolism , Thymelaeaceae/chemistry , Thymelaeaceae/drug effects , Wood/chemistry , Wood/drug effects
13.
Xenobiotica ; 51(6): 728-736, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33874851

ABSTRACT

Although Edgeworthia gardneri (Wall.) Meisn and its main component tiliroside (TIL) show good bioactivity, its intestinal absorption data supporting its low bioavailability have not been reported.The evaluation results of three absorption models in vitro and in vivo indicated that the results of the Ussing chamber model were basically consistent with the results of in vivo experiments. It was thus applied to investigate the characteristics of TIL across various intestinal regions and the interaction between TIL and adenosine triphosphate (ATP)-binding cassette family proteins (ABC) including, P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP).The data of the bi-directional transport showed that the ileum had the higher apparent permeability coefficient (Papp) of TIL than duodenum and jejunum, suggesting the best absorption of TIL in the ileum.In the presence of the MRP2 inhibitor, the absorption of TIL from water extracts of E. gardneri (Wall.) Meisn (WAE) was improved, indicating that MRP2 other than P-gp and BCRP affected the absorption of TIL and might be responsible for its low bioavailability. This study laid the foundation for enhancing the bioavailability of TIL and highlighted the influences of efflux transporters on bioavailability.


Subject(s)
Neoplasm Proteins , Thymelaeaceae , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Flavonoids , Intestinal Absorption , Multidrug Resistance-Associated Proteins/metabolism , Neoplasm Proteins/metabolism , Thymelaeaceae/metabolism
14.
Nat Prod Rep ; 38(3): 528-565, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32990292

ABSTRACT

Covering: Up to the end of 2019.Agarwood is a resinous portion of Aquilaria trees, which is formed in response to environmental stress factors such as physical injury or microbial attack. It is very sought-after among the natural incenses, as well as for its medicinal properties in traditional Chinese and Ayurvedic medicine. Interestingly, the chemical constituents of agarwood and healthy Aquilaria trees are quite different. Sesquiterpenes and 2-(2-phenethyl)chromones with diverse scaffolds commonly accumulate in agarwood. Similar structures have rarely been reported from the original trees that mainly contain flavonoids, benzophenones, xanthones, lignans, simple phenolic compounds, megastigmanes, diterpenoids, triterpenoids, steroids, alkaloids, etc. This review summarizes the chemical constituents and biological activities both in agarwood and Aquilaria trees, and their biosynthesis is discussed in order to give a comprehensive overview of the research progress on agarwood.


Subject(s)
Biological Products/chemistry , Biological Products/pharmacology , Thymelaeaceae/chemistry , Wood/chemistry , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biological Products/metabolism , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Phenols/chemistry , Phenols/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Thymelaeaceae/metabolism , Wood/metabolism
15.
Sci Rep ; 10(1): 3018, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080225

ABSTRACT

The WRKY proteins are a superfamily of transcription factor that regulate diverse developmental and physiological processes in plants. Completion of the whole-genome sequencing of Aquilaria sinensis allowed us to perform a genome-wide investigation for WRKY proteins. Here, we predicted 70 WRKY genes from the A. sinensis genome and undertaken a comprehensive bioinformatic analysis. Due to their diverse structural features, the 70 AsWRKY genes are classified into three main groups (group I-III), with five subgroups (IIa-IIe) in group II, except two belong to none of them. Distinct expression profiles of AsWRKYs with RNA sequencing data revealed their diverse expression patterns among different tissues and in the process of whole-tree-inducing agarwood formation. Based on the expression characteristics, we predict some AsWRKYs are pseudogenes, and some may be involved in the biosynthesis of agarwood sesquiterpenes as activators or repressors. Among the tested genes treated with MeJA and H2O2, most of them are induced by H2O2, but downregulated by MeJA, implying the complexity of their involvement in signal transduction regulation. Our results not only provide a basic platform for functional identification of WRKYs in A. sinensis but important clues for further analysis their regulation role in agarwood formation.


Subject(s)
Genome, Plant , Thymelaeaceae/genetics , Thymelaeaceae/metabolism , Transcription Factors/metabolism , Acetates/pharmacology , Chromosomes, Plant/genetics , Conserved Sequence/genetics , Cyclopentanes/pharmacology , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Hydrogen Peroxide/pharmacology , Nucleotide Motifs/genetics , Organ Specificity/drug effects , Organ Specificity/genetics , Oxylipins/pharmacology , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Thymelaeaceae/drug effects , Wood/genetics
16.
J Exp Bot ; 71(3): 1128-1138, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31639819

ABSTRACT

Agarwood is derived from wounds in Aquilaria trees and is widely used in traditional medicine, incense, and perfume. Sesquiterpenes are one of the main active components in agarwood and are known to be induced by wounding or injury; However, the molecular mechanisms by which wounding leads to sesquiterpene formation remain largely unknown. Agarwood sesquiterpene synthase 1 (ASS1) is one of key enzymes responsible for the biosynthesis of sesquiterpenes and is a crucial jasmonate (JA)-responsive wound-inducible synthase. However, it is not known why ASS1 is not expressed in healthy trees and how its expression is induced as a result of wounding. Here, we report that ASS1 is a wound-induced gene with a promoter in which a 242-bp region (-973 to -731bp) is identified as the core sequence for responding to wound signals. AsWRKY44 binds directly to this region and represses ASS1 promoter activity. Down-regulation or disruption of AsWRKY44 can relieve the inhibition and activate ASS1 expression. In addition, AsWRKY44 is degraded and the expression of ASS1 is significantly up-regulated in response to exogenous application of methyl jasmonate. Thus, AsWRKY44 is a crucial negative regulator of wound-induced ASS1 transcription, and is central to the mechanism of sesquiterpene biosynthesis in agarwood.


Subject(s)
Sesquiterpenes/metabolism , Thymelaeaceae/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Promoter Regions, Genetic , Thymelaeaceae/genetics
17.
J Plant Physiol ; 234-235: 167-175, 2019.
Article in English | MEDLINE | ID: mdl-30818186

ABSTRACT

Agarwood, a non-timber fragrant wood, is produced in wounded Aquilaria trees and widely used in perfume, incense, and medicine. Sesquiterpene is one of its main active compounds. It has been demonstrated that hydrogen peroxide (H2O2) plays a role in promoting agarwood sesquiterpene biosynthesis, but little is known about its signaling pathway. In this study, the pruning of actively growing saplings of A. sinensis resulted in an H2O2 burst and the accumulation of jasmonic acid (JA), salicylic acid (SA), and ethylene (ET), which was followed by the up-regulation of sesquiterpene synthase and the production of sesquiterpene in the pruned stems. This process could be enhanced by absorbed H2O2 and inhibited by an H2O2 scavenger (ascorbate, AsA) in pruned stems, although the concentration of ET and transcription of ET-related synthase genes remained unaffected. These results confirmed that the H2O2 burst in wounded stems triggered JA and SA accumulation to promote agarwood sesquiterpene biosynthesis. ET was also activated by injury that was independent with H2O2. All results excavated a full-scale signaling transduction nets among multiple stress signals during wound-induced agarwood production in A. sinensis and provide a new insight into improving the artificial technology of agarwood production.


Subject(s)
Cyclopentanes/metabolism , Hydrogen Peroxide/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Sesquiterpenes/metabolism , Thymelaeaceae/metabolism , Ethylenes/metabolism
18.
Proteomics ; 18(20): e1800023, 2018 10.
Article in English | MEDLINE | ID: mdl-30035352

ABSTRACT

Agarwood is a precious traditional Chinese medicine with a variety of pharmacological effects. Although efforts have been made in elucidating the mechanism of agarwood formation, little progress is obtained till now. Therefore, the molecular mechanism of agarwood formation needs to be further explored using different biological approaches. In this study, the quantitative proteomic analysis using iTRAQ technology combined with transcriptomic and metabolomic analyses on chemically induced Aquilaria sinensis is performed to elucidate the agarwood formation mechanism by formic acid stimulus. Data are available via ProteomeXchange with identifier PXD007586; 1884 proteins are detected, 504 differential proteins that show at least twofold differences in their expression levels are selected based on GO annotations, KEGG, STRING analysis, and quantitative RT-PCR analysis. The results indicate that sesquiterpene synthase, germin-like protein, pathogenesis-related protein, 6-phosphogluconate dehydrogenase, lipoyl synthase, and superoxide dismutase play important roles in the agarwood formation, suggesting that the proteins related to the plant defensive response, the removal of peroxide, the disease-resistance, the biosythesis of glycan, fatty acids, and sesquiterpene are crucial for agarwood formation.


Subject(s)
Formates/pharmacology , Metabolome , Plant Proteins/analysis , Proteome , Thymelaeaceae/metabolism , Transcriptome , Wood/metabolism , Gene Expression Regulation, Plant , Thymelaeaceae/drug effects , Thymelaeaceae/genetics , Thymelaeaceae/growth & development , Wood/chemistry
19.
PLoS One ; 13(6): e0198111, 2018.
Article in English | MEDLINE | ID: mdl-29856792

ABSTRACT

Only when Aquilaria spp. or Gyrinops spp. trees are wounded, due to insect attack, or microbial invasion, agarwood can be successfully induced. In the present study, a fungus which can induce agarwood formation efficiently was isolated and a suitable method for its application to induce agarwood formation was developed. Rigidoporus vinctus was isolated from the inner layers from infectious A. sinensis trees. When the fermentation liquid of fungi inoculated back to A. sinensis tree, agarwood was found to be induced. In addition, a novel method called trunk surface agarwood-inducing technique (Agar-Sit) was developed to produce agarwood with R. vinctus. The alcohol soluble extract content of the agarwood, up to 38.9%, far higher than the requirement (10%) in Chinese Pharmacopoeia and the six characteristic compounds of agarwood used as Chinese Medicinal Materials were all detected. Their relative percentages of the sesquiterpenes in the essential oil were 22.76%. This is the first report of the Agar-Sit and also the application of R. vinctus in agarwood induction. According to the results, when the combination of Agar-Sit and R. vinctus is used agarwood can be induced with high yield and good quality.


Subject(s)
Polyporales/physiology , Resins, Plant/metabolism , Thymelaeaceae/microbiology , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/isolation & purification , Fermentation , Fungi/isolation & purification , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Plant Stems/metabolism , Plant Stems/microbiology , Polyporales/chemistry , Polyporales/isolation & purification , Resins, Plant/chemistry , Sesquiterpenes/analysis , Thymelaeaceae/metabolism
20.
Molecules ; 23(6)2018 May 25.
Article in English | MEDLINE | ID: mdl-29799457

ABSTRACT

Agarwood is highly valued for its uses as incense, perfume, and medicine. However, systematic analyses of dynamic changes of secondary metabolites during the process of agarwood formation have not yet been reported. In this study, agarwood was produced by transfusing the agarwood inducer into the trunk of Aquilaria sinensis, and changing patterns of chemical constituents, especially 2-(2-phenylethyl)chromones (PECs), in wood samples collected from the 1st to 12th month, were analyzed by GC-EI-MS and UPLC-ESI-MS/MS methods. Aromatic compounds, steroids, fatty acids/esters, sesquiterpenoids, and PECs were detected by GC-MS, in which PECs were the major constituents. Following this, UPLC-MS was used for further comprehensive analysis of PECs, from which we found that 2-(2-phenylethyl)chromones of flindersia type (FTPECs) were the most abundant, while PECs with epoxidated chromone moiety were detected with limited numbers and relatively low content. Speculation on the formation of major FTPECs was fully elucidated in our context. The key step of FTPECs biosynthesis is possibly catalyzed by type III polyketide synthases (PKSs) which condensate dihydro-cinnamoyl-CoA analogues and malonyl-CoA with 2-hydroxy-benzoyl-CoA to produce 2-(2-phenyethyl)chromone scaffold, or with 2,5-dihydroxybenzoyl-CoA to form FTPECS with 6-hydroxy group, which may serve as precursors for further reactions catalyzed by hydroxylase or O-methyltransferase (OMT) to produce FTPECs with diverse substitution patterns. It is the first report that systematically analyzed dynamic changes of secondary metabolites during the process of agarwood formation and fully discussed the biosynthetic pathway of PECs.


Subject(s)
Catechols/isolation & purification , Chromones/isolation & purification , Flavonoids/isolation & purification , Odorants/analysis , Sesquiterpenes/isolation & purification , Thymelaeaceae/chemistry , Catechols/chemistry , Catechols/metabolism , Chromones/chemistry , Chromones/metabolism , Flavonoids/biosynthesis , Flavonoids/chemistry , Gas Chromatography-Mass Spectrometry , Phialophora/physiology , Plant Diseases/microbiology , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism , Spectrometry, Mass, Electrospray Ionization , Thymelaeaceae/metabolism , Thymelaeaceae/microbiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL