Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 404
Filter
1.
Eur J Med Chem ; 276: 116716, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39088997

ABSTRACT

In the current study, to discover novel antibacterial agents, we designed and synthesized 72 carvacrol and thymol derivatives by biomimicking the structure and function of cationic antimicrobial peptides (AMPs). Many of the derivatives showed good antibacterial activity, and compound thy2I exhibited the most potent antibacterial activity with minimum inhibitory concentration (MIC) values ranging from 0.5 µg/mL to 8 µg/mL. Compound thy2I could kill both gram-positive and gram-negative bacteria via a membrane-targeting mechanism of action with a low frequency of resistance. In addition, thy2I had the advantages of good membrane selectivity, low toxicity in vitro and in vivo, and good plasma stability. The in vivo activity results revealed that thy2I exhibited a positive therapeutic effect in a mouse skin abscess model induced by Staphylococcus aureus ATCC29213. After thy2I treatment (10 mg/kg), the bacterial load of the S. aureus-infected abscesses was reduced by approximately 99.65 %. Our study suggests that thy2I may serve as an antibacterial lead for further clinical evaluation.


Subject(s)
Anti-Bacterial Agents , Cymenes , Microbial Sensitivity Tests , Staphylococcus aureus , Thymol , Cymenes/pharmacology , Cymenes/chemistry , Thymol/pharmacology , Thymol/chemistry , Thymol/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Animals , Mice , Structure-Activity Relationship , Staphylococcus aureus/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Gram-Negative Bacteria/drug effects
2.
Molecules ; 29(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125013

ABSTRACT

Carvacrol and thymol are broad-spectrum natural antimicrobial agents. To reduce their volatility and improve their antimicrobial performance, synergistic systems were prepared loading the active molecules in zinc-modified clays. Montmorillonite (MMT) and zeolite (ZEO) were modified with zinc ions (ZnMMT and ZnZEO), with well-known antimicrobial properties, and then with carvacrol or thymol, reaching the 26 ± 3% and 33 ± 2% w/w of loading, respectively. The resulting hybrid materials were characterized by FT-IR, XPS, XRD, TGA, and GC-MS to evaluate carvacrol/thymol release in simulating food matrices. Antimicrobial assays carried out using spoiler and pathogenic bacterial strains showed that the antimicrobial activity of both thymol and carvacrol was largely preserved once they were loaded into Zn-modified clays. However, MMT hybrids showed an antibacterial activity significantly higher than ZEO hybrids at 50 mg/mL of thymol and carvacrol. For this reason, deeper antimicrobial evaluations were carried out only for ZnMMT composites. ZnMMT loaded with thymol or carvacrol produced inhibition zones against most of the target strains, also at 3.12 mg/mL, while the positive controls represented by the single molecule thymol or carvacrol were not active. The hybrid materials can be useful for applications in which the antimicrobial activity of natural molecules need to be displayed over time as requested for the control of microbial pathogens and spoilage bacteria in different applications, such as active packaging, biomaterials, and medical devices.


Subject(s)
Anti-Infective Agents , Clay , Cymenes , Microbial Sensitivity Tests , Thymol , Zinc , Cymenes/chemistry , Cymenes/pharmacology , Thymol/chemistry , Thymol/pharmacology , Zinc/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Clay/chemistry , Spectroscopy, Fourier Transform Infrared , Bacteria/drug effects , Bentonite/chemistry
3.
Molecules ; 29(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39064843

ABSTRACT

Ajowan (Trachyspermum ammi L.) is considered a valuable spice and medicinal herb. In this study, the essential oil content and composition of the aerial parts of ajowan were investigated under different drying treatments (sun, shade, oven at 45 °C, oven at 65 °C, microwave, and freeze drying). Moreover, the phenolic content, flavonoid content, and antioxidant capacity of samples were also assessed. Fresh samples produced the highest essential oil content (1.05%), followed by those treated under sun (0.7%) and shade drying (0.95%). Based on gas chromatography-mass spectrometry (GC-MS), thirty compounds were determined in which thymol (34.84-83.1%), carvacrol (0.15-32.36%), p-cymene (0.09-13.66%), and γ-terpinene (3.12-22.58%) were the most abundant. Among the drying methods, freeze drying revealed the highest thymol content, followed by drying in a 45 °C oven. The highest TPC (total phenolic content) and TFC (total flavonoid content) were obtained in the fresh sample (38.23 mg TAE g-1 dry weight (DW)) and in the sample oven-dried at 45 °C (7.3 mg QE g-1 DW), respectively. Based on the HPLC results, caffeic acid (18.04-21.32 mg/100 gDW) and ferulic acid (13.102-19.436 mg/100 g DW) were the most abundant phenolic acids, while among flavonoids, rutin constituted the highest amount (10.26-19.88 mg/100 gDW). Overall, freeze drying was the most promising method of drying for preserving the phenolic (TPC) and flavonoid (TFC) compounds and oil components.


Subject(s)
Antioxidants , Flavonoids , Oils, Volatile , Phenols , Oils, Volatile/chemistry , Oils, Volatile/analysis , Antioxidants/chemistry , Antioxidants/analysis , Flavonoids/analysis , Flavonoids/chemistry , Phenols/analysis , Phenols/chemistry , Thymol/analysis , Thymol/chemistry , Cymenes/chemistry , Cymenes/analysis , Desiccation/methods , Gas Chromatography-Mass Spectrometry , Plant Extracts/chemistry , Cyclohexane Monoterpenes
4.
J Agric Food Chem ; 72(32): 18027-18044, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39078084

ABSTRACT

Botrytis cinerea (B. cinerea) and Colletotrichum gloeosporioides (C. gloeosporioides) were isolated from the decaying strawberry tissue. The antifungal properties of Monarda didyma essential oil (MEO) and its nanoemulsion were confirmed, demonstrating complete inhibition of the pathogens at concentrations of 0.45 µL/mL (0.37 mg/mL) and 10 µL/mL, respectively. Thymol, a primary component of MEO, was determined as an antimicrobial agent with IC50 values of 34.51 (B. cinerea) and 53.40 (C. gloeosporioides) µg/mL. Hippophae rhamnoides oil (HEO) was confirmed as a potent antioxidant, leading to the development of a thymol-HEO-chitosan film designed to act as an antistaling agent. The disease index and weight loss rate can be reduced by 90 and 60%, respectively, with nutrients also being well-preserved, offering an innovative approach to preservative development. Studies on the antifungal mechanism revealed that thymol could bind to FKS1 to disrupt the cell wall, causing the collapse of mitochondrial membrane potential and a burst of reactive oxygen species.


Subject(s)
Botrytis , Colletotrichum , Food Preservation , Fragaria , Fragaria/chemistry , Fragaria/microbiology , Botrytis/drug effects , Botrytis/growth & development , Colletotrichum/drug effects , Food Preservation/methods , Apoptosis/drug effects , Plant Diseases/microbiology , Food Preservatives/pharmacology , Food Preservatives/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fruit/chemistry , Fruit/microbiology , Thymol/pharmacology , Thymol/chemistry , Surface Properties , Chitosan/chemistry , Chitosan/pharmacology
5.
ACS Appl Mater Interfaces ; 16(28): 36017-36029, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38975983

ABSTRACT

Oral infectious diseases have a significant impact on the health of oral and maxillofacial regions, as well as the overall well-being of individuals. Carvacrol and thymol, two isomers known for their effective antibacterial and anti-inflammatory properties, have gained considerable attention in the treatment of oral infectious diseases. However, their application as topical drugs for oral use is limited due to their poor physical and chemical stability. UiO-66, a metal-organic framework based on zirconium ion (Zr4+), exhibits high drug loading capability. Carvacrol and thymol were efficiently loaded onto UiO-66 with loading rates of 79.60 ± 0.71% and 79.65 ± 0.76%, respectively. The release rates of carvacrol and thymol were 77.82 ± 0.87% and 76.51 ± 0.58%, respectively, after a period of 72 h. Moreover, Car@UiO-66 and Thy@UiO-66 demonstrated excellent antibacterial properties against Candida albicans, Escherichia coli, and Staphylococcus aureus with minimum bactericidal concentrations (MBC) of 0.313 mg/mL, 0.313 mg/mL, and 1.25 mg/mL, respectively. Furthermore, based on the results of the CCK8 cytotoxicity assay, even at concentrations as high as 1.25 mg/mL, Car@UiO-66 and Thy@UiO-66 exhibited excellent biocompatibility with a relative cell survival rate above 50%. These findings suggest that Car@UiO-66 and Thy@UiO-66 possess favorable biocompatibility properties without significant toxicity towards periodontal membrane cells. Additionally, in vivo studies confirmed the efficacy of Car@UiO-66and Thy@UiO-66 in reducing inflammation, promoting bone formation through inhibition of TNF-a and IL6 expression, enhancement of IL10 expression, and acceleration of bone defect healing. Therefore, the unique combination of antibacterial, anti-inflammatory, and osteogenic properties make Car@UiO-66 and Thy@Ui O-66 promising candidates for the treatment of oral infectious diseases and repairing bone defects.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Candida albicans , Cymenes , Escherichia coli , Metal-Organic Frameworks , Staphylococcus aureus , Thymol , Thymol/chemistry , Thymol/pharmacology , Cymenes/chemistry , Cymenes/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Candida albicans/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Microbial Sensitivity Tests , Rats , Osteogenesis/drug effects , Humans
6.
Colloids Surf B Biointerfaces ; 241: 114043, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901266

ABSTRACT

Responsiveness of liposomes to external stimuli, such as light, should allow a precise spatial and temporal control of release of therapeutic agents or ion transmembrane transport. Here, some aryl-azo derivatives of thymol are synthesized and embedded into liposomes from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine to obtain light-sensitive membranes whose photo-responsiveness, release behaviour, and permeability towards Cl- ions are investigated. The hybrid systems are in-depth characterized by dynamic light scattering, atomic force microscopy and Raman spectroscopy. In liposomal bilayer the selected guests undergo reversible photoinduced isomerization upon irradiation with UV and visible light, alternately. Non-irradiated hybrid liposomes retain entrapped 5(6)-carboxyfluorescein (CF), slowing its spontaneous leakage, whereas UV-irradiation promotes CF release, due to guest trans-to-cis isomerization. Photoisomerization also influences membrane permeability towards Cl- ions. Data processing, according to first-order kinetics, demonstrates that Cl- transmembrane transport is enhanced by switching the guest from trans to cis but restored by back-switching the guest from cis to trans upon illumination with blue light. Finally, the passage of Cl- ions across the bilayer can be fine-tuned by irradiation with light of longer λ and different light-exposure times. Fine-tuning the photo-induced structural response of the liposomal membrane upon isomerization is a promising step towards effective photo-dynamic therapy.


Subject(s)
Liposomes , Nanoparticles , Thymol , Thymol/chemistry , Isomerism , Liposomes/chemistry , Nanoparticles/chemistry , Phosphatidylcholines/chemistry , Light , Lipid Bilayers/chemistry , Ultraviolet Rays , Photochemical Processes , Cell Membrane Permeability , Chlorides/chemistry , Fluoresceins/chemistry , Permeability
7.
Food Chem ; 456: 140037, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38870801

ABSTRACT

Mycotoxins are representative contaminants causing food losses and food safety problems worldwide. Thymol can effectively inhibit pathogen infestation and aflatoxin accumulation during grain storage, but high volatility limits its application. Here, a thymol-betaine co-crystal system was synthesized through grinding-induced self-assembly. The THY-TMG co-crystal exhibited excellent thermal stability with melting point of 91.2 °C owing to abundant intermolecular interactions. Remarkably, after 15 days at 30 °C, the release rate of thymol from co-crystal was only 55%, far surpassing that of pure thymol. Notably, the co-crystal demonstrated the ability to bind H2O in the environment while controlling the release of thymol, essentially acting as a desiccant. Moreover, the co-crystals effectively inhibited the growth of Aspergillus flavus and the biosynthesis of aflatoxin B1. In practical terms, the THY-TMG co-crystal was successful in preventing AFB1 contamination and nutrients loss in peanuts, thereby prolonging their shelf-life under conditions of 28 °C and 70% RH.


Subject(s)
Aspergillus flavus , Betaine , Thymol , Thymol/chemistry , Thymol/pharmacology , Aspergillus flavus/growth & development , Aspergillus flavus/drug effects , Aspergillus flavus/chemistry , Betaine/chemistry , Betaine/pharmacology , Food Preservatives/pharmacology , Food Preservatives/chemistry , Food Contamination/prevention & control , Food Contamination/analysis , Delayed-Action Preparations/chemistry , Arachis/chemistry , Arachis/microbiology , Crystallization , Aflatoxins/chemistry , Aflatoxin B1/chemistry
8.
Int J Biol Macromol ; 275(Pt 2): 133356, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945715

ABSTRACT

Vulvovaginal candidiasis (VVC) is an opportunistic infection caused by a fungus of the Candida genus, affecting approximately 75 % of women during their lifetime. Fungal resistance cases and adverse effects have been the main challenges of oral therapies. In this study, the topical application of thin films containing fluconazole (FLU) and thymol (THY) was proposed to overcome these problems. Vaginal films based only on chitosan (CH) or combining this biopolymer with pectin (PEC) or hydroxypropylmethylcellulose acetate succinate (HPMCAS) were developed by the solvent casting method. In addition to a higher swelling index, CH/HPMCAS films showed to be more plastic and flexible than systems prepared with CH/PEC or only chitosan. Biopolymers and FLU were found in an amorphous state, contributing to explaining the rapid gel formation after contact with vaginal fluid. High permeability rates of FLU were also found after its immobilization into thin films. The presence of THY in polymer films increased the distribution of FLU in vaginal tissues and resulted in improved anti-Candida activity. A significant activity against the resistant C. glabrata was achieved, reducing the required FLU dose by 50 %. These results suggest that the developed polymer films represent a promising alternative for the treatment of resistant vulvovaginal candidiasis, encouraging further studies in this context.


Subject(s)
Antifungal Agents , Candidiasis, Vulvovaginal , Fluconazole , Thymol , Female , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/microbiology , Fluconazole/pharmacology , Fluconazole/chemistry , Fluconazole/administration & dosage , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/administration & dosage , Biopolymers/chemistry , Thymol/chemistry , Thymol/pharmacology , Drug Resistance, Fungal/drug effects , Humans , Chitosan/chemistry , Microbial Sensitivity Tests , Animals , Drug Carriers/chemistry , Permeability , Candida glabrata/drug effects
9.
J Agric Food Chem ; 72(25): 14337-14348, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38867141

ABSTRACT

Thymol has efficient bactericidal activity against a variety of pathogenic bacteria, but the bactericidal mechanism against Vibrio parahemolyticus (V. parahemolyticus) has rarely been reported. In the current study, we investigated the bactericidal mechanism of thymol against V. parahemolyticus. The Results revealed that 150 µg/mL of thymol had 99.9% bactericidal activity on V. parahemolyticus. Intracellular bursts of reactive oxygen species (ROS), Fe2+accumulation, lipid peroxidation, and DNA breakage were checked by cell staining. The exogenous addition of H2O2 and catalase promoted and alleviated thymol-induced cell death to a certain extent, respectively, and the addition of the ferroptosis inhibitor Liproxstatin-1 also alleviated thymol-induced cell death, confirming that thymol induced Fenton-reaction-dependent ferroptosis in V. parahemolyticus. Proteomic analysis revealed that relevant proteins involved in ROS production, lipid peroxidation accumulation, and DNA repair were significantly upregulated after thymol treatment. Molecular docking revealed two potential binding sites (amino acids 46H and 42F) between thymol and ferritin, and thymol could promote the release of Fe2+ from ferritin proteins through in vitro interactions analyzed. Therefore, we hypothesized that ferritin as a potential target may mediate thymol-induced ferroptosis in V. parahemolyticus. This study provides new ideas for the development of natural inhibitors for controlling V. parahemolyticus in aquatic products.


Subject(s)
Anti-Bacterial Agents , Ferroptosis , Hydrogen Peroxide , Reactive Oxygen Species , Thymol , Vibrio parahaemolyticus , Ferroptosis/drug effects , Thymol/pharmacology , Thymol/chemistry , Reactive Oxygen Species/metabolism , Vibrio parahaemolyticus/drug effects , Hydrogen Peroxide/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Lipid Peroxidation/drug effects , Iron/metabolism , Molecular Docking Simulation , Ferritins/genetics , Ferritins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
10.
Molecules ; 29(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930892

ABSTRACT

The Lamiaceae family, which includes several well-known aromatic plants, is scientifically relevant due to its essential oils (EOs). In this work, four EOs from Mediterranean species, namely Origanum vulgare L., Rosmarinus officinalis L., Salvia officinalis L., and Thymus vulgaris L., were evaluated for their volatile profiles and the biological activity in vitro to assess their potential use in the food and cosmetic sector. GC/MS analysis revealed dominant compounds, such as carvacrol, thymol, and eucalyptol. Regarding biological action, the samples exhibited antioxidant, cytotoxic, anti-inflammatory, antimicrobial, and antifungal activities, with O. vulgare and T. officinalis standing out. T. vulgaris showed the lowest EC50 in the reducing power assay, and O. vulgare had the lowest EC50 in the DPPH assay. Most EOs also displayed excellent anti-inflammatory responses and antifungal properties, with O. vulgare and T. vulgaris also demonstrating antibacterial activity. All EOs from Mediterranean species showed cytotoxicity against tumoral cell lines. Overall, the selected EOs stood out for their interesting bioactivities, with the obtained results underscoring their potential as natural preservatives and bioactive agents in various industrial applications, including food, pharmaceuticals, and cosmetics.


Subject(s)
Antioxidants , Lamiaceae , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Lamiaceae/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Gas Chromatography-Mass Spectrometry , Origanum/chemistry , Salvia officinalis/chemistry , Cell Line, Tumor , Thymus Plant/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plants, Edible/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Thymol/pharmacology , Thymol/chemistry , Microbial Sensitivity Tests , Cymenes
12.
Molecules ; 29(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38792138

ABSTRACT

Cancer is ranked among lethal diseases globally, and the increasing number of cancer cases and deaths results from limited access to effective therapeutics. The use of plant-based medicine has been gaining interest from several researchers. Carvacrol and its isomeric compound, thymol, are plant-based extracts that possess several biological activities, such as antimalarial, anticancer, antifungal, and antibacterial. However, their efficacy is compromised by their poor bioavailability. Thus, medicinal scientists have explored the synthesis of hybrid compounds containing their pharmacophores to enhance their therapeutic efficacy and improve their bioavailability. Hence, this review is a comprehensive report on hybrid compounds containing carvacrol and its isomer, thymol, with potent anticancer and antibacterial agents reported between 2020 and 2024. Furthermore, their structural activity relationship (SAR) and recommended future strategies to further enhance their therapeutic effects will be discussed.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Cymenes , Thymol , Thymol/chemistry , Thymol/pharmacology , Cymenes/chemistry , Cymenes/pharmacology , Cymenes/therapeutic use , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Neoplasms/drug therapy , Animals
13.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732168

ABSTRACT

Antimicrobial resistance (AMR) poses an emanating threat to humanity's future. The effectiveness of commonly used antibiotics against microbial infections is declining at an alarming rate. As a result, morbidity and mortality rates are soaring, particularly among immunocompromised populations. Exploring alternative solutions, such as medicinal plants and iodine, shows promise in combating resistant pathogens. Such antimicrobials could effectively inhibit microbial proliferation through synergistic combinations. In our study, we prepared a formulation consisting of Aloe barbadensis Miller (AV), Thymol, iodine (I2), and polyvinylpyrrolidone (PVP). Various analytical methods including SEM/EDS, UV-vis, Raman, FTIR, and XRD were carried out to verify the purity, composition, and morphology of AV-PVP-Thymol-I2. We evaluated the inhibitory effects of this formulation against 10 selected reference strains using impregnated sterile discs, surgical sutures, gauze bandages, surgical face masks, and KN95 masks. The antimicrobial properties of AV-PVP-Thymol-I2 were assessed through disc diffusion methods against 10 reference strains in comparison with two common antibiotics. The 25-month-old formulation exhibited slightly lower inhibitory zones, indicating changes in the sustained-iodine-release reservoir. Our findings confirm AV-PVP-Thymol-I2 as a potent antifungal and antibacterial agent against the reference strains, demonstrating particularly strong inhibitory action on surgical sutures, cotton bandages, and face masks. These results enable the potential use of the formulation AV-PVP-Thymol-I2 as a promising antimicrobial agent against wound infections and as a spray-on contact-killing agent.


Subject(s)
Microbial Sensitivity Tests , Thymol , Thymol/pharmacology , Thymol/chemistry , Iodine/chemistry , Iodine/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Aloe/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Drug Compounding/methods
14.
Anal Biochem ; 691: 115551, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38702023

ABSTRACT

A molecularly imprinted electrochemical sensor was facilely fabricated for the detection of thymol (THY). o-Phenylenediamine (oPD) was used as the functional monomer and electropolymerized on the surface of the glassy carbon electrode (GCE) by using THY as the templates. After the THY templates were removed with 50 % (v/v) ethanol, imprinted cavities complementary to the templates were formed within the poly(o-phenylenediamine) (PoPD) films. The resultant molecularly imprinted PoPD/GCE (MI-PoPD/GCE) was used for the detection of THY, and a wide linear range from 0.5 to 100 µM with a low limit of detection (LOD) of 0.084 µM were obtained under the optimal conditions. The developed MI-PoPD/GCE also displays high selectivity, reproducibility and stability for THY detection. Finally, the content of THY in the real samples was accurately determined by the as-fabricated MI-PoPD/GCE, demonstrating its high practicability and reliability.


Subject(s)
Electrochemical Techniques , Molecular Imprinting , Phenylenediamines , Thymol , Phenylenediamines/chemistry , Thymol/analysis , Thymol/chemistry , Electrochemical Techniques/methods , Limit of Detection , Electrodes , Molecularly Imprinted Polymers/chemistry , Carbon/chemistry , Reproducibility of Results
15.
Food Chem ; 453: 139689, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781902

ABSTRACT

In this study, based on the discovery of thymol/glycerol monolaurate (GML) eutectic solvent, we studied the effect of GML as a multi-functional component (ripening inhibitor and antibacterial agent) on the formation, stability and antibacterial activity of eutectic nanoemulsions, and investigated the preservation of nanoemulsion in fresh pork. These results indicated that the formation of eutectic solvent was due to the hydrogen bonding between thymol and GML in the molten state. And eutectic nanoemulsions prepared with medium GML concentrations (20%, 40%, and 60%) of eutectic solvents as oil phases had small droplet diameters (<150 nm), exhibited sustained-release characteristics, and had excellent physicochemical stability. Moreover, the addition of GML enhanced the antibacterial activity of thymol nanoemulsion against S. aureus. as seen by their ability to inhibit affect formation more effectively. Treatment of fresh pork with optimized eutectic nanoemulsions (40% thymol/60% GML) extended its shelf life during refrigeration, which was mainly attributed to the ability of the encapsulated essential oil to inhibit microbial growth and lipid oxidation. These results provide a novel strategy to control Ostwald ripening and maintain the high antibacterial activity of thymol in nanoemulsion-based delivery systems.


Subject(s)
Anti-Bacterial Agents , Emulsions , Laurates , Monoglycerides , Staphylococcus aureus , Thymol , Thymol/chemistry , Thymol/pharmacology , Emulsions/chemistry , Emulsions/pharmacology , Laurates/chemistry , Laurates/pharmacology , Monoglycerides/chemistry , Monoglycerides/pharmacology , Swine , Animals , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Preservation
16.
Int J Biol Macromol ; 271(Pt 1): 132353, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763250

ABSTRACT

Traditional active packaging materials are easily affected by the environment, resulting in their inability to release active substances in specified quantities at specified times and locations. In this study, MCM-41 was used as a thymol (THY) carrier and added to the potato starch (PS) matrix to design an intelligent release active packaging film based on storage microenvironment. MCM-41 encapsulation improved thermal stability of THY. THY-MCM-41 addition significantly improved the tensile strength (TS, 7.18 MPa) of the film (P < 0.05) and endowed the film excellent gas and water barrier protection. THY release was responsive to temperature and relative humidity (RH), and the First-order model better explained the THY release pattern (R2 > 0.980). The THY-MCM-41/PS film exhibited long-term antibacterial effect during 10-day storage due to the sustained release of THY. Additionally, strawberries packaged in the THY-MCM-41/PS film exhibited the best sensory characteristics during 5-day storage (25 °C and 50 % RH). Overall, the present THY-MCM-41/PS film provides a novel alternative for the sustained release of active substances in order to achieve the excellent preservation of goods such as fruits and vegetables.


Subject(s)
Food Packaging , Solanum tuberosum , Starch , Thymol , Thymol/chemistry , Solanum tuberosum/chemistry , Starch/chemistry , Food Packaging/methods , Silicon Dioxide/chemistry , Models, Theoretical , Tensile Strength , Temperature , Humidity , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
17.
Int J Biol Macromol ; 268(Pt 2): 131669, 2024 May.
Article in English | MEDLINE | ID: mdl-38642683

ABSTRACT

Reducing contamination from percolate is critical to the preservation of foods with high water content, such as pork. This study aims to develop a novel active packaging material for meat preservation by precisely controlled dual-channel one-step electrospinning. Compared to traditional strategies of preparing Janus films, this method allows for greater flexibility and efficiency. The structure and properties of the Janus film are characterized by scanning electron microscopy (SEM), water contact angle (WCA), directional liquid transport investigation, Thymol release and permeation features, and biocompatibility evaluation. Moreover, the Janus film is applied to the packaging of pork with modified atmosphere packaging to demonstrate its practical application prospects in the food active packaging field. The results revealed that the two sides of the film showed completely different wettability, and the change rate of WCA increased with the increase of the scale of hydrophilic fibers. The permeation features of thymol loaded in the film was consistent with the results of antibacterial properties and biocompatibility assessment. Moreover, the Janus film can effectively prolong the shelf life, improve the quality and safety of the pork.


Subject(s)
Anti-Bacterial Agents , Chitosan , Food Packaging , Polyesters , Thymol , Thymol/chemistry , Thymol/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Polyesters/chemistry , Food Packaging/methods , Animals , Food Preservation/methods , Swine , Meat
18.
Pestic Biochem Physiol ; 201: 105886, 2024 May.
Article in English | MEDLINE | ID: mdl-38685252

ABSTRACT

This study evaluates the pediculicidal activity of nanoformulations containing different binary essential oil component mixtures (eugenol:linalool, 1,8 -cineole:linalool, and eugenol:thymol) using immersion bioassays. These have allowed us to evaluate the knockdown time affecting 50% of the individuals (KT50). In addition, the type of interaction between the components in each mixture was established in terms of the combination index (IC). The KT50 values were 6.07; 8.83; 7.17 and 27.23 h for linalool, 1,8 -cineole, eugenol, and thymol, respectively. For the eugenol:linalool mixtures, the efficacy was lower or equal to that obtained for the nanoformulations of the pure compounds, with values of KT50 about 13.33, 8.16 and 6.71 h for mixtures with ratios 3:1, 1:1 and 1:3, respectively. These mixtures present IC > 1, evidencing antagonistic interaction, which is enhanced with eugenol content. In the case of the binary mixtures of 1,8 -cineole: linalool, KT50 values were similar to those obtained for eugenol:linalool mixtures with similar ratios. In this case, IC assumes values close to unity, suggesting additive interactions independently of the mixture composition. On the other side, mixtures of eugenol:thymol with 1:1 and 1:3 ratios showed values of 9.40 and 32.93 h, while the mixture with a 3:1 ratio showed the greatest effectiveness (KT50 of 4.42 h). Eugenol:thymol mixtures show synergistic interaction (IC < 1) for combinations 3:1 and 1:1, while no interaction was observed for 1:3 combination. This indicates that eugenol enhances thymol activity. These results must be considered an important step forward to the development of effective pediculicidal nanoformulations based on botanical compounds.


Subject(s)
Acyclic Monoterpenes , Eucalyptol , Eugenol , Monoterpenes , Monoterpenes/pharmacology , Monoterpenes/chemistry , Animals , Eugenol/pharmacology , Eugenol/chemistry , Eucalyptol/pharmacology , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Pediculus/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Thymol/pharmacology , Thymol/chemistry , Micelles , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Nanoparticles/chemistry , Lice Infestations/drug therapy
19.
Braz J Microbiol ; 55(2): 1287-1295, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38453819

ABSTRACT

Fungal infections have emerged worldwide, and azole antifungals are widely used to control these infections. However, the emergence of antifungal resistance has been compromising the effectiveness of these drugs. Therefore, the objective of this study was to evaluate the antifungal and cytotoxic activities of the nine new 1,2,3 triazole compounds derived from thymol that were synthesized through Click chemistry. The binding mode prediction was carried out by docking studies using the crystallographic structure of Lanosterol 14α-demethylase G73E mutant from Saccharomyces cerevisiae. The new compounds showed potent antifungal activity against Trichophyton rubrum but did not show relevant action against Aspergillus fumigatus and Candida albicans. For T. rubrum, molecules nº 5 and 8 showed promising results, emphasizing nº 8, whose fungicidal and fungistatic effects were similar to fluconazole. In addition, molecule nº 8 showed low toxicity for keratinocytes and fibroblasts, concluding that this compound demonstrates promising characteristics for developing a new drug for dermatophytosis caused by T. rubrum, or serves as a structural basis for further research.


Subject(s)
Antifungal Agents , Arthrodermataceae , Microbial Sensitivity Tests , Molecular Docking Simulation , Thymol , Triazoles , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Triazoles/pharmacology , Triazoles/chemistry , Humans , Thymol/pharmacology , Thymol/chemistry , Arthrodermataceae/drug effects , Arthrodermataceae/genetics , Candida albicans/drug effects , Candida albicans/genetics , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/genetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Keratinocytes/drug effects , Trichophyton/drug effects , Trichophyton/genetics
20.
Talanta ; 274: 125951, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38547842

ABSTRACT

A new nanozyme (CuGaa) with switchable enzyme-like activity of peroxidase and polyphenol oxidase was successfully prepared based on guanidinoacetic acid and copper. The two enzyme-like activities can be easily switched by changing temperature or adding MnCl2. At 4 °C, polyphenol oxidase-like activity decreased to nearly 1%, and the material is mainly characterized by peroxidase-like activity at this point. However, at 60 °C in the presence of 20 mM MnCl2, the peroxidase-like activity decreased to nearly 10%, and the polyphenol oxidase-like activity of the materials increased to 140%. Based on the switchable enzyme-like activity of CuGaa, detection methods for thymol and hydrogen peroxide were developed. In addition, a rapid combination strategy was further established combined with logic gate technology for the facile identification of complex contamination in honey, which provided new ideas for low-cost and rapid honey identification.


Subject(s)
Honey , Hydrogen Peroxide , Thymol , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Honey/analysis , Thymol/analysis , Thymol/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Copper/chemistry , Catechol Oxidase/chemistry , Catechol Oxidase/metabolism , Logic , Food Contamination/analysis , Nanostructures/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL