Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.771
Filter
1.
Cells ; 13(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38994967

ABSTRACT

This review summarizes the results of a series of studies performed by our group with the aim to define the expression levels of thymosin ß4 and thymosin ß10 over time, starting from fetal development to different ages after birth, in different human organs and tissues. The first section describes the proteomics investigations performed on whole saliva from preterm newborns and gingival crevicular fluid, which revealed to us the importance of these acidic peptides and their multiple functions. These findings inspired us to start an in-depth investigation mainly based on immunochemistry to establish the distribution of thymosin ß4 and thymosin ß10 in different organs from adults and fetuses at different ages (after autopsy), and therefore to obtain suggestions on the functions of ß-thymosins in health and disease. The functions of ß-thymosins emerging from these studies, for instance, those performed during carcinogenesis, add significant details that could help to resolve the nowadays so-called "ß-thymosin enigma", i.e., the potential molecular role played by these two pleiotropic peptides during human development.


Subject(s)
Thymosin , Humans , Thymosin/metabolism , Thymosin/genetics , Gene Expression Regulation, Developmental
2.
Nat Neurosci ; 27(6): 1103-1115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38741020

ABSTRACT

The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. Here, to explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3 and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely, thymosin beta 4, thymosin beta 10 and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.


Subject(s)
Brain , Subcommissural Organ , Animals , Mice , Brain/metabolism , Brain/growth & development , Brain/embryology , Subcommissural Organ/metabolism , Gene Expression Regulation, Developmental , Thymosin/metabolism , Thymosin/genetics , Mice, Transgenic , Hydrocephalus/genetics , Hydrocephalus/metabolism , Hydrocephalus/pathology , Neurons/metabolism , Cell Movement/physiology , Peptides/metabolism , Mice, Inbred C57BL
3.
Biomolecules ; 14(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38672485

ABSTRACT

Restoring peripheral immune tolerance is crucial for addressing autoimmune diseases. An ancient mechanism in maintaining the balance between inflammation and tolerance is the ratio of extracellular ATP (exATP) and adenosine. Our previous research demonstrated the effectiveness of small spleen peptides (SSPs) in inhibiting psoriatic arthritis progression, even in the presence of the pro-inflammatory cytokine TNFα, by transforming dendritic cells (DCs) into tolerogenic cells and fostering regulatory Foxp3+ Treg cells. Here, we identified thymosins as the primary constituents of SSPs, but recombinant thymosin peptides were less efficient in inhibiting arthritis than SSPs. Since Tß4 is an ecto-ATPase-binding protein, we hypothesized that SSPs regulate exATP profiles. Real-time investigation of exATP levels in DCs revealed that tolerogenic stimulation led to robust de novo exATP synthesis followed by significant degradation, while immunogenic stimulation resulted in a less pronounced increase in exATP and less effective degradation. These contrasting exATP profiles were crucial in determining whether DCs entered an inflammatory or tolerogenic state, highlighting the significance of SSPs as natural regulators of peripheral immunological tolerance, with potential therapeutic benefits for autoimmune diseases. Finally, we demonstrated that the tolerogenic phenotype of SSPs is mainly influenced by adenosine receptors, and in vivo administration of SSPs inhibits psoriatic skin inflammation.


Subject(s)
Adenosine Triphosphate , Cell Differentiation , Dendritic Cells , Spleen , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Cell Differentiation/drug effects , Spleen/cytology , Spleen/metabolism , Spleen/drug effects , Spleen/immunology , Mice , Thymosin/pharmacology , Thymosin/metabolism , Peptides/pharmacology , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/metabolism , Arthritis, Psoriatic/immunology , Humans , Mice, Inbred C57BL , Immune Tolerance/drug effects
4.
Int J Biol Macromol ; 267(Pt 1): 131562, 2024 May.
Article in English | MEDLINE | ID: mdl-38626832

ABSTRACT

Angiogenesis is pivotal for osteogenesis during bone regeneration. A hydrogel that promotes both angiogenesis and osteogenesis is essential in bone tissue engineering. However, creating scaffolds with the ideal balance of biodegradability, osteogenic, and angiogenic properties poses a challenge. Thymosin beta 10 (TMSB10), known for its dual role in angiogenesis and osteogenesis differentiation, faces limitations due to protein activity preservation. To tackle this issue, ZIF-8 was engineered as a carrier for TMSB10 (TMSB10@ZIF-8), and subsequently integrated into the self-assembled sericin hydrogel. The efficacy of the composite hydrogel in bone repair was assessed using a rat cranial defect model. Characterization of the nanocomposites confirmed the successful synthesis of TMSB10@ZIF-8, with a TMSB10 encapsulation efficiency of 88.21 %. The sustained release of TMSB10 from TMSB10@ZIF-8 has significantly enhanced tube formation in human umbilical vein endothelial cells (HUVECs) in vitro and promoted angiogenesis in the chicken chorioallantoic membrane (CAM) model in vivo. It has markedly improved the osteogenic differentiation ability of MC 3 T3-E1 cells in vitro. 8 weeks post-implantation, the TMSB10@ZIF-8/ Sericin hydrogel group exhibited significant bone healing (86.77 ± 8.91 %), outperforming controls. Thus, the TMSB10@ZIF-8/Sericin hydrogel, leveraging ZIF-8 for TMSB10 delivery, emerges as a promising bone regeneration scaffold with substantial clinical application potential.


Subject(s)
Bone Regeneration , Human Umbilical Vein Endothelial Cells , Hydrogels , Neovascularization, Physiologic , Osteogenesis , Sericins , Thymosin , Bone Regeneration/drug effects , Osteogenesis/drug effects , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Neovascularization, Physiologic/drug effects , Humans , Rats , Human Umbilical Vein Endothelial Cells/drug effects , Thymosin/pharmacology , Thymosin/chemistry , Sericins/chemistry , Sericins/pharmacology , Cell Differentiation/drug effects , Mice , Rats, Sprague-Dawley , Male , Angiogenesis
5.
Fish Shellfish Immunol ; 148: 109503, 2024 May.
Article in English | MEDLINE | ID: mdl-38479567

ABSTRACT

Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses and cell proliferation. However, the function of the PHBs in immune regulation has largely not been determined. In the present study, we identified PHB2 in the red swamp crayfish Procambarus clarkii. PHB2 was found to be widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge. PHB2 significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. Here, we observed that PHB2 promotes the nuclear translocation of STAT by binding to STAT. After blocking PHB2 or STAT with antibodies or interfering with PHB2 or STAT, the expression levels of the antiviral genes ß-thymosin (PcThy-4) and crustin2 (Cru2) decreased. The gene sequence of PHB2 was analyzed and found to contain a nuclear introgression sequence (NIS). After in vivo injection of PHB2 with deletion of NIS (rΔNIS-PHB2), the nuclear translocation of STAT did not change significantly compared to that in the control group. These results suggest that PHB2 promoted the nuclear translocation of STAT through NIS and mediated the expression of antiviral proteins to inhibit WSSV infection.


Subject(s)
Thymosin , White spot syndrome virus 1 , Animals , White spot syndrome virus 1/physiology , Astacoidea , Seafood , Antiviral Agents
6.
Int J Biol Macromol ; 264(Pt 1): 130502, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428779

ABSTRACT

Hepatic stellate cell (HSC) activation is a crucial step in the development of liver fibrosis. Previous studies have shown that antler stem cells (AnSCs) inhibited HSC activation, suggesting that this may be achieved through secreting or releasing peptides. This study aimed to investigate whether AnSC-derived peptides (AnSC-P) could reduce liver fibrosis. The results showed that AnSC-P effectively reduced liver fibrosis in rats. Furthermore, we found that thymosin ß10 (Tß-10) was rich in AnSC-P, which may be the main component of AnSC-P contributing to the reduction in liver fibrosis. A further study showed that Tß-10 reduced liver fibrosis in rats, with a reduction in HYP and MDA levels in the liver tissues, a decrease in the serum levels of ALP, ALT, AST, and TBIL and an increase in TP and ALB. Moreover, Tß-10 decreased the expression levels of the genes related to the TGF-ß/SMAD signaling pathway in vivo. In addition, Tß-10 also inhibited TGF-ß1-induced HSC activation and decreased the expression levels of the TGF-ß/SMAD signaling pathway-related genes in HSCs in vitro. In conclusion, antler Tß-10 is a potential drug candidate for the treatment of liver fibrosis, the effect of which may be achieved via inhibition of the TGFß/SMAD signaling pathway.


Subject(s)
Antlers , Thymosin , Transforming Growth Factor beta1 , Rats , Animals , Transforming Growth Factor beta1/metabolism , Antlers/metabolism , Smad Proteins/metabolism , Hepatic Stellate Cells , Liver Cirrhosis/chemically induced , Transforming Growth Factor beta/metabolism
7.
Microb Cell Fact ; 23(1): 40, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321474

ABSTRACT

BACKGROUND: In recent years, biosafety and green food safety standards have increased the demand for immune enhancers and adjuvants. In the present study, recombinant food-grade Lactococcus lactis (r-L. lactis-Tα1-IFN) expressing thymosin Tα1 and chicken interferon fusion protein was constructed. RESULTS: The in vitro interactions with macrophages revealed a mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate both macrophage J774-Dual™ NF-κB and interferon regulator (IRF) signaling pathways. In vitro interactions with chicken peripheral blood mononuclear cells (PBMCs) demonstrated that a mixture of recombinant r-L. lactis-Tα1-IFN significantly enhanced the expression levels of interferon (IFN)-γ, interleukin (IL)-10, CD80, and CD86 proteins in chicken PBMCs. Animal experiments displayed that injecting a lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate the proliferation of T cells and antigen-presenting cells in chicken PBMCs. Moreover, 16S analysis of intestinal microbiota demonstrated that injection of the lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly improve the structure and composition of chicken intestinal microbiota, with a significant increase in probiotic genera, such as Lactobacillus spp. Results of animal experiments using the lysis mixture of recombinant r-L. lactis-Tα1-IFN as an immune adjuvant for inactivated chicken Newcastle disease vaccine showed that the serum antibody titers of the experimental group were significantly higher than those of the vaccine control group, and the expression levels of cytokines IFN-γ and IL-2 were significantly higher than those of the vaccine control group. CONCLUSION: These results indicate that food-safe recombinant r-L. lactis-Tα1-IFN has potential as a vaccine immune booster and immune adjuvant. This study lays the foundation for the development of natural green novel animal immune booster or immune adjuvant.


Subject(s)
Lactococcus lactis , Thymosin , Vaccines , Animals , Interferons/metabolism , Lactococcus , Leukocytes, Mononuclear , Adjuvants, Immunologic/metabolism , Recombinant Proteins/metabolism , Thymosin/metabolism , Vaccines/metabolism , Chickens , Lactococcus lactis/metabolism
8.
Altern Ther Health Med ; 30(1): 6-12, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38308608

ABSTRACT

Objective: This study aims to assess the safety and efficacy of Thymosin Alpha 1 (Tα1) through a comprehensive narrative review of clinical studies involving over 11 000 human subjects in more than 30 trials. The focus was on Tα1's application in COVID-19, autoimmune conditions, and cancer treatment, with implications for future considerations. Methods: We systematically searched articles relevant to critical studies on COVID-19, infectious diseases, cancer, and autoimmune diseases indexed on Pubmed, Google Scholar, and Cochrane Library. Our focus was on evaluating the safety and efficacy of Tα1 in human subjects. Clinical trials conducted worldwide involving diverse populations were analyzed to assess the safety and effectiveness of Tα1. The review examines explicit outcomes in over 11 000 human subjects, emphasizing its role in addressing COVID-19, autoimmune conditions, and cancer treatment. Results: Contrary to the FDA's restriction on Tα1 and 21 additional peptides in 2023, our analysis reveals consistent evidence of Tα1's safety and efficacy. The peptide has demonstrated significant effectiveness in treating various conditions, including COVID-19, autoimmune disorders, and cancer. This review summarizes conclusions drawn from a comprehensive examination of clinical trials worldwide. Conclusions: Based on substantial evidence from clinical trials, Tα1 emerges as a well-tolerated and effective immune modulator. The FDA>s restriction appears unfounded, as Tα1 has shown safety and efficacy beyond the initially specified conditions. Urgent attention and intervention are warranted to ensure the continued availability of this life-saving peptide through prescription. Therefore, it is recommended that the FDA permits 503A compounding pharmacies to compound Tα1, considering its potential to treat a variety of conditions effectively.


Subject(s)
Autoimmune Diseases , COVID-19 , Neoplasms , Thymosin , Humans , Thymalfasin/therapeutic use , Thymosin/therapeutic use , Autoimmune Diseases/drug therapy , Neoplasms/drug therapy
9.
Int J Mol Sci ; 25(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396631

ABSTRACT

Resistance and toxicity associated with current treatments for human cytomegalovirus (HCMV) infection highlight the need for alternatives and immunotherapy has emerged as a promising strategy. This study examined the in vitro immunological effects of co-administration of Thymosin-alpha-1 (Tα1) and polyanionic carbosilane dendrimers (PCDs) on peripheral blood mononuclear cells (PBMCs) during HCMV infection. The biocompatibility of PCDs was assessed via MTT and LDH assays. PBMCs were pre-treated with the co-administered compounds and then exposed to HCMV for 48 h. Morphological alterations in PBMCs were observed using optical microscopy and total dendritic cells (tDCs), myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs), along with CD4+/CD8+ T cells and regulatory T cells (Treg), and were characterized using multiparametric flow cytometry. The findings revealed that Tα1 + PCDs treatments increased DC activation and maturation. Furthermore, increased co-receptor expression, intracellular IFNγ production in T cells and elevated Treg functionality and reduced senescence were evident with Tα1 + G2-S24P treatment. Conversely, reduced co-receptor expression, intracellular cytokine production in T cells, lower functionality and higher senescence in Treg were observed with Tα1 + G2S16 treatment. In summary, Tα1 + PCDs treatments demonstrate synergistic effects during early HCMV infection, suggesting their use as an alternative therapeutic for preventing virus infection.


Subject(s)
Dendrimers , Polyelectrolytes , Silanes , Thymosin , Humans , Thymalfasin/pharmacology , Dendrimers/pharmacology , Thymosin/pharmacology , Leukocytes, Mononuclear/metabolism
10.
Mol Med Rep ; 29(4)2024 04.
Article in English | MEDLINE | ID: mdl-38391118

ABSTRACT

Prothymosin α (ProT), a highly acidic nuclear protein with multiple cellular functions, has shown potential neuroprotective properties attributed to its anti­necrotic and anti­apoptotic activities. The present study aimed to investigate the beneficial effect of ProT on neuroplasticity after ischemia­reperfusion injury and elucidate its underlying mechanism of action. Primary cortical neurons were either treated with ProT or overexpressing ProT by gene transfection and exposed to oxygen­glucose deprivation for 2 h in vitro. Immunofluorescence staining for ProT and MAP­2 was performed to quantify ProT protein expression and assess neuronal arborization. Mice treated with vehicle or ProT (100 µg/kg) and ProT overexpression in transgenic mice received middle cerebral artery occlusion for 50 min to evaluate the effect of ProT on neuroplasticity­associated protein following ischemia­reperfusion injury. The results demonstrated that in cultured neurons ProT significantly increased neurite lengths and the number of branches, accompanied by an upregulation mRNA level of brain­derived neurotrophic factor. Furthermore, ProT administration improved the protein expressions of synaptosomal­associated protein, 25 kDa and postsynaptic density protein 95 after ischemic­reperfusion injury in vivo. These findings suggested that ProT can potentially induce neuroplasticity effects following ischemia­reperfusion injury.


Subject(s)
Reperfusion Injury , Thymosin , Thymosin/analogs & derivatives , Mice , Animals , Mice, Transgenic , Protein Precursors/genetics , Protein Precursors/metabolism , Up-Regulation , Thymosin/genetics , Thymosin/pharmacology , Thymosin/metabolism , Reperfusion Injury/drug therapy
11.
Aesthetic Plast Surg ; 48(11): 2179-2189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38409346

ABSTRACT

BACKGROUND: Autologous fat grafting (AFG) has emerged as a highly sought-after plastic surgery procedure, although its success has been hampered by the uncertain fat survival rate. Current evidence suggests that adipose-derived stem cells (ADSCs) may contribute to fat retention in AFG. In previous studies, it was confirmed that thymosin beta 4 (Tß4) could enhance fat survival in vivo, although the precise mechanism remains unclear. METHODS: ADSCs were isolated from patients undergoing liposuction and their proliferation, apoptosis, anti-apoptosis, and migration were analyzed under Tß4 stimulation using cell counting kit-8, flow cytometry, wound healing assay, and real-time quantitative PCR. The mRNA levels of genes relating to angiogenesis and Hippo signaling were also determined. RESULTS: Tß4 at 100 ng/mL (p-value = 0.0171) and 1000 ng/mL (p-value = 0.0054) significantly increased ADSC proliferation from day 1 compared to the control group (0 ng/mL). In addition, the mRNA levels of proliferation-associated genes were elevated in the Tß4 group. Furthermore, Tß4 enhanced the anti-apoptotic ability of ADSCs when stimulated with Tß4 and an apoptotic induction reagent (0 ng/mL vs. 1000 ng/mL, p-value = 0.011). Crucially, the mRNA expression levels of angiogenesis-related genes and critical genes in the Hippo pathway were affected by Tß4 in ADSCs. CONCLUSIONS: Tß4 enhances adipose viability in AFG via facilitating ADSC proliferation and reducing apoptosis, and acts as a crucial positive regulator of ADSC-associated angiogenesis. Additionally, Tß4 could be accountable for the phenotypic adjustment of ADSCs by regulating the Hippo pathway. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Adipose Tissue , Thymosin , Adult , Female , Humans , Adipocytes , Adipose Tissue/cytology , Adipose Tissue/transplantation , Apoptosis/drug effects , Cell Proliferation , Cell Survival/drug effects , Cells, Cultured , Flow Cytometry , Graft Survival , In Vitro Techniques , Stem Cells , Thymosin/genetics , Thymosin/pharmacology , Transplantation, Autologous
12.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256161

ABSTRACT

The thymus is one of the most crucial immunological organs, undergoing visible age-related shrinkage. Thymic epithelial cells (TECs) play a vital role in maintaining the normal function of the thymus, and their degeneration is the primary cause of age-induced thymic devolution. Thymosin ß4 (Tß4) serves as a significant important G-actin sequestering peptide. The objective of this study was to explore whether Tß4 influences thymocyte differentiation by regulating the cytoskeletal rearrangement and mitochondrial transfer of TECs. A combination of H&E staining, immunofluorescence, transmission electron microscopy, RT-qPCR, flow cytometry, cytoskeletal immunolabeling, and mitochondrial immunolabeling were employed to observe the effects of Tß4 on TECs' skeleton rearrangement, mitochondrial transfer, and thymocyte differentiation. The study revealed that the Tß4 primarily regulates the formation of microfilaments and the mitochondrial transfer of TECs, along with the formation and maturation of double-negative cells (CD4-CD8-) and CD4 single-positive cells (CD3+TCRß+CD4+CD8-) thymocytes. This study suggests that Tß4 plays a crucial role in thymocyte differentiation by influencing the cytoskeletal rearrangement and mitochondrial transfer of TECs. These effects may be associated with Tß4's impact on the aggregation of F-actin. This finding opens up new avenues for research in the field of immune aging.


Subject(s)
Thymocytes , Thymosin , Cytoskeleton , Epithelial Cells , Actins
13.
Phytomedicine ; 123: 155216, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061285

ABSTRACT

BACKGROUND: Thymus is the most crucial organ connecting immunity and aging. The progressive senescence of thymic epithelial cells (TECs) leads to the involution of thymus under aging, chronic stress and other factors. Ligustilide (LIG) is a major active component of the anti-aging Chinese herbal medicine Angelica sinensis (Oliv.) Diels, but its role in preventing TEC-based thymic aging remains elusive. PURPOSE: This study explored the protective role of Ligustilide in alleviating ADM (adriamycin) -induced thymic immune senescence and its underlying molecular mechanisms. METHOD: The protective effect of Ligustilide on ADM-induced thymic atrophy was examined by mouse and organotypic models, and conformed by SA-ß-gal staining in TECs. The abnormal spatial distribution of TECs in the senescent thymus was analyzed using H&E, immunofluorescence and flow cytometry. The possible mechanisms of Ligustilide in ADM-induced thymic aging were elucidated by qPCR, fluorescence labeling and Western blot. The mechanism of Ligustilide was subsequently validated through actin polymerization inhibitor, genetic engineering to regulate Thymosin ß15 (Tß15) and Tß4 expression, molecular docking and ß Thymosin-G-actin cross-linking assay. RESULTS: At a 5 mg/kg dose, Ligustilide markedly ameliorated ADM-induced weight loss and limb grip weakness in mice. It also reversed thymic damage and restored positive selection impaired by ADM. In vitro, ADM disrupted thymic structure, reduced TECs number and hindered double negative (DN) T cell differentiation. Ligustilide counteracted these effects, promoted TEC proliferation and reticular differentiation, leading to an increase in CD4+ single positive (CD4SP) T cell proportion. Mechanistically, ADM diminished the microfilament quantity in immortalized TECs (iTECs), and lowered the expression of cytoskeletal marker proteins. Molecular docking and cross-linking assay revealed that Ligustilide inhibited the protein binding between G-actin and Tß15 by inhibiting the formation of the Tß15-G-actin complex, thus enhancing the microfilament assembly capacity in TECs. CONCLUSION: This study, for the first time, reveals that Ligustilide can attenuate actin depolymerization, protects TECs from ADM-induced acute aging by inhibiting the binding of Tß15 to G-actin, thereby improving thymic immune function. Moreover, it underscores the interesting role of Ligustilide in maintaining cytoskeletal assembly and network structure of TECs, offering a novel perspective for deeper understanding of anti thymic aging.


Subject(s)
4-Butyrolactone/analogs & derivatives , Actins , Thymosin , Mice , Animals , Actins/metabolism , Thymosin/pharmacology , Thymosin/metabolism , Molecular Docking Simulation , Epithelial Cells
14.
Exp Cell Res ; 434(1): 113871, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38049080

ABSTRACT

Disrupted intestinal barrier homeostasis is fundamental to inflammatory bowel disease. Thymosin ß4 (Tß4) improves inflammation and has beneficial effects in dry-eye diseases, but its effects on the intestinal mucus barrier remain unknown. Therefore, this study evaluated the underlying regulatory mechanisms and effects of Tß4 by examining Tß4 expression in a mouse model with dextran sodium sulfate (DSS)-induced colitis and colonic barrier damage. Additionally, we intraperitoneally injected C57BL/6 mice with Tß4 to assess barrier function, microtubule-associated protein 1 light chain 3 (LC3II) protein expression, and autophagy. Finally, normal human colon tissue and colon carcinoma cells (Caco2) were cultured to verify Tß4-induced barrier function and autophagy changes. Mucin2 levels decreased, microbial infiltration increased, and Tß4 expression increased in the colitis mouse model versus the control mice, indicating mucus barrier damage. Moreover, Tß4-treated C57BL/6 mice had damaged intestinal mucus barriers and decreased LC3II levels. Tß4 also inhibited colonic mucin2 production, disrupted tight junctions, and downregulated autophagy; these results were confirmed in Caco2 cells and normal human colon tissue. In summary, Tß4 may be implicated in colitis by compromising the integrity of the intestinal mucus barrier and inhibiting autophagy. Thus, Tß4 could be a new diagnostic marker for intestinal barrier defects.


Subject(s)
Inflammatory Bowel Diseases , Thymosin , Animals , Female , Humans , Mice , Autophagy/drug effects , Cell Line, Tumor , Colitis/metabolism , Colitis/pathology , Colon/metabolism , Colon/pathology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Mice, Inbred C57BL , Sirolimus/administration & dosage , Thymosin/genetics , Thymosin/metabolism , Up-Regulation
15.
Mol Biol (Mosk) ; 57(6): 1006-1016, 2023.
Article in Russian | MEDLINE | ID: mdl-38062956

ABSTRACT

The aim of this work was to study the effects of thymosin-1 alpha (Tα1) on the anti-inflammatory response of RAW 264.7 macrophages cultured in the presence of lipopolysaccharide (LPS) from the walls of gram-negative bacteria. As well, we evaluated production of pro-inflammatory cytokines and the activity of the NF-κB and SAPK/JNK signaling pathways. In addition, the level of expression of a number of genes that regulate cell apoptosis, as well as the activity of receptors involved in the pro-inflammatory response, was determined. First, the addition of Tα1 normalized the level of cytokine production to varying degrees, with a particularly noticeable effect on IL-1ß and IL-6. Second, the addition of Tα1 normalized the activity of the NF-κB and SAPK/JNK signaling cascades and the expression of the Tlr4 gene. Third, Tα1 significantly reduced p53 and the activity of the P53 gene, which is a marker of cell apoptosis. Fourth, it was shown that the increase in Ar-1 gene expression under the influence of LPS was significantly reduced using Tα1. Thus, it was found that the presence of Tα1 in the RAW 264.7 cell culture medium significantly reduced the level of the pro-inflammatory response of cells.


Subject(s)
NF-kappa B , Thymosin , Animals , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , RAW 264.7 Cells , Endotoxins , Lipopolysaccharides/pharmacology , Thymosin/genetics , Thymosin/pharmacology , Cytokines/metabolism
16.
Expert Opin Ther Pat ; 33(12): 865-873, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38131310

ABSTRACT

INTRODUCTION: Thymosins are small proteins found mainly in the thymus. They are involved in several biological processes, including immunoregulation, angiogenesis, and anti-inflammatory activity. Due to these multiple activities, thymosins are widely used as therapeutics. In fact, these peptides have shown interesting results in the treatment of eye disorders, anticancer therapy, and dysregulated immune disorders. AREA COVERED: We analyzed the thymosins therapeutic patent landscape describing the most significant patents published after 2018 and originally written in English, classified according to the different type of functions and diseases. We searched 'Thymosin' on Patentscope and Espacenet. EXPERT OPINION: Thymalfasin (Zadaxin) is the only FDA-approved thymosine-based drug used to treat chronic hepatitis B and C and as a chemotherapy inducer. This outcome demonstrates how thymosins can be exploited as therapeutics, especially in immunological and anti-cancer therapies. However, the development of modified thymosins could expand their therapeutic interest and application in different diseases. In fact, by chemical modifications, it is possible to increase proteolytic stability in the biological environment, enhance cell permeability, and stabilize the secondary structure of the peptide. Finally, the development of shorter sequences could reduce the cost and production time of these thymosin-based drugs.


Subject(s)
Thymosin , Thymus Gland , Humans , Patents as Topic , Thymosin/pharmacology , Thymosin/chemistry , Thymosin/metabolism
17.
Int Immunopharmacol ; 125(Pt A): 111103, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38149577

ABSTRACT

Tα1 (Thymosin-alpha-1) is a thymus-derived hormone that has been demonstrated to be effective on diverse immune cell subsets. The objective of this study was to determine the in vitro immunomodulatory effect of Tα1 in human cytomegalovirus (HCMV) infection. Dendritic cells (DCs) were isolated from peripheral blood mononuclear cells (PBMCs) by negative selection and cultured in the presence or absence of Tα1. The immunophenotyping of DCs was characterised by multiparametric flow cytometry assessing CD40, CD80, TIM-3 and PDL-1 markers, as well as intracellular TNFα production. Then, autologous CD4+ or CD8+ T-Lymphocytes (TLs) isolated by negative selection from PBMCs were co-cultured with DCs previously treated with Tα1 in the presence or absence of HCMV. Intracellular TNFα, IFNγ, IL-2 production, CD40-L and PD-1 expression were assessed through immunophenotyping, and polyfunctionality in total TLs and memory subsets were evaluated. The results showed that Tα1 increased CD40, CD80, TIM-3 and TNFα intracellular production while decreasing PDL-1 expression, particularly on plasmacytoid dendritic cells (pDCs). Therefore, Tα1 modulated the production of TNFα, IFNγ and IL-2 in both total and memory subsets of CD4+ and CD8+ TLs by upregulating CD40/CD40-L and downregulating PDL-1/PD-1 expression. Our study concludes that Tα1 enhances antigen-presenting capacity of DCs, improves TLs responses to HCMV infection, and enhances the polyfunctionality of CD8+ TLs. Consequently, Tα1 could be an alternative adjuvant for use in therapeutic cell therapy for immunocompromised patients.


Subject(s)
Thymosin , Humans , Thymalfasin/pharmacology , Thymosin/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Leukocytes, Mononuclear/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-2/metabolism , Programmed Cell Death 1 Receptor/metabolism , Dendritic Cells , Synapses
18.
Genet Res (Camb) ; 2023: 5517445, 2023.
Article in English | MEDLINE | ID: mdl-38026448

ABSTRACT

Glioma is a highly aggressive form of brain cancer characterized by limited treatment options and poor patient prognosis. In this study, we aimed to elucidate the oncogenic role of thymosin beta-10 (TMSB10) in glioma through comprehensive analyses of patient data from the TCGA and GTEx databases. Our investigation encompassed several key aspects, including the analysis of patients' clinical characteristics, survival analysis, in vitro and in vivo functional experiments, and the exploration of correlations between TMSB10 expression and immune cell infiltration. Our findings revealed a significant upregulation of TMSB10 expression in glioma tissues compared to normal brain tissues, with higher expression levels observed in tumors of advanced histological grades. Moreover, we observed positive correlations between TMSB10 expression and patient age, while no significant association with gender was detected. Additionally, TMSB10 exhibited marked elevation in gliomas with wild-type IDH and noncodeletion of 1p/19q. Survival analysis indicated that high TMSB10 expression was significantly associated with worse overall survival, disease-specific survival, and progression-free survival in glioma patients. Functionally, knockdown of TMSB10 in glioma cells resulted in reduced cellular growth rates and impaired tumor growth in xenograft models. Furthermore, our study revealed intriguing correlations between TMSB10 expression and immune cell infiltration within the tumor microenvironment. Specifically, TMSB10 showed negative associations with plasmacytoid dendritic cells (pDC) and γδ T cells (Tgd), while displaying positive correlations with neutrophils and macrophages. These findings collectively provide valuable insights into the oncogenic properties of TMSB10 in glioma, suggesting its potential as a therapeutic target and a biomarker for patient stratification.


Subject(s)
Brain Neoplasms , Glioma , Thymosin , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Clinical Relevance , Glioma/genetics , Glioma/pathology , Prognosis , Survival Analysis , Thymosin/genetics , Thymosin/metabolism , Tumor Microenvironment
19.
PLoS One ; 18(10): e0287817, 2023.
Article in English | MEDLINE | ID: mdl-37788276

ABSTRACT

Alzheimer's disease (AD) is a common amnestic cognitive impairment characterised by ß-amyloid (Aß) plaques deposit in the brain of the elderly. AD is a yet incurable disease due to its unknown exact pathogenesis and unavailability of effective remedies in clinical application. Thymosin ß4 (Tß4) is a housekeeping protein that plays important role in cell proliferation, migration and differentiation. It has the ability to protect and repair neurons however it is still unclear involvement in AD. Therefore, the aim of this study is to elucidate the role and mechanism of Tß4 in mediating the improvement of AD. AD-like cell model was constructed in neuroblastoma cell line SH-SY5Y treated with Aß. Overexpression of Tß4 were done using lentivirus infection and downregulation through siRNA transfection. We performed western blot and flow cytometry to study the apoptosis and standard kits to measure the oxidative stress-associated biomarkers. There is significant increased in viability and decreased apoptosis in Tß4 overexpression group compared to control. Furthermore, overexpression of Tß4 suppressed the expression of pro-apoptotic markers such as Caspase-3, Caspase-8, and Bax meanwhile upregulated the expression of anti-apoptotic gene Bcl-2. Tß4 alleviated oxidative damage by reducing MDA, LDH and ROS and increasing SOD and GSH-PX in Aß-treated SH-SY5Y cells. We found that Tß4 inhibit ERK/p38 MAPK pathway and intensify the expression of 5-HTR1A. Additionally, we showed that upregulation of 5-HTR1A dampened the Tß4 to activate ERK signalling. In conclusion, our study revealed the neuroprotective role of Tß4 in AD which may open up new therapeutic applications in AD treatment.


Subject(s)
Alzheimer Disease , Neuroblastoma , Thymosin , Aged , Humans , Alzheimer Disease/drug therapy , Apoptosis , Cell Line, Tumor , Neuroblastoma/pathology , Oxidative Stress , Receptor, Serotonin, 5-HT1A/metabolism , Signal Transduction , Thymosin/metabolism , Neuroprotection
20.
Front Immunol ; 14: 1237978, 2023.
Article in English | MEDLINE | ID: mdl-37701432

ABSTRACT

Cancer is one of the leading causes of death worldwide. The burden of cancer on public health is becoming more widely acknowledged. Lung cancer has one of the highest incidence and mortality rates of all cancers. The prevalence of early screening, the emergence of targeted therapy, and the development of immunotherapy have all significantly improved the overall prognosis of lung cancer patients. The current state of affairs, however, is not encouraging, and there are issues like poor treatment outcomes for some patients and extremely poor prognoses for those with advanced lung cancer. Because of their potent immunomodulatory capabilities, thymosin drugs are frequently used in the treatment of tumors. The effectiveness of thymosin drugs in the treatment of lung cancer has been demonstrated in numerous studies, which amply demonstrates the potential and future of thymosin drugs for the treatment of lung cancer. The clinical research on thymosin peptide drugs in lung cancer and the basic research on the mechanism of thymosin drugs in anti-lung cancer are both systematically summarized and analyzed in this paper, along with future research directions.


Subject(s)
Lung Neoplasms , Thymosin , Humans , Lung Neoplasms/drug therapy , Immunotherapy , Immunomodulation , Public Health , Thymosin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL