Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 496
Filter
1.
Biomaterials ; 310: 122634, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38823195

ABSTRACT

The hypoxic nature of pancreatic cancer, one of the most lethal malignancies worldwide, significantly impedes the effectiveness of chemoradiotherapy. Although the development of oxygen carriers and hypoxic sensitizers has shown promise in overcoming tumor hypoxia. The heterogeneity of hypoxia-primarily caused by limited oxygen penetration-has posed challenges. In this study, we designed a hypoxia-responsive nano-sensitizer by co-loading tirapazamine (TPZ), KP372-1, and MK-2206 in a metronidazole-modified polymeric vesicle. This nano-sensitizer relies on efficient endogenous NAD(P)H quinone oxidoreductase 1-mediated redox cycling induced by KP372-1, continuously consuming periphery oxygen and achieving evenly distributed hypoxia. Consequently, the normalized tumor microenvironment facilitates the self-amplified release and activation of TPZ without requiring deep penetration. The activated TPZ and metronidazole further sensitize radiotherapy, significantly reducing the radiation dose needed for extensive cell damage. Additionally, the coloaded MK-2206 complements inhibition of therapeutic resistance caused by Akt activation, synergistically enhancing the hypoxic chemoradiotherapy. This successful hypoxia normalization strategy not only overcomes hypoxia resistance in pancreatic cancer but also provides a potential universal approach to sensitize hypoxic tumor chemoradiotherapy by reshaping the hypoxic distribution.


Subject(s)
Chemoradiotherapy , Drug Liberation , Pancreatic Neoplasms , Tirapazamine , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Humans , Tirapazamine/pharmacology , Chemoradiotherapy/methods , Cell Line, Tumor , Animals , Mice, Nude , Heterocyclic Compounds, 3-Ring/pharmacology , Nanoparticles/chemistry , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Tumor Hypoxia/drug effects , Mice, Inbred BALB C , Metronidazole/pharmacology , Metronidazole/therapeutic use , Tumor Microenvironment/drug effects
2.
J Nanobiotechnology ; 22(1): 358, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907270

ABSTRACT

BACKGROUND: Hypoxia-activated prodrug (HAP) is a promising candidate for highly tumor-specific chemotherapy. However, the oxygenation heterogeneity and dense extracellular matrix (ECM) of tumor, as well as the potential resistance to chemotherapy, have severely impeded the resulting overall efficacy of HAP. RESULTS: A HAP potentiating strategy is proposed based on ultrasound responsive nanodroplets (PTP@PLGA), which is composed of protoporphyrin (PpIX), perfluoropropane (PFP) and a typical HAP, tirapazamine (TPZ). The intense vaporization of PFP upon ultrasound irradiation can magnify the sonomechanical effect, which loosens the ECM to promote the penetration of TPZ into the deep hypoxic region. Meanwhile, the PpIX enabled sonodynamic effect can further reduce the oxygen level, thus activating the TPZ in the relatively normoxic region as well. Surprisingly, abovementioned ultrasound effect also results in the downregulation of the stemness of cancer cells, which is highly associated with drug-refractoriness. CONCLUSIONS: This work manifests an ideal example of ultrasound-based nanotechnology for potentiating HAP and also reveals the potential acoustic effect of intervening cancer stem-like cells.


Subject(s)
Fluorocarbons , Nanoparticles , Prodrugs , Protoporphyrins , Tirapazamine , Humans , Tirapazamine/pharmacology , Tirapazamine/chemistry , Protoporphyrins/pharmacology , Protoporphyrins/chemistry , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Prodrugs/pharmacology , Prodrugs/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ultrasonic Waves , Animals , Extracellular Matrix/metabolism , Mice , Neoplasms/drug therapy
3.
Chem Biol Drug Des ; 103(5): e14531, 2024 May.
Article in English | MEDLINE | ID: mdl-38726798

ABSTRACT

Inhibition of prolylhydroxylase-2 (PHD-2) in both normoxic and hypoxic cells is a critical component of solid tumours. The present study aimed to identify small molecules with PHD-2 activation potential. Virtually screening 4342 chemical compounds for structural similarity to R59949 and docking with PHD-2. To find the best drug candidate, hits were assessed for drug likeliness, antihypoxic and antineoplastic potential. The selected drug candidate's PHD-2 activation, cytotoxic and apoptotic potentials were assessed using 2-oxoglutarate, MTT, AO/EtBr and JC-1 staining. The drug candidate was also tested for its in-vivo chemopreventive efficacy against DMBA-induced mammary gland cancer alone and in combination with Tirapazamine (TPZ). Virtual screening and 2-oxoglutarate assay showed BBAP-6 as lead compound. BBAP-6 exhibited cytotoxic and apoptotic activity against ER+ MCF-7. In carmine staining and histology, BBAP-6 alone or in combination with TPZ restored normal surface morphology of the mammary gland after DMBA produced malignant alterations. Immunoblotting revealed that BBAP-6 reduced NF-κB expression, activated PHD-2 and induced intrinsic apoptotic pathway. Serum metabolomics conducted with 1H NMR confirmed that BBAP-6 prevented HIF-1α and NF-κB-induced metabolic changes in DMBA mammary gland cancer model. In a nutshell, it can be concluded that BBAP-6 activates PHD-2 and exhibits anticancer potential.


Subject(s)
Apoptosis , Breast Neoplasms , Hypoxia-Inducible Factor-Proline Dioxygenases , Humans , Female , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/prevention & control , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Apoptosis/drug effects , Mice , Cell Hypoxia/drug effects , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , MCF-7 Cells , Cell Line, Tumor , NF-kappa B/metabolism , Tirapazamine/pharmacology , Tirapazamine/chemistry , Tirapazamine/metabolism
4.
Biomaterials ; 309: 122586, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38718615

ABSTRACT

It is imperative to optimize chemotherapy for heightened anti-tumor therapeutic efficacy. Unrestrained tumor cell proliferation and sustained angiogenesis are pivotal for cancer progression. Plinabulin, a vascular disrupting agent, selectively destroys tumor blood vessels. Tirapazamine (TPZ), a hypoxia-activated prodrug, intensifies cytotoxicity in diminishing oxygen levels within tumor cells. Despite completing Phase III clinical trials, both agents exhibited modest treatment efficiency due to dose-limiting toxicity. In this study, we employed methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG-b-PDLLA) to co-deliver Plinabulin and TPZ to the tumor site, concurrently disrupting blood vessels and eliminating tumor cells, addressing both symptoms and the root cause of tumor progression. Plinabulin was converted into a prodrug with esterase response (PSM), and TPZ was synthesized into a hexyl chain-containing derivative (TPZHex) for effective co-delivery. PSM and TPZHex were co-encapsulated with mPEG-b-PDLLA, forming nanodrugs (PT-NPs). At the tumor site, PT-NPs responded to esterase overexpression, releasing Plinabulin, disrupting blood vessels, and causing nutritional and oxygen deficiency. TPZHex was activated in response to increased hypoxia, killing tumor cells. In treating 4T1 tumors, PT-NPs demonstrated enhanced therapeutic efficacy, achieving a 92.9 % tumor suppression rate and a 20 % cure rate. This research presented an innovative strategy to enhance synergistic efficacy and reduce toxicity in combination chemotherapy.


Subject(s)
Polyethylene Glycols , Tirapazamine , Tirapazamine/pharmacology , Animals , Cell Line, Tumor , Humans , Polyethylene Glycols/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female , Mice , Mice, Inbred BALB C , Neovascularization, Pathologic/drug therapy , Triazines/pharmacology , Triazines/chemistry , Triazines/therapeutic use , Diketopiperazines
5.
J Nanobiotechnology ; 22(1): 205, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658965

ABSTRACT

The elevated level of hydrogen sulfide (H2S) in colon cancer hinders complete cure with a single therapy. However, excessive H2S also offers a treatment target. A multifunctional cascade bioreactor based on the H2S-responsive mesoporous Cu2Cl(OH)3-loaded hypoxic prodrug tirapazamine (TPZ), in which the outer layer was coated with hyaluronic acid (HA) to form TPZ@Cu2Cl(OH)3-HA (TCuH) nanoparticles (NPs), demonstrated a synergistic antitumor effect through combining the H2S-driven cuproptosis and mild photothermal therapy. The HA coating endowed the NPs with targeting delivery to enhance drug accumulation in the tumor tissue. The presence of both the high level of H2S and the near-infrared II (NIR II) irradiation achieved the in situ generation of photothermic agent copper sulfide (Cu9S8) from the TCuH, followed with the release of TPZ. The depletion of H2S stimulated consumption of oxygen, resulting in hypoxic state and mitochondrial reprogramming. The hypoxic state activated prodrug TPZ to activated TPZ (TPZ-ed) for chemotherapy in turn. Furthermore, the exacerbated hypoxia inhibited the synthesis of adenosine triphosphate, decreasing expression of heat shock proteins and subsequently improving the photothermal therapy. The enriched Cu2+ induced not only cuproptosis by promoting lipoacylated dihydrolipoamide S-acetyltransferase (DLAT) heteromerization but also performed chemodynamic therapy though catalyzing H2O2 to produce highly toxic hydroxyl radicals ·OH. Therefore, the nanoparticles TCuH offer a versatile platform to exert copper-related synergistic antitumor therapy.


Subject(s)
Copper , Hyaluronic Acid , Hydrogen Sulfide , Mitochondria , Nanoparticles , Photothermal Therapy , Prodrugs , Tirapazamine , Photothermal Therapy/methods , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Animals , Copper/chemistry , Copper/pharmacology , Mice , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Prodrugs/pharmacology , Prodrugs/chemistry , Tirapazamine/pharmacology , Tirapazamine/chemistry , Nanoparticles/chemistry , Hyaluronic Acid/chemistry , Cell Line, Tumor , Colonic Neoplasms/therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Nude
6.
ACS Macro Lett ; 13(5): 599-606, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38683197

ABSTRACT

The high glutathione (GSH) level of the tumor microenvironment severely affects the efficacy of photodynamic therapy (PDT). The current GSH depletion strategies have difficulty meeting the dual needs of security and efficiency. In this study, we report a photosensitizer Chlorin e6 (Ce6) and hypoxia-activated prodrug tirapazamine (TPZ) coloaded cross-linked multifunctional polymersome (TPZ/Ce6@SSPS) with GSH-triggered continuous GSH depletion for enhanced photodynamic therapy and hypoxia-activated chemotherapy. At tumor sites, the disulfide bonds of TPZ/Ce6@SSPS react with GSH to realize decross-linking for on-demand drug release. Meanwhile, the generated highly reactive quinone methide (QM) can further deplete GSH. This continuous GSH depletion will amplify tumor oxidative stress, enhancing the PDT effect of Ce6. Aggravated tumor hypoxia induced by PDT activates the prodrug TPZ, resulting in an enhanced combination of PDT and hypoxia-activated chemotherapy. Both in vitro and in vivo results demonstrate the efficient GSH depletion and potent antitumor activities by TPZ/Ce6@SSPS. This work provides a strategy for the design of a continuous GSH depletion platform, which holds great promise for enhanced combination tumor therapy.


Subject(s)
Chlorophyllides , Glutathione , Photochemotherapy , Photosensitizing Agents , Prodrugs , Tirapazamine , Glutathione/metabolism , Photochemotherapy/methods , Tirapazamine/pharmacology , Animals , Mice , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Prodrugs/pharmacology , Porphyrins/pharmacology , Porphyrins/administration & dosage , Porphyrins/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Tumor Microenvironment/drug effects
7.
Int J Nanomedicine ; 19: 2057-2070, 2024.
Article in English | MEDLINE | ID: mdl-38482522

ABSTRACT

Purpose: Photodynamic therapy (PDT) has been an attractive strategy for skin tumor treatment. However, the hypoxic microenvironment of solid tumors and further O2 consumption during PDT would diminish its therapeutic effect. Herein, we developed a strategy using the combination of PDT and hypoxia-activated bioreductive drug tirapazamine (TPZ). Methods: TPZ was linked to DSPE-PEG-NHS forming DSPE-PEG-TPZ to solve leakage of water-soluble TPZ and serve as an antitumor agent and monomer molecule further forming the micellar. Chlorin e6 (Ce6) was loaded in DSPE-PEG-TPZ forming DSPE-PEG-TPZ@Ce6 (DPTC). To further improve tumor infiltration and accumulation, hyaluronic acid was adopted to make DPTC-containing microneedles (DPTC-MNs). Results: Both in vitro and in vivo studies consistently demonstrated the synergistic antitumor effect of photodynamic therapy and TPZ achieved by DPTC-MNs. With laser irradiation, overexpressions of PDT tolerance factors NQO1 and HIF-1α were inhibited by this PDT process. Conclusion: The synergistic effect of PDT and TPZ significantly improved the performance of DPTC-MNs in the treatment of melanoma and cutaneous squamous cell carcinoma and has good biocompatibility.


Subject(s)
Carcinoma, Squamous Cell , Nanoparticles , Organometallic Compounds , Phenanthrolines , Photochemotherapy , Skin Neoplasms , Humans , Carcinoma, Squamous Cell/drug therapy , Skin Neoplasms/drug therapy , Tirapazamine/pharmacology , Hypoxia/drug therapy , Cell Line, Tumor , Photosensitizing Agents , Tumor Microenvironment
8.
Adv Mater ; 36(23): e2310875, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38450765

ABSTRACT

Photodynamic therapy (PDT) has been approved for clinic. However, powerless efficiency for deep hypoxic tumor therapy remains an enormous challenge for PDT. Herein, a hypoxia-sensitive nanotherapeutic system (FTCD-SRGD) based on fullerene (C70) and anoxic activating chemical prodrug tirapazamine (TPZ) is rationally designed for multimodal therapy of deep hypoxic tumors. To enhance the accumulation and achieve specific drug release in tumor, the FTCD-SRGD is modified with cyclo(Arg-Gly-Asp-d-Phe-Lys) (cRGDfK) peptide and disulfide bonds. With the exacerbated hypoxic microenvironment created by C70 consuming O2 for generating reactive oxygen species (ROS), TPZ is activated to produce toxic radical species to ablate deep tumors, which achieves a synergistic treatment of C70-mediated PDT and hypoxia-enhanced chemotherapy. Additionally, given this hypoxia-sensitive system-induced immunogenic cell death (ICD) activating anticancer cytotoxic T lymphocyte to result in more susceptible tumor to immunotherapy, FTCD-SRGD plus immune checkpoint inhibitor (anti-PD-L1) fully inhibit deep hypoxic tumors by promoting infiltration of effector T cells in tumors. Collectively, it is the first time to develop a multimodal therapy system with fullerene-based hypoxia-sensitive PS for deep tumors. The powerful multimodal nanotherapeutic system for combining hypoxia-enhanced PDT and immunotherapy to massacre deep hypoxic tumors can provide a paradigm to combat the present bottleneck of tumor therapy.


Subject(s)
Fullerenes , Photochemotherapy , Photosensitizing Agents , Tirapazamine , Fullerenes/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Animals , Photochemotherapy/methods , Mice , Cell Line, Tumor , Tirapazamine/chemistry , Tirapazamine/pharmacology , Humans , Combined Modality Therapy , Tumor Microenvironment/drug effects , Reactive Oxygen Species/metabolism , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/pathology , Tumor Hypoxia/drug effects , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
9.
ACS Appl Mater Interfaces ; 16(9): 11289-11304, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38393963

ABSTRACT

Combination therapy with the synergistic effect is an effective way in cancer chemotherapy. Herein, an antiangiogenic sorafenib (SOR) and hypoxia-activated prodrug tirapazamine (TPZ)-coencapsulated liposome (LipTPZ/SOR) is prepared for chemotherapy of hepatocellular carcinoma (HCC). SOR is a multi-target tyrosine kinase inhibitor that can inhibit tumor cell proliferation and angiogenesis. The antiangiogenesis effect of SOR can reduce oxygen supply and aggravate tumor hypoxia, which is able to activate hypoxia-sensitive prodrug TPZ, exhibiting the synergistic antitumor effect. LipTPZ/SOR at different molar ratios of TPZ and SOR can significantly inhibit the proliferation of hepatocellular carcinoma cells. The mole ratio of TPZ and SOR was optimized to 2:1, which exhibited the best synergetic antitumor effect. The synergistic antitumor mechanism of SOR and TPZ was also investigated in vivo. After treated with SOR, the number of vessels was decreased, and the degree of hypoxia was aggravated in tumor tissues. What is more, in the presence of SOR, TPZ could be activated to inhibit tumor growth. The combination of TPZ and SOR exhibited an excellent synergistic antitumor effect. This research not only provides an innovative strategy to aggravate tumor hypoxia to promote TPZ activation but also paints a blueprint about a new nanochemotherapy regimen for the synergistic chemotherapy of HCC, which has excellent biosafety and bright clinical application prospects.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Prodrugs , Humans , Tirapazamine/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Sorafenib/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Liposomes , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Hypoxia/drug therapy , Prodrugs/pharmacology , Cell Line, Tumor
10.
Colloids Surf B Biointerfaces ; 234: 113707, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181689

ABSTRACT

Activated M1-type macrophages, which produce inflammatory factors that exacerbate rheumatoid arthritis (RA), represent crucial target cells for inhibiting the disease process. In this study, we developed a novel photoresponsive targeted drug delivery system (TPNPs-HA) that can effectively deliver the hypoxia-activated prodrug tirapazamine (TPZ) specifically to activated macrophages. After administration, this metal-organic framework, PCN-224, constructed uing the photosensitizer porphyrin, exhibits the ability to generate excessive toxic reactive oxygen species (ROS) when exposed to near-infrared light. Additionally, the oxygen-consumed hypoxic environment further activates the chemotherapeutic effect of TPZ, thus creating a synergistic combination of photodynamic therapy (PDT) and hypoxia-activated chemotherapy (HaCT) to promote the elimination of activated M1-type macrophages. The results highlight the significantly potential of this photoresponsive nano-delivery system in providing substantial relief for RA. Furthermore, these findings support its effectiveness in inhibiting the disease process of RA, thereby offering new possibilities for the development of precise and accurate strategies for RA.


Subject(s)
Arthritis, Rheumatoid , Metal-Organic Frameworks , Nanoparticles , Neoplasms , Photochemotherapy , Humans , Tirapazamine/pharmacology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Hypoxia , Arthritis, Rheumatoid/drug therapy , Cell Line, Tumor , Neoplasms/drug therapy
11.
J Colloid Interface Sci ; 659: 178-190, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38163404

ABSTRACT

Microwave hyperthermia (MH) is an emerging treatment for solid tumors, such as breast cancer, due to its advantages of minimally invasive and deep tissue penetration. However, MH induced tumor hypoxia is still an obstacle to breast tumor treatment failure. Therefore, an original nanoengineering strategy was proposed to exacerbate hypoxia in two stages, thereby amplifying the efficiency of activating tirapazamine (TPZ). And a novel microwave-sensitized nanomaterial (GdEuMOF@TPZ, GEMT) is designed. GdEuMOF (GEM) nanoparticles are certified excellent microwave (MW) sensitization performance, thus improving tumor selectivity to achieve MH. Meanwhile MW can aggravate the generation of thrombus and caused local circulatory disturbance of tumor, resulting in the Stage I exacerbated hypoxia environment passively. Due to tumor heterogeneity and uneven hypoxia, GEMT nanoparticles under microwave could actively deplete residual oxygen through the chemical reaction, exacerbating hypoxia level more evenly, thus forming the Stage II of exacerbated hypoxia environment. Consequently, a two-stage exacerbated hypoxia GEMT nanoparticles realize amplifying activation of TPZ, significantly enhance the efficacy of microwave hyperthermia and chemotherapy, and effectively inhibit breast cancer. This research provides insights into the development of progressive nanoengineering strategies for effective breast tumor therapy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Hyperthermia, Induced , Neoplasms , Humans , Female , Tirapazamine/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Microwaves , Neoplasms/therapy , Hypoxia/therapy , Cell Line, Tumor
12.
Adv Mater ; 36(3): e2307929, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37856705

ABSTRACT

Combination therapy has emerged as a promising approach for effective tumor treatment. However, the combination of sonodynamic therapy (SDT) and hypoxia-activated prodrugs (HAPs) has not been explored due to the contradictory requirement of oxygen (O2 ) for reactive oxygen species (ROS) generation and the necessity to avoid O2 for the activation of HAPs. In this study, this challenge is addressed by developing BiOCl-Au-Ag2 S Z-scheme heterostructure nanoparticles loaded with tirapazamine (TPZ) to achieve O2 -independent therapy. These nanoparticles demonstrate efficient electron-hole separation under ultrasound irradiation while maintaining a high redox potential. The generated holes react with water to efficiently produce hydroxyl radicals, while the electrons autonomously activate TPZ, negating the need for O2 . In vitro and in vivo assessments validate the effective tumor elimination by these Z-scheme nanoparticles without disrupting the hypoxic environment. This innovative design overcomes the limitations associated with O2 requirement in SDT and introduces a novel strategy for HAP activation and synergistic therapy between ROS and HAPs-based therapy.


Subject(s)
Nanoparticles , Neoplasms , Prodrugs , Humans , Oxygen , Reactive Oxygen Species , Prodrugs/chemistry , Tirapazamine/chemistry , Hypoxia , Neoplasms/drug therapy , Cell Line, Tumor
13.
J Photochem Photobiol B ; 248: 112798, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37820499

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) has a promising application prospect in Echinococcus granulosus (Egs), however, the hypoxic environment of Egs and the hypoxia associated with PDT will greatly limit its effects. As a hypoxic-activated pre-chemotherapeutic drug, tirapazamine (TPZ) can be only activated and produce cytotoxicity under hypoxia environment. Albendazole sulfoxide (ABZSO) is the first choice for the treatment of Egs. This study aimed to explore the effects of ABZSO nanoparticles (ABZSO NPs), TPZ combined with PDT on the activity of Egs in vitro and in vivo. METHODS: The Egs were divided into control, ABZSO NPs, ABZSO NPs + PDT, and ABZSO NPs + TPZ + PDT groups, and the viability of Egs was determined using methylene blue staining. Then, the ROS, LDH and ATP levels were measured using their corresponding assay kit, and H2AX and TopoI protein expression was detected by western blot. The morphology of Egs with different treatments was observed using hematoxylin eosin (HE) staining and scanning electron microscopy (SEM). After that, the in vivo efficacy of ABZSO NPs, TPZ and PDT on Egs was determined in a Egs infected mouse model. RESULTS: In vitro experiments showed that the combined treatment of TPZ, ABZSO NPs and PDT significantly inhibited Egs viability; and significantly increased ROS levels and LDH contents, while decreased ATP contents in Egs; as well as up-regulated H2AX and down-regulated TopoI protein expression. HE staining and SEM results showed that breaking-then-curing treatment seriously damaged the Egs wall. Additionally, in vivo experiments found that the combination of ABZSO NPs, PDT and TPZ had more serious calcification and damage of the wall structure of cysts. CONCLUSIONS: ABZSO NPs combined with TPZ and PDT has a better inhibitory effect on the growth of Egs in vitro and in vivo based on the strategy of "breaking-then-curing".


Subject(s)
Echinococcosis , Echinococcus granulosus , Nanoparticles , Photochemotherapy , Animals , Mice , Tirapazamine/pharmacology , Tirapazamine/chemistry , Tirapazamine/therapeutic use , Echinococcus granulosus/metabolism , Reactive Oxygen Species/metabolism , Hypoxia , Photochemotherapy/methods , Echinococcosis/drug therapy , Nanoparticles/chemistry , Adenosine Triphosphate
14.
Cells ; 12(16)2023 08 21.
Article in English | MEDLINE | ID: mdl-37626923

ABSTRACT

Although melanoma accounts for only 5.3% of skin cancer, it results in >75% of skin-cancer-related deaths. To avoid disfiguring surgeries on the head and neck associated with surgical excision, there is a clear unmet need for other strategies to selectively remove cutaneous melanoma lesions. Mohs surgery is the current treatment for cutaneous melanoma lesions and squamous and basal cell carcinoma. While Mohs surgery is an effective way to remove melanomas in situ, normal tissue is also excised to achieve histologically negative margins. This paper describes a novel combination therapy of nonthermal plasma (NTP) which emits a multitude of reactive oxygen species (ROS) and the injection of a pharmaceutical agent. We have shown that the effects of NTP are augmented by the DNA-damaging prodrug, tirapazamine (TPZ), which becomes a free radical only in conditions of hypoxemia, which is often enhanced in the tumor microenvironment. In this study, we demonstrate the efficacy of the combination therapy through experiments with B16-F10 and 1205 Lu metastatic melanoma cells both in vitro and in vivo. We also show the safety parameters of the therapy with no significant effects of the therapy when applied to porcine skin. We show the need for the intratumor delivery of TPZ in combination with the surface treatment of NTP and present a model of a medical device to deliver this combination therapy. The importance of functional gap junctions is indicated as a mechanism to promote the therapeutic effect. Collectively, the data support a novel therapeutic combination to treat melanoma and the development of a medical device to deliver the treatment in situ.


Subject(s)
Melanoma , Skin Neoplasms , Swine , Animals , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Tirapazamine/pharmacology , Combined Modality Therapy , Tumor Microenvironment , Melanoma, Cutaneous Malignant
15.
ACS Appl Mater Interfaces ; 15(33): 39039-39052, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37552806

ABSTRACT

Therapeutic bioactive macromolecules hold great promise in cancer therapy, but challenges such as low encapsulation efficiency and susceptibility to inactivation during the targeted co-delivery hinder their widespread applications. Compartmentalized nano-metal-organic frameworks (nMOFs) can easily load macromolecules in the innermost layer, protect them from the outside environment, and selectively release them in the target location after stimulation, showing great potential in the co-delivery of biomacromolecules. Herein, the rationally designed (GOx + CAT)/ZIF-8@BSATPZ/ZIF-8 (named GCZ@BTZ) nMOFs with compartmentalized structures are employed to deliver cascaded enzymes and the chemotherapeutic drug tirapazamine (TPZ)-conjugated bovine serum albumin (BSATPZ). Benefiting from the compartmentalized structure and protective shell, the GCZ@BTZ system is stable during blood circulation and preferentially accumulates in the tumor. Furthermore, in response to the acidic tumor environment, GCZ@BTZ effectively released the loading enzymes and BSATPZ. Along with the tumor starvation caused by depletion of glucose, cascaded reactions could also contribute to the enhancement of tumor hypoxia, which further activated BSATPZ-based chemotherapy. Notably, in the mouse tumor models, GCZ@BTZ treatment significantly inhibits tumor survival and metastasis. Such a compartmentalized nMOF delivery system presents a promising avenue for the efficient delivery of bioactive macromolecules.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Animals , Mice , Neoplasms/drug therapy , Tirapazamine , Metal-Organic Frameworks/chemistry , Drug Delivery Systems
16.
Biomaterials ; 301: 122257, 2023 10.
Article in English | MEDLINE | ID: mdl-37531778

ABSTRACT

The efficacy of photodynamic therapy (PDT) is severely limited by the hypoxic tumor microenvironment (TME), while the performance of PDT-aroused antitumor immunity is frustrated by the immunosuppressive TME and deficient immunogenic cell death (ICD) induction. To simultaneously tackle these pivotal problems, we herein create an albumin-based nanoplatform co-delivering IR780, NLG919 dimer and a hypoxia-activated prodrug tirapazamine (TPZ) as the dual enhancer for synergistic cancer therapy. Under NIR irradiation, IR780 generates 1O2 for PDT, which simultaneously cleaves the ROS-sensitive linker for triggered TPZ release, and activates its chemotherapy via exacerbated tumor hypoxia. Meanwhile, firstly found by us, TPZ-mediated chemotherapy boosts PDT-induced tumor ICD to evoke stronger antitumor immunity including the development of tumor-specific cytotoxic T lymphocytes (CTLs). Eventually, enriched intratumoral GSH triggers the activation of NLG919 to mitigate the immunosuppressive TME via specific indoleamine 2,3-dioxygenase 1 (IDO-1) inhibition, consequently promoting the intratumoral infiltration of CTLs and the killing of both primary and distant tumors, while the resultant memory T cells allows nearly 100% suppression of tumor recurrence and metastasis. This nanoplatform sets up an example for dully enhanced photodynamic immunotherapy of breast cancer via hypoxia-activated chemotherapy, and paves a solid way for the treatment of other hypoxic and immunosuppressive malignant tumors.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Neoplasm Recurrence, Local/drug therapy , Tirapazamine/therapeutic use , Hypoxia/drug therapy , Neoplasms/drug therapy , Immunotherapy , Cell Line, Tumor , Photosensitizing Agents , Tumor Microenvironment
17.
Biomater Sci ; 11(16): 5674-5679, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37439102

ABSTRACT

Moderate oxygen (O2) supply and uneven distribution of oxygen at the tumor site usually hinder the therapeutic efficacy of hypoxia-activated prodrugs. In this report, we designed a ferrocene-containing supramolecular nanomedicine (PFC/GOD-TPZ) with the PEG corona and disulfide-bond cross-linked core to co-encapsulate 4-di-N-oxide tirapazamine (TPZ) and glucose oxidase (GOD). The PEG corona of PFC/GOD-TPZ could be weakly acidic tumor pH-responsively detached for an enhanced cellular internalization, while the disulfide-bond cross-linked core could be cleavaged by intracellular glutathione (GSH) to present a GSH-triggered drug-release behavior. Subsequently, the cascade reactions, including catalytic reactions among the released GOD, glucose, and O2 to generate H2O2 and the subsequent Fenton reaction between ferrocene and H2O2, occurred. With the depletion of O2, the non-toxic TPZ was activated and converted into the cytotoxic therapeutic agent benzotriazinyl (BTZ) radical under the exacerbated hypoxic microenvironment. Collectively, the PFC/GOD-TPZ provides a promising strategy for effective combination therapy of GOD-mediated starvation therapy, chemodynamic therapy (CDT), and hypoxia-activated chemotherapy (CT).


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Nanomedicine , Metallocenes/pharmacology , Metallocenes/therapeutic use , Hydrogen Peroxide/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Tirapazamine/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Oxygen , Hypoxia/drug therapy , Glutathione , Disulfides/pharmacology , Hydrogen-Ion Concentration , Cell Line, Tumor , Tumor Microenvironment
18.
Int J Antimicrob Agents ; 62(3): 106923, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37433388

ABSTRACT

OBJECTIVES: Escherichia coli is an important pathogen responsible for numerous cases of diarrhoea worldwide. The bioreductive agent tirapazamine (TPZ), which was clinically used to treat various types of cancers, has obvious antibacterial activity against E. coli strains. In the present study, we aimed to evaluate the protective therapeutic effects of TPZ in E. coli-infected mice and provide insights into its antimicrobial action mechanism. METHODS: The MIC and MBC tests, drug sensitivity test, crystal violet assay and proteomic analysis were used to detect the in vitro antibacterial activity of TPZ. The clinical symptoms of infected mice, tissue bacteria load, histopathological features and gut microbiota changes were regarded as indicators to evaluation the efficacy of TPZ in vivo. RESULTS: Interestingly, TPZ-induced the reversal of drug resistance in E. coli by regulating the expression of resistance-related genes, which may have an auxiliary role in the clinical treatment of drug-resistant bacterial infections. More importantly, the proteomics analysis showed that TPZ upregulated 53 proteins and downregulated 47 proteins in E. coli. Among these, the bacterial defence response-related proteins colicin M and colicin B, SOS response-related proteins RecA, UvrABC system protein A, and Holliday junction ATP-dependent DNA helicase RuvB were all significantly upregulated. The quorum sensing-related protein glutamate decarboxylase, ABC transporter-related protein glycerol-3-phosphate transporter polar-binding protein, and ABC transporter polar-binding protein YtfQ were significantly downregulated. The oxidoreductase activity-related proteins pyridine nucleotide-disulfide oxidoreductase, glutaredoxin 2 (Grx2), NAD(+)-dependent aldehyde reductase, and acetaldehyde dehydrogenase, which participate in the elimination of harmful oxygen free radicals in the oxidation-reduction process pathway, were also significantly downregulated. Moreover, TPZ improved the survival rate of infected mice; significantly reduced the bacteria load in the liver, spleen, and colon; and alleviated E. coli-associated pathological damages. The gut microbiota also changed in TPZ-treated mice, and these genera were considerably differentiated: Candidatus Arthromitus, Eubacterium coprostanoligenes group, Prevotellaceae UCG-001, Actinospica, and Bifidobacterium. CONCLUSIONS: TPZ may represent an effective and promising lead molecule for the development of antimicrobial agents for the treatment of E. coli infections.


Subject(s)
Antineoplastic Agents , Escherichia coli , Animals , Mice , Tirapazamine , Antineoplastic Agents/pharmacology , Triazines/pharmacology , Triazines/therapeutic use , Proteomics , Oxidoreductases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
19.
Microbiol Spectr ; 11(4): e0035223, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37306577

ABSTRACT

Pseudomonas aeruginosa is the most common pathogen infecting cystic fibrosis (CF) lungs, causing acute and chronic infections. Intrinsic and acquired antibiotic resistance allow P. aeruginosa to colonize and persist despite antibiotic treatment, making new therapeutic approaches necessary. Combining high-throughput screening and drug repurposing is an effective way to develop new therapeutic uses for drugs. This study screened a drug library of 3,386 drugs, mostly FDA approved, to identify antimicrobials against P. aeruginosa under physicochemical conditions relevant to CF-infected lungs. Based on the antibacterial activity, assessed spectrophotometrically against the prototype RP73 strain and 10 other CF virulent strains, and the toxic potential evaluated toward CF IB3-1 bronchial epithelial cells, five potential hits were selected for further analysis: the anti-inflammatory and antioxidant ebselen, the anticancer drugs tirapazamine, carmofur, and 5-fluorouracil, and the antifungal tavaborole. A time-kill assay showed that ebselen has the potential to cause rapid and dose-dependent bactericidal activity. The antibiofilm activity was evaluated by viable cell count and crystal violet assays, revealing carmofur and 5-fluorouracil as the most active drugs in preventing biofilm formation regardless of the concentration. In contrast, tirapazamine and tavaborole were the only drugs actively dispersing preformed biofilms. Tavaborole was the most active drug against CF pathogens other than P. aeruginosa, especially against Burkholderia cepacia and Acinetobacter baumannii, while carmofur, ebselen, and tirapazamine were particularly active against Staphylococcus aureus and B. cepacia. Electron microscopy and propidium iodide uptake assay revealed that ebselen, carmofur, and tirapazamine significantly damage cell membranes, with leakage and cytoplasm loss, by increasing membrane permeability. IMPORTANCE Antibiotic resistance makes it urgent to design new strategies for treating pulmonary infections in CF patients. The repurposing approach accelerates drug discovery and development, as the drugs' general pharmacological, pharmacokinetic, and toxicological properties are already well known. In the present study, for the first time, a high-throughput compound library screening was performed under experimental conditions relevant to CF-infected lungs. Among 3,386 drugs screened, the clinically used drugs from outside infection treatment ebselen, tirapazamine, carmofur, 5-fluorouracil, and tavaborole showed, although to different extents, anti-P. aeruginosa activity against planktonic and biofilm cells and broad-spectrum activity against other CF pathogens at concentrations not toxic to bronchial epithelial cells. The mode-of-action studies revealed ebselen, carmofur, and tirapazamine targeted the cell membrane, increasing its permeability with subsequent cell lysis. These drugs are strong candidates for repurposing for treating CF lung P. aeruginosa infections.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , Pseudomonas aeruginosa , Cystic Fibrosis/microbiology , High-Throughput Screening Assays , Drug Repositioning , Tirapazamine/pharmacology , Tirapazamine/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fluorouracil , Biofilms , Pseudomonas Infections/microbiology
20.
Adv Healthc Mater ; 12(30): e2301548, 2023 12.
Article in English | MEDLINE | ID: mdl-37315950

ABSTRACT

Blockage of blood supply while administering chemotherapy to tumors, using trans-arterial chemoembolization (TACE), is the most common treatment for intermediate and advanced-stage unresectable Hepatocellular carcinoma (HCC). However, HCC is characterized by a poor prognosis and high recurrence rates (≈30%), partly due to a hypoxic pro-angiogenic and pro-cancerous microenvironment. This study investigates how modifying tissue stress while improving drug exposure in target organs may maximize the therapeutic outcomes. Porous degradable polymeric microspheres (MS) are designed to obtain a gradual occlusion of the hepatic artery that nourishes the liver, while enabling efficient drug perfusion to the tumor site. The fabricated porous MS are introduced intrahepatically and designed to release a combination therapy of Doxorubicin (DOX) and Tirapazamine (TPZ), which is a hypoxia-activated prodrug. Liver cancer cell lines that are treated with the combination therapy under hypoxia reveal a synergic anti-proliferation effect. An orthotopic liver cancer model, based on N1-S1 hepatoma in rats, is used for the efficacy, biodistribution, and safety studies. Porous DOX-TPZ MS are very effective in suppressing tumor growth in rats, and induction tissue necrosis is associated with high intratumor drug concentrations. Porous particles without drugs show some advantages over nonporous particles, suggesting that morphology may affect the treatment outcomes.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Rats , Animals , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/drug therapy , Microspheres , Tissue Distribution , Porosity , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Tirapazamine/pharmacology , Tirapazamine/therapeutic use , Hypoxia/drug therapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...