Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
Braz J Med Biol Res ; 52(5): e8108, 2019.
Article in English | MEDLINE | ID: mdl-31038578

ABSTRACT

Animal models of diseases are invaluable tools of modern medicine. More than forty years have passed since the first successful experiments and the spectrum of available models, as well as the list of methods for creating them, have expanded dramatically. The major step forward in creating specific disease models was the development of gene editing techniques, which allowed for targeted modification of the animal's genome. In this review, we discuss the available tools for creating transgenic animal models, such as transgenesis methods, recombinases, and nucleases, including zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and CRISPR/Cas9 systems. We then focus specifically on the models of atherosclerosis, especially mouse models that greatly contributed to improving our understanding of the disease pathogenesis and we outline their characteristics and limitations.


Subject(s)
Animals, Genetically Modified , Atherosclerosis/physiopathology , Disease Models, Animal , Genetic Engineering/methods , Transcription Activator-Like Effector Nucleases/metabolism , Animals , Atherosclerosis/genetics , Biomedical Research/methods , Female , Gene Transfer Techniques , Humans , Male , Mice
2.
Biotechnol Adv ; 37(3): 410-421, 2019.
Article in English | MEDLINE | ID: mdl-30779952

ABSTRACT

The recent progress in genetic engineering has brought multiple benefits to the food and agricultural industry by enhancing the essential characteristics of agronomic traits. Powerful tools in the field of genome editing, such as siRNA-mediated RNA interference for targeted suppression of gene expression and transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs) for DNA repair have been widely used for commercial purposes. However, in the last few years, the discovery of the CRISPR-Cas9 system has revolutionized genome editing and has attracted attention as a powerful tool for several industrial applications. Herein, we review current progresses in the utilization of the CRISPR-Cas9 system in the food and agricultural industry, particularly in the development of resistant crops with improved quality and productivity. We compare the CRISPR system with the TALEN and ZFN nucleases-based methods and highlight potential advantages and shortcomings. In addition, we explore the state of the global market and discuss the safety and ethical concerns associated with the application of this technology in the food and agricultural industry.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , Genetic Engineering/methods , Plants, Genetically Modified/genetics , Crops, Agricultural/genetics , Food Industry/trends , Gene Targeting/methods , Humans , Transcription Activator-Like Effector Nucleases/genetics , Zinc Finger Nucleases/genetics
3.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;52(5): e8108, 2019. tab
Article in English | LILACS | ID: biblio-1001521

ABSTRACT

Animal models of diseases are invaluable tools of modern medicine. More than forty years have passed since the first successful experiments and the spectrum of available models, as well as the list of methods for creating them, have expanded dramatically. The major step forward in creating specific disease models was the development of gene editing techniques, which allowed for targeted modification of the animal's genome. In this review, we discuss the available tools for creating transgenic animal models, such as transgenesis methods, recombinases, and nucleases, including zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and CRISPR/Cas9 systems. We then focus specifically on the models of atherosclerosis, especially mouse models that greatly contributed to improving our understanding of the disease pathogenesis and we outline their characteristics and limitations.


Subject(s)
Humans , Animals , Male , Female , Rabbits , Animals, Genetically Modified , Genetic Engineering/methods , Disease Models, Animal , Atherosclerosis/physiopathology , Transcription Activator-Like Effector Nucleases/metabolism , Gene Transfer Techniques , Biomedical Research/methods , Atherosclerosis/genetics
4.
J Vis Exp ; (112)2016 06 20.
Article in English | MEDLINE | ID: mdl-27404092

ABSTRACT

Identifying alleles of genes underlying evolutionary change is essential to understanding how and why evolution occurs. Towards this end, much recent work has focused on identifying candidate genes for the evolution of traits in a variety of species. However, until recently it has been challenging to functionally validate interesting candidate genes. Recently developed tools for genetic engineering make it possible to manipulate specific genes in a wide range of organisms. Application of this technology in evolutionarily relevant organisms will allow for unprecedented insight into the role of candidate genes in evolution. Astyanax mexicanus (A. mexicanus) is a species of fish with both surface-dwelling and cave-dwelling forms. Multiple independent lines of cave-dwelling forms have evolved from ancestral surface fish, which are interfertile with one another and with surface fish, allowing elucidation of the genetic basis of cave traits. A. mexicanus has been used for a number of evolutionary studies, including linkage analysis to identify candidate genes responsible for a number of traits. Thus, A. mexicanus is an ideal system for the application of genome editing to test the role of candidate genes. Here we report a method for using transcription activator-like effector nucleases (TALENs) to mutate genes in surface A. mexicanus. Genome editing using TALENs in A. mexicanus has been utilized to generate mutations in pigmentation genes. This technique can also be utilized to evaluate the role of candidate genes for a number of other traits that have evolved in cave forms of A. mexicanus.


Subject(s)
Genome , Animals , Characidae , Gene Editing , Phenotype , Transcription Activator-Like Effector Nucleases
5.
Anim. Reprod. ; 12(1): 93-104, Jan.-Mar.2015. ilus
Article in English | VETINDEX | ID: vti-745430

ABSTRACT

Genetically-modified domestic animal models are of increasing significance in biomedical research and agriculture. As authentic ES cells derived from domestic animals are not yet available, the prevailing approaches for engineering genetic modifications in those animals are pronuclear microinjection and somatic cell nuclear transfer (SCNT, also known as cloning). Both pronuclear microinjection and SCNT are inefficient, costly, and time-consuming. In animals produced by pronuclear microinjection, the exogenous transgene is usually inserted randomly into the genome, which results in highly variable expression patterns and levels in different founders. Therefore, significant efforts are required to generate and screen multiple founders to obtain animals with optimal transgene expression. For SCNT, specific genetic modifications (both gain-of-function and loss-of-function) can be engineered and carefully selected in the somatic cell nucleus before nuclear transfer. SCNT has been used to generate a variety of genetically modified animals such as goats, pigs, sheep and cattle; however, animals resulting from SCNT frequently suffer from developmental abnormalities associated with incomplete nuclear reprogramming. Other strategies to generate genetically-modified animals rely on the use of the spermatozoon as a natural vector to introduce genetic material into the female gamete. This sperm mediated DNA transfer (SMGT) combined with intracytoplasmatic sperm injection (ICSI) has relatively high efficiency and allows the insertion of large DNA fragments, which, in turn, enhance proper gene expression. An approach currently being developed to complement SCNT for producing genetically modified animals is germ cell transplantation using genetically modified male germline stem cells (GSCs). This approach relies on the ability of GSCs that are genetically modified in vitro to colonize the recipient testis and produce donor derived sperm upon transplantation.(AU)


Subject(s)
Animals , Animals, Domestic/genetics , Cellular Reprogramming Techniques/methods , Transcription Activator-Like Effector Nucleases
6.
Anim. Reprod. (Online) ; 12(1): 93-104, Jan.-Mar.2015. ilus
Article in English | VETINDEX | ID: biblio-1461148

ABSTRACT

Genetically-modified domestic animal models are of increasing significance in biomedical research and agriculture. As authentic ES cells derived from domestic animals are not yet available, the prevailing approaches for engineering genetic modifications in those animals are pronuclear microinjection and somatic cell nuclear transfer (SCNT, also known as cloning). Both pronuclear microinjection and SCNT are inefficient, costly, and time-consuming. In animals produced by pronuclear microinjection, the exogenous transgene is usually inserted randomly into the genome, which results in highly variable expression patterns and levels in different founders. Therefore, significant efforts are required to generate and screen multiple founders to obtain animals with optimal transgene expression. For SCNT, specific genetic modifications (both gain-of-function and loss-of-function) can be engineered and carefully selected in the somatic cell nucleus before nuclear transfer. SCNT has been used to generate a variety of genetically modified animals such as goats, pigs, sheep and cattle; however, animals resulting from SCNT frequently suffer from developmental abnormalities associated with incomplete nuclear reprogramming. Other strategies to generate genetically-modified animals rely on the use of the spermatozoon as a natural vector to introduce genetic material into the female gamete. This sperm mediated DNA transfer (SMGT) combined with intracytoplasmatic sperm injection (ICSI) has relatively high efficiency and allows the insertion of large DNA fragments, which, in turn, enhance proper gene expression. An approach currently being developed to complement SCNT for producing genetically modified animals is germ cell transplantation using genetically modified male germline stem cells (GSCs). This approach relies on the ability of GSCs that are genetically modified in vitro to colonize the recipient testis and produce donor derived sperm upon transplantation.


Subject(s)
Animals , Animals, Domestic/genetics , Cellular Reprogramming Techniques/methods , Transcription Activator-Like Effector Nucleases
SELECTION OF CITATIONS
SEARCH DETAIL