Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 482
Filter
1.
Elife ; 132024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976490

ABSTRACT

RNA polymerase II (RNAPII) transcription initiates bidirectionally at many human protein-coding genes. Sense transcription usually dominates and leads to messenger RNA production, whereas antisense transcription rapidly terminates. The basis for this directionality is not fully understood. Here, we show that sense transcriptional initiation is more efficient than in the antisense direction, which establishes initial promoter directionality. After transcription begins, the opposing functions of the endonucleolytic subunit of Integrator, INTS11, and cyclin-dependent kinase 9 (CDK9) maintain directionality. Specifically, INTS11 terminates antisense transcription, whereas sense transcription is protected from INTS11-dependent attenuation by CDK9 activity. Strikingly, INTS11 attenuates transcription in both directions upon CDK9 inhibition, and the engineered recruitment of CDK9 desensitises transcription to INTS11. Therefore, the preferential initiation of sense transcription and the opposing activities of CDK9 and INTS11 explain mammalian promoter directionality.


Subject(s)
Cyclin-Dependent Kinase 9 , Promoter Regions, Genetic , Transcription Initiation, Genetic , Cyclin-Dependent Kinase 9/metabolism , Cyclin-Dependent Kinase 9/genetics , Humans , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Transcription, Genetic , Gene Expression Regulation , Nuclear Proteins , Transcriptional Elongation Factors
2.
Nat Commun ; 15(1): 5446, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937458

ABSTRACT

Mitochondrial transcription factor A (TFAM) employs DNA bending to package mitochondrial DNA (mtDNA) into nucleoids and recruit mitochondrial RNA polymerase (POLRMT) at specific promoter sites, light strand promoter (LSP) and heavy strand promoter (HSP). Herein, we characterize the conformational dynamics of TFAM on promoter and non-promoter sequences using single-molecule fluorescence resonance energy transfer (smFRET) and single-molecule protein-induced fluorescence enhancement (smPIFE) methods. The DNA-TFAM complexes dynamically transition between partially and fully bent DNA conformational states. The bending/unbending transition rates and bending stability are DNA sequence-dependent-LSP forms the most stable fully bent complex and the non-specific sequence the least, which correlates with the lifetimes and affinities of TFAM with these DNA sequences. By quantifying the dynamic nature of the DNA-TFAM complexes, our study provides insights into how TFAM acts as a multifunctional protein through the DNA bending states to achieve sequence specificity and fidelity in mitochondrial transcription while performing mtDNA packaging.


Subject(s)
DNA Packaging , DNA, Mitochondrial , DNA-Binding Proteins , Fluorescence Resonance Energy Transfer , Mitochondrial Proteins , Nucleic Acid Conformation , Promoter Regions, Genetic , Transcription Factors , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/chemistry , Transcription Factors/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Transcription Initiation, Genetic , Mitochondria/metabolism , Mitochondria/genetics , Single Molecule Imaging , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Base Sequence , Protein Binding
3.
Gene ; 924: 148616, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38795856

ABSTRACT

Transcription initiation is a vital step in the regulation of eukaryotic gene expression. It can be dysregulated in response to various cellular stressors which is associated with numerous human diseases including cancer. Transcription initiation is facilitated via many gene-specific trans-regulatory elements such as transcription factors, activators, and coactivators through their interactions with transcription pre-initiation complex (PIC). These trans-regulatory elements can uniquely facilitate PIC formation (hence, transcription initiation) in response to cellular nutrient stress. Cellular nutrient stress also regulates the activity of other pathways such as target of rapamycin (TOR) pathway. TOR pathway exhibits distinct regulatory mechanisms of transcriptional activation in response to stress. Like TOR pathway, the cell cycle regulatory pathway is also found to be linked to transcriptional regulation in response to cellular stress. Several transcription factors such as p53, C/EBP Homologous Protein (CHOP), activating transcription factor 6 (ATF6α), E2F, transforming growth factor (TGF)-ß, Adenomatous polyposis coli (APC), SMAD, and MYC have been implicated in regulation of transcription of target genes involved in cell cycle progression, apoptosis, and DNA damage repair pathways. Additionally, cellular metabolic and oxidative stressors have been found to regulate the activity of long non-coding RNAs (lncRNA). LncRNA regulates transcription by upregulating or downregulating the transcription regulatory proteins involved in metabolic and cell signaling pathways. Numerous human diseases, triggered by chronic cellular stressors, are associated with abnormal regulation of transcription. Hence, understanding these mechanisms would help unravel the molecular regulatory insights with potential therapeutic interventions. Therefore, here we emphasize the recent advances of regulation of eukaryotic transcription initiation in response to cellular stress.


Subject(s)
Stress, Physiological , Humans , Stress, Physiological/genetics , Gene Expression Regulation , Transcription Initiation, Genetic , Animals , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics
4.
Mol Cell ; 84(12): 2287-2303.e10, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38821049

ABSTRACT

Cyclin-dependent kinase 7 (CDK7), part of the general transcription factor TFIIH, promotes gene transcription by phosphorylating the C-terminal domain of RNA polymerase II (RNA Pol II). Here, we combine rapid CDK7 kinase inhibition with multi-omics analysis to unravel the direct functions of CDK7 in human cells. CDK7 inhibition causes RNA Pol II retention at promoters, leading to decreased RNA Pol II initiation and immediate global downregulation of transcript synthesis. Elongation, termination, and recruitment of co-transcriptional factors are not directly affected. Although RNA Pol II, initiation factors, and Mediator accumulate at promoters, RNA Pol II complexes can also proceed into gene bodies without promoter-proximal pausing while retaining initiation factors and Mediator. Further downstream, RNA Pol II phosphorylation increases and initiation factors and Mediator are released, allowing recruitment of elongation factors and an increase in RNA Pol II elongation velocity. Collectively, CDK7 kinase activity promotes the release of initiation factors and Mediator from RNA Pol II, facilitating RNA Pol II escape from the promoter.


Subject(s)
Cyclin-Dependent Kinase-Activating Kinase , Cyclin-Dependent Kinases , Promoter Regions, Genetic , RNA Polymerase II , Transcription Initiation, Genetic , Humans , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Mediator Complex/metabolism , Mediator Complex/genetics , HeLa Cells , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/genetics , HEK293 Cells
5.
Science ; 384(6694): 382-383, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662850

ABSTRACT

A deep-learning model reveals the rules that define transcription initiation.


Subject(s)
DNA , Transcription Initiation Site , Transcription Initiation, Genetic , Humans , Deep Learning , DNA/genetics , Promoter Regions, Genetic
6.
Mol Cell ; 84(9): 1699-1710.e6, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38604172

ABSTRACT

The transition from transcription initiation to elongation is highly regulated in human cells but remains incompletely understood at the structural level. In particular, it is unclear how interactions between RNA polymerase II (RNA Pol II) and initiation factors are broken to enable promoter escape. Here, we reconstitute RNA Pol II promoter escape in vitro and determine high-resolution structures of initially transcribing complexes containing 8-, 10-, and 12-nt ordered RNAs and two elongation complexes containing 14-nt RNAs. We suggest that promoter escape occurs in three major steps. First, the growing RNA displaces the B-reader element of the initiation factor TFIIB without evicting TFIIB. Second, the rewinding of the transcription bubble coincides with the eviction of TFIIA, TFIIB, and TBP. Third, the binding of DSIF and NELF facilitates TFIIE and TFIIH dissociation, establishing the paused elongation complex. This three-step model for promoter escape fills a gap in our understanding of the initiation-elongation transition of RNA Pol II transcription.


Subject(s)
Phosphoproteins , Promoter Regions, Genetic , RNA Polymerase II , TATA-Box Binding Protein , Transcription Factor TFIIB , Transcription Factors , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Humans , Transcription Factor TFIIB/metabolism , Transcription Factor TFIIB/genetics , TATA-Box Binding Protein/metabolism , TATA-Box Binding Protein/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Initiation, Genetic , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/chemistry , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Protein Binding , Transcription Factor TFIIA/metabolism , Transcription Factor TFIIA/genetics , Transcription, Genetic , Transcription Elongation, Genetic , RNA/metabolism , RNA/genetics , Transcription Factors, TFII/metabolism , Transcription Factors, TFII/genetics
7.
Science ; 384(6694): eadj0116, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38662817

ABSTRACT

Transcription initiation is a process that is essential to ensuring the proper function of any gene, yet we still lack a unified understanding of sequence patterns and rules that explain most transcription start sites in the human genome. By predicting transcription initiation at base-pair resolution from sequences with a deep learning-inspired explainable model called Puffin, we show that a small set of simple rules can explain transcription initiation at most human promoters. We identify key sequence patterns that contribute to human promoter activity, each activating transcription with distinct position-specific effects. Furthermore, we explain the sequence basis of bidirectional transcription at promoters, identify the links between promoter sequence and gene expression variation across cell types, and explore the conservation of sequence determinants of transcription initiation across mammalian species.


Subject(s)
Genome, Human , Promoter Regions, Genetic , Transcription Initiation Site , Transcription Initiation, Genetic , Humans , Deep Learning , Animals , Base Sequence
8.
FEBS Lett ; 598(9): 1022-1033, 2024 May.
Article in English | MEDLINE | ID: mdl-38479985

ABSTRACT

Transcription initiation, the first step in gene expression, has been studied extensively in dilute buffer, a condition which fails to consider the crowded environment in live cells. Recent reports indicate the kinetics of promoter escape is altered in crowded conditions for a consensus bacterial promoter. Here, we use a real-time fluorescence enhancement assay to study the kinetics of unwound bubble formation and promoter escape for three separate promoters. We find that the effect of crowding on transcription initiation is complex, with lower rates of unwound bubble formation, higher rates of promoter escape, and large variations depending on promoter identity. Based on our results, we suggest that altered conditions of crowding inside a live cell can trigger global changes.


Subject(s)
Escherichia coli , Promoter Regions, Genetic , Transcription Initiation, Genetic , Escherichia coli/genetics , Escherichia coli/metabolism , Kinetics , Macromolecular Substances/metabolism , Macromolecular Substances/chemistry
9.
Nucleic Acids Res ; 52(9): 5016-5032, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38471819

ABSTRACT

Viruses are master remodelers of the host cell environment in support of infection and virus production. For example, viruses typically regulate cell gene expression through modulating canonical cell promoter activity. Here, we show that Epstein Barr virus (EBV) replication causes 'de novo' transcription initiation at 29674 new transcription start sites throughout the cell genome. De novo transcription initiation is facilitated in part by the unique properties of the viral pre-initiation complex (vPIC) that binds a TATT[T/A]AA, TATA box-like sequence and activates transcription with minimal support by additional transcription factors. Other de novo promoters are driven by the viral transcription factors, Zta and Rta and are influenced by directional proximity to existing canonical cell promoters, a configuration that fosters transcription through existing promoters and transcriptional interference. These studies reveal a new way that viruses interact with the host transcriptome to inhibit host gene expression and they shed light on primal features driving eukaryotic promoter function.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Transcription Initiation, Genetic , Virus Replication , Humans , Herpesvirus 4, Human/physiology , Host-Pathogen Interactions , Promoter Regions, Genetic , TATA Box , Transcription Factors/metabolism , Transcription Initiation Site , Transcription, Genetic , Viral Proteins/metabolism , Viral Proteins/genetics , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology
10.
Science ; 382(6677): eadi5120, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38127763

ABSTRACT

Transcription initiation is a complex process, and its mechanism is incompletely understood. We determined the structures of de novo transcribing complexes TC2 to TC17 with RNA polymerase II halted on G-less promoters when nascent RNAs reach 2 to 17 nucleotides in length, respectively. Connecting these structures generated a movie and a working model. As initially synthesized RNA grows, general transcription factors (GTFs) remain bound to the promoter and the transcription bubble expands. Nucleoside triphosphate (NTP)-driven RNA-DNA translocation and template-strand accumulation in a nearly sealed channel may promote the transition from initially transcribing complexes (ITCs) (TC2 to TC9) to early elongation complexes (EECs) (TC10 to TC17). Our study shows dynamic processes of transcription initiation and reveals why ITCs require GTFs and bubble expansion for initial RNA synthesis, whereas EECs need GTF dissociation from the promoter and bubble collapse for promoter escape.


Subject(s)
RNA , Transcription Factors, General , Transcription Initiation, Genetic , DNA-Directed RNA Polymerases/chemistry , RNA/biosynthesis , RNA Polymerase II/chemistry , Transcription Factors, General/metabolism , Humans , Animals , Sus scrofa , Cryoelectron Microscopy , Motion Pictures
11.
Nature ; 622(7984): 872-879, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821701

ABSTRACT

Transcription initiation is a key regulatory step in gene expression during which RNA polymerase (RNAP) initiates RNA synthesis de novo, and the synthesized RNA at a specific length triggers the transition to the elongation phase. Mitochondria recruit a single-subunit RNAP and one or two auxiliary factors to initiate transcription. Previous studies have revealed the molecular architectures of yeast1 and human2 mitochondrial RNAP initiation complexes (ICs). Here we provide a comprehensive, stepwise mechanism of transcription initiation by solving high-resolution cryogenic electron microscopy (cryo-EM) structures of yeast mitochondrial RNAP and the transcription factor Mtf1 catalysing two- to eight-nucleotide RNA synthesis at single-nucleotide addition steps. The growing RNA-DNA is accommodated in the polymerase cleft by template scrunching and non-template reorganization, creating stressed intermediates. During early initiation, non-template strand scrunching and unscrunching destabilize the short two- and three-nucleotide RNAs, triggering abortive synthesis. Subsequently, the non-template reorganizes into a base-stacked staircase-like structure supporting processive five- to eight-nucleotide RNA synthesis. The expanded non-template staircase and highly scrunched template in IC8 destabilize the promoter interactions with Mtf1 to facilitate initiation bubble collapse and promoter escape for the transition from initiation to the elongation complex (EC). The series of transcription initiation steps, each guided by the interplay of multiple structural components, reveal a finely tuned mechanism for potential regulatory control.


Subject(s)
Mitochondria , Saccharomyces cerevisiae , Transcription Initiation, Genetic , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/ultrastructure , Mitochondria/enzymology , Mitochondria/genetics , Mitochondria/ultrastructure , Nucleotides/metabolism , RNA/biosynthesis , RNA/ultrastructure , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Cryoelectron Microscopy , DNA/metabolism , DNA/ultrastructure
12.
J Virol ; 97(10): e0096023, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37754762

ABSTRACT

IMPORTANCE: Infection with herpes simplex virus 1 (HSV-1) leads to lifelong infection due to the virus's remarkable ability to control transcription of its own genome, resulting in two transcriptional programs: lytic (highly active) and latent (restricted). The lytic program requires immediate early (IE) proteins to first repress transcription of late viral genes, which then undergo sequential de-repression, leading to a specific sequence of gene expression. Here, we show that the IE ICP4 functions to regulate the cascade by limiting RNA polymerase initiation at immediate early times. However, late viral genes that initiate too early in the absence of ICP4 do not yield mRNA as transcription stalls within gene bodies. It follows that other regulatory steps intercede to prevent elongation of genes at the incorrect time, demonstrating the precise control HSV-1 exerts over its own transcription.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 1, Human , Immediate-Early Proteins , Transcription, Genetic , Humans , Genes, Viral/genetics , Herpes Simplex/virology , Herpesvirus 1, Human/genetics , Immediate-Early Proteins/deficiency , Immediate-Early Proteins/metabolism , Transcription Initiation, Genetic , Transcription Elongation, Genetic , Transcription Termination, Genetic
13.
Nucleic Acids Res ; 51(16): 8575-8586, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37470822

ABSTRACT

In addition to being essential for gene expression, transcription is crucial for the maintenance of genome integrity. Here, we undertook a systematic approach, to monitor the assembly kinetics of the pre-initiating RNA Polymerase (Pol) II at promoters at steady state and different stages during recovery from UV irradiation-stress, when pre-initiation and initiation steps have been suggested to be transiently shut down. Taking advantage of the reversible dissociation of pre-initiating Pol II after high salt treatment, we found that de novo recruitment of the available Pol II molecules at active promoters not only persists upon UV at all times tested but occurs significantly faster in the early phase of recovery (2 h) than in unexposed human fibroblasts at the majority of active genes. Our method unveiled groups of genes with significantly different pre-initiation complex (PIC) assembly dynamics after UV that present distinct rates of UV-related mutational signatures in melanoma tumours, providing functional relevance to the importance of keeping transcription initiation active during UV recovery. Our findings uncover novel mechanistic insights further detailing the multilayered transcriptional response to genotoxic stress and link PIC assembly dynamics after exposure to genotoxins with cancer mutational landscapes.


Subject(s)
RNA Polymerase II , Transcription Initiation, Genetic , Humans , DNA Damage , Mutagenesis , Promoter Regions, Genetic , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription, Genetic , Ultraviolet Rays , Fibroblasts/metabolism , DNA Repair
14.
Proc Natl Acad Sci U S A ; 120(14): e2220874120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36972428

ABSTRACT

Bacterial transcription initiation requires σ factors for nucleation of the transcription bubble. The canonical housekeeping σ factor, σ70, nucleates DNA melting via recognition of conserved bases of the promoter -10 motif, which are unstacked and captured in pockets of σ70. By contrast, the mechanism of transcription bubble nucleation and formation during the unrelated σN-mediated transcription initiation is poorly understood. Herein, we combine structural and biochemical approaches to establish that σN, like σ70, captures a flipped, unstacked base in a pocket formed between its N-terminal region I (RI) and extra-long helix features. Strikingly, RI inserts into the nascent bubble to stabilize the nucleated bubble prior to engagement of the obligate ATPase activator. Our data suggest a general paradigm of transcription initiation that requires σ factors to nucleate an early melted intermediate prior to productive RNA synthesis.


Subject(s)
Escherichia coli , Transcription Initiation, Genetic , Escherichia coli/chemistry , Escherichia coli/metabolism , RNA Polymerase Sigma 54/chemistry , Sigma Factor/chemistry , Promoter Regions, Genetic , Cryoelectron Microscopy
15.
Mol Cell ; 83(4): 574-588.e11, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36731470

ABSTRACT

Most eukaryotic promoter regions are divergently transcribed. As the RNA polymerase II pre-initiation complex (PIC) is intrinsically asymmetric and responsible for transcription in a single direction, it is unknown how divergent transcription arises. Here, the Saccharomyces cerevisiae Mediator complexed with a PIC (Med-PIC) was assembled on a divergent promoter and analyzed by cryoelectron microscopy. The structure reveals two distinct Med-PICs forming a dimer through the Mediator tail module, induced by a homodimeric activator protein localized near the dimerization interface. The tail dimer is associated with ∼80-bp upstream DNA, such that two flanking core promoter regions are positioned and oriented in a suitable form for PIC assembly in opposite directions. Also, cryoelectron tomography visualized the progress of the PIC assembly on the two core promoter regions, providing direct evidence for the role of the Med-PIC dimer in divergent transcription.


Subject(s)
RNA Polymerase II , Saccharomyces cerevisiae Proteins , RNA Polymerase II/metabolism , Cryoelectron Microscopy , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Promoter Regions, Genetic , Transcription, Genetic , Mediator Complex/genetics , Transcription Initiation, Genetic
17.
Nucleic Acids Res ; 51(9): 4223-4236, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36484109

ABSTRACT

Rpc31 is a subunit in the TFIIE-related Rpc82/34/31 heterotrimeric subcomplex of Saccharomyces cerevisiae RNA polymerase III (pol III). Structural analyses of pol III have indicated that the N-terminal region of Rpc31 anchors on Rpc82 and further interacts with the polymerase core and stalk subcomplex. However, structural and functional information for the C-terminal region of Rpc31 is sparse. We conducted a mutational analysis on Rpc31, which uncovered a functional peptide adjacent to the highly conserved Asp-Glu-rich acidic C-terminus. This C-terminal peptide region, termed 'pre-acidic', is important for optimal cell growth, tRNA synthesis, and stable association of Rpc31 in the pre-initiation complex (PIC). Our site-directed photo-cross-linking to map protein interactions within the PIC reveal that this pre-acidic region specifically targets Rpc34 during transcription initiation, but also interacts with the DNA entry surface in free pol III. Thus, we have uncovered a switchable Rpc31 C-terminal region that functions in an initiation-specific protein interaction for pol III transcription.


Subject(s)
RNA Polymerase III , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Initiation, Genetic , Protein Binding , Protein Domains , RNA Polymerase III/chemistry , RNA Polymerase III/metabolism , RNA, Transfer/biosynthesis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
18.
Science ; 378(6615): 62-68, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36201575

ABSTRACT

RNA polymerase II-mediated eukaryotic transcription starts with the assembly of the preinitiation complex (PIC) on core promoters. The +1 nucleosome is well positioned about 40 base pairs downstream of the transcription start site (TSS) and is commonly known as a barrier of transcription. The +1 nucleosome-bound PIC-Mediator structures show that PIC-Mediator prefers binding to T40N nucleosome located 40 base pairs downstream of TSS and contacts T50N but not the T70N nucleosome. The nucleosome facilitates the organization of PIC-Mediator on the promoter by binding TFIIH subunit p52 and Mediator subunits MED19 and MED26 and may contribute to transcription initiation. PIC-Mediator exhibits multiple nucleosome-binding patterns, supporting a structural role of the +1 nucleosome in the coordination of PIC-Mediator assembly. Our study reveals the molecular mechanism of PIC-Mediator organization on chromatin and underscores the significance of the +1 nucleosome in regulating transcription initiation.


Subject(s)
Mediator Complex , Nucleosomes , Transcription Initiation, Genetic , Chromatin/chemistry , Humans , Mediator Complex/chemistry , Nucleosomes/chemistry , RNA Polymerase II/chemistry , Transcription Initiation Site
19.
Curr Opin Struct Biol ; 75: 102404, 2022 08.
Article in English | MEDLINE | ID: mdl-35700575

ABSTRACT

RNA polymerase II (Pol II)-mediated transcription in eukaryotic cells starts with assembly of preinitiation complex (PIC) on core promoter, a DNA sequence of ∼100 base pairs. The transcription PIC consists of Pol II and general transcription factors TFIID, TFIIA, TFIIB, TFIIF, TFIIE, and TFIIH. Previous structural studies focused on PIC assembled on TATA box promoters with TFIID replaced by its subunit, TATA box-binding protein (TBP). However, the megadalton TFIID complex is essential for promoter recognition, TBP loading onto promoter, and PIC assembly for almost all Pol II-mediated transcription, especially on the TATA-less promoters, which account for ∼85% of core promoters of human coding genes. The functions of TFIID could not be replaced by TBP. The recent breakthrough in structure determination of TFIID-based PIC complexes in different assembly stages revealed mechanistic insights into PIC assembly on TATA box and TATA-less promotes and provided a framework for further investigation of transcription initiation.


Subject(s)
RNA Polymerase II , Transcription Factor TFIID , Transcription Initiation, Genetic , Humans , RNA Polymerase II/chemistry , TATA Box , TATA-Box Binding Protein/chemistry , Transcription Factor TFIIA/chemistry , Transcription Factor TFIID/chemistry
20.
J Mol Biol ; 434(13): 167621, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35533764

ABSTRACT

An understanding of the kinetics and mechanism of bacterial transcription initiation is needed to understand regulation of gene expression and advance fields from antibiotic discovery to promoter design. The step-by-step forward kinetics and mechanism of initiation and RNA-DNA hybrid growth, made irreversible by omitting pyrophosphate (PPi) byproduct, were determined recently for E. coli RNA polymerase (RNAP)-λPR promoter complexes. Strong position-dependences of overall rate constants (kcat/Km analogs) for each nucleotide-addition step were observed because of coupling of hybrid growth to disruption of promoter contacts, bubble closing, and RNAP escape. Here we investigate reversal of these steps (pyrophosphorolysis) at PPi concentrations ([PPi]) found in exponentially-growing cells. We quantify [PPi] effects on the amount and rate of synthesis of long (>10-mer, post-escape) and short (stalled, abortive) RNA to determine how PPi regulates initiation. Physiological [PPi] makes uridine incorporation and some other initiation steps significantly reversible. Physiological [PPi] reduces the fraction of RNAP-promoter complexes that productively initiate and the rate of RNA synthesis per productive complex, while increasing the fraction of complexes that abortively initiate, affecting abortive rates, and shifting the abortive-product distribution to shorter RNAs. Pyrophosphorolysis rates for some initiation complexes are orders of magnitude larger than for removal of the same nucleotide from elongation complexes because of the strong bias toward the pre-translocated state in initiation, and exhibit even stronger dependences on nucleotide identity (pyrimidine ≫ purine). Because cytoplasmic [PPi] is much higher in exponential-phase than stationary-phase cells, these [PPi] effects on initiation rates and amounts of RNA synthesis must be physiologically-relevant.


Subject(s)
DNA-Directed RNA Polymerases , Escherichia coli , Transcription Initiation, Genetic , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Nucleotides/metabolism , RNA/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...