Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.271
Filter
1.
FASEB J ; 38(17): e70022, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39250282

ABSTRACT

Systemic sclerosis (SSc) is a life-threatening autoimmune disease characterized by widespread fibrosis in the skin and several internal organs. Nudix Hydrolase 21 (NUDT2 or CFIm25) downregulation in fibroblasts is known to play detrimental roles in both skin and lung fibrosis. This study aims to investigate the upstream mechanisms that lead to NUDT21 repression in skin fibrosis. We identified transforming growth factor ß (TGFß1) as the primary cytokine that downregulated NUDT21 in normal skin fibroblasts. In the bleomycin-induced dermal fibrosis model, consistent with the peak activation of TGFß1 at the late fibrotic stage, NUDT21 was downregulated at this stage, and delayed NUDT21 knockdown during this fibrotic phase led to enhanced fibrotic response to bleomycin. Further investigation suggested TGFß downregulated NUDT21 through microRNA (miRNA) 181a and 181b induction. Both miR-181a and miR-181b were elevated in bleomycin-induced skin fibrosis in mice and primary fibroblasts isolated from SSc patients, and they directly targeted NUDT21 and led to its downregulation in skin fibroblasts. Functional studies demonstrated that miR-181a and miR-181b inhibitors attenuated bleomycin-induced skin fibrosis in mice in association with decreased NUDT21 expression, while miR-181a and miR-181b mimics promoted bleomycin-induced fibrosis. Overall, these findings suggest a novel role for miR-181a/b in SSc pathogenesis by repressing NUDT21 expression.


Subject(s)
Bleomycin , Fibroblasts , Fibrosis , MicroRNAs , Scleroderma, Systemic , Skin , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Humans , Mice , Fibrosis/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Scleroderma, Systemic/genetics , Scleroderma, Systemic/chemically induced , Bleomycin/toxicity , Bleomycin/adverse effects , Skin/pathology , Skin/metabolism , Female , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Mice, Inbred C57BL , Cleavage And Polyadenylation Specificity Factor/metabolism , Cleavage And Polyadenylation Specificity Factor/genetics , Cells, Cultured , Down-Regulation
2.
Int J Mol Sci ; 25(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39273316

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is almost entirely resistant to conventional chemotherapy and radiation therapy. A significant factor in this resistance appears to be the dense desmoplastic stroma, which contains various cancer-associated fibroblast (CAF) populations. However, our understanding of the communication between tumor cells and CAFs that contributes to this aggressive malignancy is still developing. Recently, we used an advanced three-dimensional heterospecies, heterospheroid co-culture model to investigate the signaling between human pancreatic tumor Panc1 cells and mouse pancreatic stellate cells (mPSCs) through global expression profiling. Upon discovering that CCN1 was significantly upregulated in Panc1 cells during co-culture, we decided to explore the role of CCN1 using CRISPR-Cas9 knockout technology. Panc1 cells lacking CCN1 showed reduced differentiation and decreased sensitivity to gemcitabine, primarily due to lower expression of genes involved in gemcitabine transport and metabolism. Additionally, we observed that stimulation with TGF-ß1 and lysophosphatidic acid increased CCN1 expression in Panc1 cells and induced a shift in mPSCs towards a more myofibroblastic CAF-like phenotype.


Subject(s)
Coculture Techniques , Cysteine-Rich Protein 61 , Deoxycytidine , Gemcitabine , Pancreatic Neoplasms , Pancreatic Stellate Cells , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Cysteine-Rich Protein 61/metabolism , Cysteine-Rich Protein 61/genetics , Humans , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/drug effects , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Mice , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects , Cell Differentiation/drug effects
3.
Front Immunol ; 15: 1401015, 2024.
Article in English | MEDLINE | ID: mdl-39281687

ABSTRACT

Introduction: In post-COVID survivors, transforming growth factor-beta-1 (TGF-ß1) might mediate fibroblast activation, resulting in persistent fibrosis. Methods: In this study, 82 survivors of COVID-19-associated ARDS were examined at 6- and 24-months post-ICU discharge. At 6-months, quantitative CT analysis of lung attenuation was performed and active TGF-ß1 was measured in blood and exhaled breath condensate (EBC). Results: At 6-months of ICU-discharge, patients with reduced DmCO/alveolar volume ratio exhibited higher plasma and EBC levels of active TGF-ß1. Plasma TGF-ß1 levels were elevated in dyspneic survivors and directly related to the high-attenuation lung volume. In vitro, plasma and EBC from survivors induced profibrotic changes in human primary fibroblasts in a TGF-ß receptor-dependent manner. Finally, at 6-months, plasma and EBC active TGF-ß1 levels discriminated patients who, 24-months post-ICU-discharge, developed gas exchange impairment. Discussion: TGF-ß1 pathway plays a pivotal role in the early-phase fibrotic abnormalities in COVID-19-induced ARDS survivors, with significant implications for long-term functional impairment.


Subject(s)
COVID-19 , SARS-CoV-2 , Survivors , Transforming Growth Factor beta1 , Humans , COVID-19/immunology , COVID-19/complications , COVID-19/pathology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/blood , Male , Female , Middle Aged , Aged , Lung/pathology , Lung/metabolism , Fibroblasts/metabolism , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , Fibrosis
4.
BMC Pulm Med ; 24(1): 457, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285370

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an age-related disease severely affecting life quality with its prevalence rising as the population ages, yet there is still no effective treatment available. Cell therapy has emerged as a promising option for IPF, however, the absence of mature and stable animal models for IPF immunodeficiency hampers preclinical evaluations of human cell therapies, primarily due to rapid immune clearance of administered cells. This study aims to establish a reliable pulmonary fibrosis (PF) model in immunodeficient mice that supports autologous cell therapy and to investigate underlying mechanism. METHODS: We utilized thirty 5-week-old male NOD/SCID mice, categorizing them into three age groups: 12weeks, 32 weeks and 43 weeks, with 6 mice euthanized randomly from each cohort for lung tissue analysis. We assessed fibrosis using HE staining, Masson's trichrome staining, α-SMA immunohistochemistry and hydroxyproline content measurement. Further, ß-galactosidase staining and gene expression analysis of MMP9, TGF-ß1, TNF-α, IL-1ß, IL-6, IL-8, SOD1, SOD2, NRF2, SIRT1, and SIRT3 were performed. ELISA was employed to quantify protein levels of TNF-α, TGF-ß1, and IL-8. RESULTS: When comparing lung tissues from 32-week-old and 43-week-old mice to those from 12-week-old mice, we noted a marked increase in inflammatory infiltration, fibrosis severity, and hydroxyproline content, alongside elevated expression levels of α-SMA and MMP9. Notably, the degree of fibrosis intensified with age. Additionally, ß-galactosidase staining became more pronounced in older mice. Quantitative PCR analyses revealed age-related, increases in the expression of senescence markers (GLB1, P16, P21), and proinflammatory genes (TGF-ß1, TNF-α, IL-1ß, IL-6, and IL-8). Conversely, the expression of anti-oxidative stress-related genes (SOD1, SOD2, NRF2, SIRT1, and SIRT3) declined, showing statistically significant differences (*P < 0.05, **P < 0.01, ***P < 0.001). ELISA results corroborated these findings, indicating a progressive rise in the protein levels of TGF-ß1, TNF-α, and IL-8 as the mice aged. CONCLUSIONS: The findings suggest that NOD/SCID mice aged 32 weeks and 43 weeks effectively model pulmonary fibrosis in an elderly context, with the disease pathogenesis likely driven by age-associated inflammation and oxidative stress.


Subject(s)
Aging , Disease Models, Animal , Mice, Inbred NOD , Mice, SCID , Sirtuin 1 , Animals , Mice , Male , Sirtuin 1/metabolism , Sirtuin 1/genetics , Lung/pathology , Lung/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Interleukin-8/metabolism , Interleukin-8/genetics , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Sirtuin 3/genetics , Sirtuin 3/metabolism , Hydroxyproline/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Actins/metabolism , Actins/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism
5.
Int J Mol Sci ; 25(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39273510

ABSTRACT

A limited understanding of tendon cell biology in healthy and pathological conditions has impeded the development of effective treatments, necessitating in vitro biomimetic models for studying tendon events. We established a dynamic culture using fibrin scaffolds, bioengineered with tendon stem/progenitor cells (hTSPCs) from healthy or diseased human biopsies and perfused with 20 ng/mL of human transforming growth factor-ß1 for 21 days. Both cell types showed long-term viability and upregulated Scleraxis (SCX-A) and Tenomodulin (TNMD) gene expressions, indicating tenogenic activity. However, diseased hTSPCs underexpressed collagen type I and III (COL1A1 and COL3A1) genes and exhibited lower SCX-A and TNMD protein levels, but increased type I collagen production, with a type I/type III collagen ratio > 1.5 by day 14, matching healthy cells. Diseased hTSPCs also showed constant high levels of pro-inflammatory cytokines, such as IL-8 and IL-6. This biomimetic environment is a valuable tool for studying tenogenic and inflammatory events in healthy and diseased tendon cells and identifying new therapeutic targets.


Subject(s)
Collagen Type I , Fibrin , Stem Cells , Tendons , Tissue Scaffolds , Transforming Growth Factor beta1 , Humans , Tendons/cytology , Tendons/metabolism , Tissue Scaffolds/chemistry , Stem Cells/metabolism , Stem Cells/cytology , Fibrin/metabolism , Transforming Growth Factor beta1/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Tendinopathy/metabolism , Tendinopathy/pathology , Cells, Cultured , Collagen Type III/metabolism , Collagen Type III/genetics , Collagen Type I, alpha 1 Chain/metabolism , Middle Aged , Male , Cell Survival/drug effects , Tissue Engineering/methods , Membrane Proteins
6.
Nutrients ; 16(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39275306

ABSTRACT

The extracellular matrix of cartilage primarily constitutes of collagen and aggrecan. Cartilage degradation starts with aggrecan loss in osteoarthritis (OA). Vitamin D (VD) plays an essential role in several inflammation-related diseases and can protect the collagen in cartilage during OA. The present study focused on the role of VD in aggrecan turnover of human articular chondrocytes treated with tumor necrosis factor α (TNF-α) and the possible mechanism. Treatment with different doses of VD and different periods of intervention with TNF-α and TGF-ß1 receptor (TGFßR1) inhibitor SB525334 were investigated. The viability of human chondrocytes and extracellular secretion of TGF-ß1 were measured. The expression of intracellular TGFßR1 and VD receptor was examined. Transcriptional and translational levels of aggrecan and the related metabolic factors were analyzed. The results showed that TNF-α markedly reduced the viability, TGFßR1 expressions and aggrecan levels of human chondrocytes, and increased disintegrin and metalloproteinase with thrombospondin motifs. The alterations were partially inhibited by VD treatment. Furthermore, the effects of VD were blocked by the TGFßR1 inhibitor SB525334 in TNF-α-treated cells. VD may prevent proteoglycan loss due to TNF-α via TGF-ß1 signaling in human chondrocytes.


Subject(s)
Aggrecans , Cartilage, Articular , Chondrocytes , Proteoglycans , Signal Transduction , Transforming Growth Factor beta1 , Tumor Necrosis Factor-alpha , Vitamin D , Humans , Chondrocytes/metabolism , Chondrocytes/drug effects , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Aggrecans/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vitamin D/pharmacology , Proteoglycans/metabolism , Proteoglycans/pharmacology , Cartilage, Articular/metabolism , Cartilage, Articular/drug effects , Cells, Cultured , Cell Survival/drug effects , Osteoarthritis/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptors, Calcitriol/metabolism
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1450-1458, 2024 Aug 20.
Article in Chinese | MEDLINE | ID: mdl-39276040

ABSTRACT

OBJECTIVE: To investigate the effects of Huangqin Qingrechubi Capsule (HQC) on inflammation and uric acid and lipid metabolism in rats with gouty arthritis (GA) and its mechanism. METHODS: SD rat models of GA established by injecting monosodium urate into the right ankle joint were treated with saline, colchicine and HQC at low, medium and high doses (n=10) by gavage for 7 days. Toe swelling of the rats was detected at 4, 8, 24, 48 and 72 h after modeling, and synovial histological changes were observed with HE staining. Serum levels of interleukin-10 (IL-10), IL-18, tumor necrosis factor-α (TNF-α), transforming growth factor-ß1 (TGF-ß1), adiponectin, leptin, resistin and visfatin were measured by ELISA, and the levels of high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), total cholesterol (TC), and uric acid (BUA) were detected. RTqPCR and Western blotting were used to detect the mRNA expressions of phosphatase and tensin homolog (PTEN), phosphatidylinositol-3-kinase (PI3K) and protein kinase B (AKT) and the protein expressions of PTEN, PI3K, p-PI3K, AKT and p-AKT. RESULTS: The rat models of GA showed obvious toe swelling, which reached the peak level at 48 h. HE staining revealed massive inflammatory cell infiltration and synovial tissue hyperplasia. The rat models showed significantly increased expressions of TNF-α, TGF-ß1, IL-18, TC, TG, leptin, resistin and visfatin, BUA, p-PI3K, and p-AKT and lowered levels of IL-10, APN, HDL-C, and PTEN. Treatment with HQC and colchicine obviously improved these changes and alleviated synovial pathologies and toe swelling in the rat models. CONCLUSION: HQC can improve inflammation and correct the imbalance of uric acid and lipid metabolism in GA rats possibly by inhibiting the PTEN/PI3K/AKT signaling pathway.


Subject(s)
Arthritis, Gouty , Drugs, Chinese Herbal , Inflammation , Lipid Metabolism , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Uric Acid , Animals , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Rats , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Uric Acid/blood , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Lipid Metabolism/drug effects , Inflammation/metabolism , Male , Transforming Growth Factor beta1/metabolism , Interleukin-10/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-18/metabolism
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1508-1517, 2024 Aug 20.
Article in Chinese | MEDLINE | ID: mdl-39276046

ABSTRACT

OBJECTIVE: To analyze the core functional component groups (CFCG) in Yinchenhao Decoction (YCHD) and their possible pathways for treating hepatic fibrosis based on network pharmacology. METHODS: PPI data were extracted from DisGeNET, Genecards, CMGRN and PTHGRN to construct a weighted network using Cytoscape 3.9.1. The data of the chemical components in YCHD were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the potential active components and targets were selected using PreADMET Web server and SwissTargetPrediction. A fusion model was constructed to obtain the functional effect space and evaluate the effective proteins to identify the CFCG followed by GO and KEGG pathway enrichment analyses for all the targets. In cultured human hepatic stellate cells (LX-2 cells), the cytotoxicity of different compounds in YCHD was tested using CCK-8 assay; the effects of these compounds on collagen α1 (Col1a1) mRNA expression and the pathways in 20 ng/mL TGF-ß1-stimulated cells were analyzed using RT-qPCR and Western blotting. RESULTS: A total of 1005 pathogenic genes, 226 potential active components and 1529 potential targets in YCHD and 52 potential targets of CFCG were obtained. Benzyl acetate, vanillic acid, clorius, polydatin, lauric acid and ferulic acid were selected for CCK-8 verification, and they all showed minimal cytotoxicity below the concentration of 200 µmol/L. Clorius, polydatin, lauric acid and ferulic acid all effectively inhibited TGF-ß1-induced LX-2 cell activation. At the concentration of 200 µmol/L, all these 4 components inhibited PI3K, p-PI3K, AKT, p-AKT, ERK, p-ERK, P38 MAPK and p-P38 MAPK expressions in TGF-ß1-induced LX-2 cells. CONCLUSION: The therapeutic effect of YCHD on hepatic fibrosis is probably mediated by its core functional components including benzyl acetate, vanillic acid, clorius, polydatin, lauric acid and ferulic acid, which inhibit the PI3K-AKT and MAPK pathways in hepatic stellate cells.


Subject(s)
Drugs, Chinese Herbal , Hepatic Stellate Cells , Liver Cirrhosis , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Medicine, Chinese Traditional/methods , Transforming Growth Factor beta1/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Coumaric Acids/pharmacology , Cell Line , Signal Transduction/drug effects , Network Pharmacology , Collagen Type I, alpha 1 Chain
9.
FASEB J ; 38(17): e70045, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39259551

ABSTRACT

Epithelial ovarian cancer is the deadliest gynecologic malignancy, characterized by high metastasis. Transforming growth factor-ß1 (TGF-ß1) drives epithelial- mesenchymal transformation (EMT), a key process in tumor metastasis. Tumor necrosis factor-α-induced protein 8 (TNFAIP8)-like 2 (TIPE2) acts as a negative regulator of innate and adaptive immunity and involves in various cancers. However, its relationship with TGF-ß1 in ovarian cancer and its role in reversing TGF-ß1-induced EMT remain unclear. This study examined TIPE2 mRNA and protein expression using quantitative RT-PCR (qRT-PCR), western blot and immunohistochemistry. The effects of TIPE2 overexpression and knockdown on the proliferation, migration and invasion of epithelial ovarian cancer cells were assessed through 5-ethynyl-2-deoxyuridine, colony-forming, transwell migration and invasion assays. The relationship between TIPE2 and TGF-ß1 was investigated using qRT-PCR and enzyme-linked immunosorbent assay, while the interaction between TIPE2 and Smad2 was identified via co-immunoprecipitation. The results revealed that TIPE2 protein was significantly down-regulated in epithelial ovarian cancer tissues and correlated with the pathological type of tumor, patients' age, tumor differentiation degree and FIGO stage. TIPE2 and TGF-ß1 appeared to play an opposite role to each other during the progression of human ovarian cancer cells. Furthermore, TIPE2 inhibited the metastasis and EMT of ovarian cancer cells by combining with Smad2 in vitro or in an intraperitoneal metastasis model. Consequently, these findings suggest that TIPE2 plays a crucial inhibitory role in ovarian cancer metastasis by modulating the TGF-ß1/Smad2/EMT signaling pathway and may serve as a potential target for ovarian cancer, providing important direction for future diagnostic and therapeutic strategies.


Subject(s)
Carcinoma, Ovarian Epithelial , Cell Movement , Epithelial-Mesenchymal Transition , Intracellular Signaling Peptides and Proteins , Ovarian Neoplasms , Smad2 Protein , Transforming Growth Factor beta1 , Smad2 Protein/metabolism , Smad2 Protein/genetics , Humans , Female , Transforming Growth Factor beta1/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Cell Line, Tumor , Animals , Mice , Neoplasm Invasiveness , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mice, Nude , Mice, Inbred BALB C , Signal Transduction
10.
Cells ; 13(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39272990

ABSTRACT

BACKGROUND: Obesity poses a significant global health challenge, given its association with the excessive accumulation of adipose tissue (AT) and various systemic disruptions. Within the adipose microenvironment, expansion and enrichment with immune cells trigger the release of inflammatory mediators and growth factors, which can disrupt tissues, including bones. While obesity's contribution to bone loss is well established, the direct impact of obese AT on osteoblast maturation remains uncertain. This study aimed to explore the influence of the secretomes from obese and lean AT on osteoblast differentiation and activity. METHODS: SAOS-2 cells were exposed to the secretomes obtained by culturing human subcutaneous AT from individuals with obesity (OATS) or lean patients, and their effects on osteoblasts were evaluated. RESULTS: In the presence of the OATS, mature osteoblasts underwent dedifferentiation, showing an increased proliferation accompanied by a morphological shift towards a mesenchymal phenotype, with detrimental effects on osteogenic markers and the calcification capacity. Concurrently, the OATS promoted the expression of mesenchymal and adipogenic markers, inducing the formation of cytoplasmic lipid droplets in SAOS-2 cells exposed to an adipogenic differentiation medium. Additionally, TGF-ß1 emerged as a key mediator of these effects, as the OATS was enriched with this growth factor. CONCLUSIONS: Our findings demonstrate that obese subcutaneous AT promotes the dedifferentiation of osteoblasts and increases the adipogenic profile in these cells.


Subject(s)
Adipogenesis , Adipose Tissue , Cell Dedifferentiation , Obesity , Osteoblasts , Phenotype , Signal Transduction , Transforming Growth Factor beta1 , Humans , Osteoblasts/metabolism , Osteoblasts/pathology , Obesity/pathology , Obesity/metabolism , Transforming Growth Factor beta1/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Secretome/metabolism , Cell Differentiation , Cell Proliferation , Osteogenesis , Male
11.
BMC Pulm Med ; 24(1): 444, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261812

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a group of chronic interstitial pulmonary diseases characterized by myofibroblast proliferation and extracellular matrix (ECM) deposition. However, current treatments are not satisfactory. Therefore, more effective therapies need to be explored. Cepharanthine (CEP) is a naturally occurring alkaloid that has recently been reported to have multiple pharmacological effects, particularly in chronic inflammation. METHODS: For in vivo experiments, first, a pulmonary fibrosis murine model was generated via tracheal injection of bleomycin (BLM). Second, the clinical manifestations and histopathological changes of the mice were used to verify that treatment with CEP might significantly reduce BLM-induced fibrosis. Furthermore, flow cytometric analysis was used to analyze the changes in the number of M2 macrophages in the lung tissues before and after treatment with CEP to explore the relationship between macrophage M2 polarization and pulmonary fibrosis. In vitro, we constructed two co-culture systems (THP-1 and MRC5 cells, RAW264.7 and NIH 3T3 cells), and measured the expression of fibrosis-related proteins to explore whether CEP could reduce pulmonary fibrosis by regulating macrophage M2 polarization and fibroblast activation. RESULTS: The results showed that the intranasal treatment of CEP significantly attenuated the symptoms of pulmonary fibrosis induced by BLM in a murine model. Our findings also indicated that CEP treatment markedly reduced the expression of fibrosis markers, including TGF-ß1, collagen I, fibronectin and α-SMA, in the mouse lung. Furthermore, in vitro studies demonstrated that CEP attenuated pulmonary fibrosis by inhibiting fibroblast activation through modulating macrophage M2 polarization and reducing TGF-ß1 expression. CONCLUSIONS: This study demonstrated the potential and efficacy of CEP in the treatment of pulmonary fibrosis. In particular, this study revealed a novel mechanism of CEP in inhibiting fibroblast activation by regulating macrophage M2 polarization and reducing the expression of fibrosis-associated factors. Our findings open a new direction for future research into the treatment of pulmonary fibrosis.


Subject(s)
Benzylisoquinolines , Bleomycin , Disease Models, Animal , Macrophages , Animals , Benzylisoquinolines/pharmacology , Mice , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred C57BL , Pulmonary Fibrosis/drug therapy , Lung/pathology , Lung/drug effects , Humans , RAW 264.7 Cells , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Transforming Growth Factor beta1/metabolism , NIH 3T3 Cells , Benzodioxoles
12.
PLoS One ; 19(9): e0306624, 2024.
Article in English | MEDLINE | ID: mdl-39240940

ABSTRACT

Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune-driven connective tissue disorder that results in fibrosis of the skin and internal organs such as the lung. Fibroblasts are known as the main effector cells involved in the progression of SSc through the induction of extracellular matrix (ECM) proteins and myofibroblast differentiation. Here, we demonstrate that 4'-(cyclopropylmethyl)-N2-4-pyridinyl-[4,5'-bipyrimidine]-2,2'-diamine (PIK-III), known as class III phosphatidylinositol 3-kinase (PIK3C3/VPS34) inhibitor, exerts potent antifibrotic effects in human dermal fibroblasts (HDFs) by attenuating transforming growth factor-beta 1 (TGF-ß1)-induced ECM expression, cell contraction and myofibroblast differentiation. Unexpectedly, neither genetic silencing of PIK3C3 nor other PIK3C3 inhibitors (e.g., SAR405 and Autophinib) were able to mimic PIK-III-mediated antifibrotic effect in dermal fibroblasts, suggesting that PIK-III inhibits fibroblast activation through another signaling pathway. We identified that PIK-III effectively inhibits p38 activation in TGF-ß1-stimulated dermal fibroblasts. Finally, PIK-III administration significantly attenuated dermal and lung fibrosis in bleomycin-injured mice.


Subject(s)
Fibroblasts , Fibrosis , p38 Mitogen-Activated Protein Kinases , Animals , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Humans , p38 Mitogen-Activated Protein Kinases/metabolism , Mice , Scleroderma, Systemic/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/genetics , Bleomycin , Transforming Growth Factor beta1/metabolism , Pyrimidines/pharmacology , Cell Differentiation/drug effects , Pyridines/pharmacology , Enzyme Activation/drug effects , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Skin/pathology , Skin/metabolism , Skin/drug effects , Lung/pathology , Lung/drug effects , Lung/metabolism
13.
Sci Rep ; 14(1): 20367, 2024 09 02.
Article in English | MEDLINE | ID: mdl-39223174

ABSTRACT

This study elucidated the unique pathological features of tissue healing by magnamosis and revealed the changes in landmark molecule expression levels related to collagen synthesis and tissue hypoxia. Forty-eight male Sprague-Dawley rats were divided into the magnamosis and suture anastomosis groups, and gastrojejunal anastomosis surgery was performed. Rats were dissected at 6, 24, and 48 h and 5, 6, 8, 10, and 12 days postoperatively. Hematoxylin, eosin, and Masson's trichrome staining were used to evaluate granulation tissue proliferation and collagen synthesis density at the anastomosis site. Immunohistochemistry was used to measure TGF-ß1 and HIF-1α expression levels. Magnamosis significantly shortened the operation time, resulting in weaker postoperative abdominal adhesions (P < 0.0001). Histopathological results showed a significantly lower granulation area in the magnamosis group than in the suture anastomosis group (P = 0.0388), with no significant difference in the density of collagen synthesis (P = 0.3631). Immunohistochemistry results indicated that the magnamosis group had significantly lower proportions of TGF-ß1-positive cells at 24 (P = 0.0052) and 48 h (P = 0.0385) postoperatively and HIF-1α-positive cells at 24 (P = 0.0402) and 48 h postoperatively (P = 0.0005). In a rat model of gastrojejunal anastomosis, magnamosis leads to improved tissue healing at the gastrojejunal anastomosis, associated with downregulated expression levels of TGF-ß1 and HIF-1α.


Subject(s)
Anastomosis, Surgical , Hypoxia-Inducible Factor 1, alpha Subunit , Rats, Sprague-Dawley , Transforming Growth Factor beta1 , Wound Healing , Animals , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Transforming Growth Factor beta1/metabolism , Male , Rats , Jejunum/surgery , Jejunum/metabolism , Down-Regulation , Collagen/metabolism , Stomach/surgery , Stomach/pathology
14.
Mol Med ; 30(1): 134, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223490

ABSTRACT

BACKGROUND: Epidermal remodeling and hypertrophy are hallmarks of skin fibrotic disorders, and keratinocyte to mesenchymal (EMT)-like transformations drive epidermis alteration in skin fibrosis such as keloids and hypertrophic scars (HTS). While phosphodiesterase 4 (PDE4) inhibitors have shown effectiveness in various fibrotic disorders, their role in skin fibrosis is not fully understood. This study aimed to explore the specific role of PDE4B in epidermal remodeling and hypertrophy seen in skin fibrosis. METHODS: In vitro experiments examined the effects of inhibiting PDE4A-D (with Roflumilast) or PDE4B (with siRNA) on TGFß1-induced EMT differentiation and dedifferentiation in human 3D epidermis. In vivo studies investigated the impact of PDE4 inhibition on HOCl-induced skin fibrosis and epidermal hypertrophy in mice, employing both preventive and therapeutic approaches. RESULTS: The study found increased levels of PDE4B (mRNA, protein) in keloids > HTS compared to healthy epidermis, as well as in TGFß-stimulated 3D epidermis. Keloids and HTS epidermis exhibited elevated levels of collagen Iα1, fibronectin, αSMA, N-cadherin, and NOX4 mRNA, along with decreased levels of E-cadherin and ZO-1, confirming an EMT process. Inhibition of both PDE4A-D and PDE4B prevented TGFß1-induced Smad3 and ERK1/2 phosphorylation and mesenchymal differentiation in vitro. PDE4A-D inhibition also promoted mesenchymal dedifferentiation and reduced TGFß1-induced ROS and keratinocyte senescence by rescuing PPM1A, a Smad3 phosphatase. In vivo, PDE4 inhibition mitigated HOCl-induced epidermal hypertrophy in mice in both preventive and therapeutic settings. CONCLUSIONS: Overall, the study supports the potential of PDE4 inhibitors, particularly PDE4B, in treating skin fibrosis, including keloids and HTS, shedding light on their functional role in this condition.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4 , Fibrosis , Keloid , Keratinocytes , Phosphodiesterase 4 Inhibitors , Humans , Keloid/metabolism , Keloid/pathology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Keratinocytes/metabolism , Keratinocytes/drug effects , Phosphodiesterase 4 Inhibitors/pharmacology , Animals , Mice , Epidermis/metabolism , Epidermis/pathology , Transforming Growth Factor beta1/metabolism , Epithelial-Mesenchymal Transition/drug effects , Cell Differentiation/drug effects , Male
15.
J Cell Mol Med ; 28(17): e70063, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39232846

ABSTRACT

Histone deacetylase 6 (HDAC6) belongs to the class IIb group of the histone deacetylase family, which participates in remodelling of various tissues. Herein, we sought to examine the potential regulation of HDAC6 in cardiac remodelling post-infarction. Experimental myocardial infarction (MI) was created in HDAC6-deficient (HDAC6-/-) mice and wild-type (HADC6+/+) by left coronary artery ligation. At days 0 and 14 post-MI, we evaluated cardiac function, morphology and molecular endpoints of repair and remodelling. At day 14 after surgery, the ischemic myocardium had increased levels of HADC6 gene and protein of post-MI mice compared to the non-ischemic myocardium of control mice. As compared with HDAC6-/--MI mice, HADC6 deletion markedly improved infarct size and cardiac fibrosis as well as impaired left ventricular ejection fraction and left ventricular fraction shortening. At the molecular levels, HDAC6-/- resulted in a significant reduction in the levels of the transforming growth factor-beta 1 (TGF-ß1), phosphor-Smad-2/3, collagen I and collagen III proteins and/or in the ischemic cardiac tissues. All of these beneficial effects were reproduced by a pharmacological inhibition of HADC6 in vivo. In vitro, hypoxic stress increased the expressions of HADC6 and collagen I and III gene; these alterations were significantly prevented by the HADC6 silencing and TubA loading. These findings indicated that HADC6 deficiency resists ischemic injury by a reduction of TGF-ß1/Smad2/3 signalling activation, leading to decreased extracellular matrix production, which reduces cardiac fibrosis and dysfunction, providing a potential molecular target in the treatment of patients with MI.


Subject(s)
Fibrosis , Histone Deacetylase 6 , Myocardial Infarction , Signal Transduction , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta1 , Ventricular Remodeling , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/genetics , Transforming Growth Factor beta1/metabolism , Smad2 Protein/metabolism , Mice , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Myocardium/metabolism , Myocardium/pathology , Mice, Knockout , Male , Mice, Inbred C57BL , Disease Models, Animal
16.
Invest Ophthalmol Vis Sci ; 65(11): 1, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226050

ABSTRACT

Purpose: This study aimed to explore the impact of HSPA13 on epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells and proliferative vitreoretinopathy (PVR) development, along with its associated molecular mechanisms. Methods: HSPA13 expression was evaluated in epiretinal membranes (ERMs) from patients with PVR using immunohistochemistry. The effects of HSPA13 knockdown on TGFß1-induced EMT in hESC-RPE cells were studied through quantitative PCR (qPCR), Western blot, and wound healing assays. Intracellular Ca2+ levels were measured using Fluo-8/AM incubation. A rat PVR model was induced by the intravitreal injection of RPE cells combined with platelet-rich plasma (PRP). RNA-seq was applied to study the molecular mechanism of HSPA13 knockdown-mediated EMT inhibition. Results: HSPA13 was found in human ERMs and its expression increased with TGFß1 treatment in hESC-RPE cells. Knockdown of HSPA13 inhibited TGFß1-induced EMT and migration. In the PVR rat model, HSPA13 was expressed in the ERMs and its knockdown in RPE cells reduced the development of PVR. Consistent with these observations, RNA-seq showed a global suppression of TGFß1-induced EMT and migration by shHSPA13 in RPE cells. Mechanistically, TGFß1 treatment increased intracellular Ca2+ levels, leading to an upregulation of HSPA13 expression. Downregulation of HSPA13 hindered the phosphorylation of PI3K/Akt in TGFß1-induced RPE cells. Conclusions: Our study revealed the involvement of HSPA13 in PVR development, as well as in TGFß1-induced EMT of RPE through the PI3K/Akt signaling pathway. Targeting HSPA13-related pathways involved in regulating EMT in RPE cells could serve as a novel therapeutic approach for patients with PVR.


Subject(s)
Disease Models, Animal , Epithelial-Mesenchymal Transition , HSP70 Heat-Shock Proteins , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Retinal Pigment Epithelium , Signal Transduction , Transforming Growth Factor beta1 , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Animals , Transforming Growth Factor beta1/metabolism , Humans , Rats , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Vitreoretinopathy, Proliferative/genetics , Vitreoretinopathy, Proliferative/pathology , Vitreoretinopathy, Proliferative/metabolism , Male , Blotting, Western , Cells, Cultured , Rats, Sprague-Dawley , Cell Movement , Immunohistochemistry
17.
BMC Med ; 22(1): 361, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39227800

ABSTRACT

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterized with progressive cardiac fibrosis and heart failure. However, the exact mechanism driving the progression of cardiac fibrosis and heart failure in ACM remains elusive. This study aims to investigate the underlying mechanisms of progressive cardiac fibrosis in ACM caused by newly identified Desmoglein-2 (DSG2) variation. METHODS: We identified homozygous DSG2F531C variant in a family with 8 ACM patients using whole-exome sequencing and generated Dsg2F536C knock-in mice. Neonatal and adult mouse ventricular myocytes isolated from Dsg2F536C knock-in mice were used. We performed functional, transcriptomic and mass spectrometry analyses to evaluate the mechanisms of ACM caused by DSG2F531C variant. RESULTS: All eight patients with ACM were homozygous for DSG2F531C variant. Dsg2F536C/F536C mice displayed cardiac enlargement, dysfunction, and progressive cardiac fibrosis in both ventricles. Mechanistic investigations revealed that the variant DSG2-F536C protein underwent misfolding, leading to its recognition by BiP within the endoplasmic reticulum, which triggered endoplasmic reticulum stress, activated the PERK-ATF4 signaling pathway and increased ATF4 levels in cardiomyocytes. Increased ATF4 facilitated the expression of TGF-ß1 in cardiomyocytes, thereby activating cardiac fibroblasts through paracrine signaling and ultimately promoting cardiac fibrosis in Dsg2F536C/F536C mice. Notably, inhibition of the PERK-ATF4 signaling attenuated progressive cardiac fibrosis and cardiac systolic dysfunction in Dsg2F536C/F536C mice. CONCLUSIONS: Hyperactivation of the ATF4/TGF-ß1 signaling in cardiomyocytes emerges as a novel mechanism underlying progressive cardiac fibrosis in ACM. Targeting the ATF4/TGF-ß1 signaling may be a novel therapeutic target for managing ACM.


Subject(s)
Activating Transcription Factor 4 , Desmoglein 2 , Fibrosis , Signal Transduction , Transforming Growth Factor beta1 , Animals , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Humans , Mice , Desmoglein 2/genetics , Desmoglein 2/metabolism , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Male , Female , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Adult , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Arrhythmogenic Right Ventricular Dysplasia/pathology , Middle Aged , Pedigree
18.
PLoS One ; 19(9): e0310001, 2024.
Article in English | MEDLINE | ID: mdl-39240898

ABSTRACT

Obstructive uropathy is a common kidney disease caused by elevated hydrostatic pressure (HP), but relevant molecular and cellular mechanisms have not yet been well understood. In this study, we ex vivo investigated the effects of elevated HP on human renal epithelial cells (HREpCs). Primary HREpCs were subjected to 100 cmH2O HP for 8 or 48 h. Then, the cells were cultured without HP stimulation for another 24 h or 72 h. Cell morphology showed almost no change after 8h HP treatment, but exhibited reversible elongation after 48h HP treatment. HP treatment for 8 h increased the expression of TGFB1 and VEGFA but decreased the expression of CSF2 and TGFB2. On the other hand, HP treatment for 48 h downregulated the expression of CSF2, TGFB2, PDGFB, VEGFA, and VEGFB, while upregulated the expression of TGFB3. Interestingly, all changes induced by 48 h HP treatment were detected more severe compared to 8 h HP treatment. In conclusion, elongated ex vivo HP loading to renal epithelial cells induces reversible changes on cell morphology and disturbs the expression of several growth factors, which provides novel mechanistic insight on elevated HP-caused kidney injury such as obstructive uropathy.


Subject(s)
Epithelial Cells , Hydrostatic Pressure , Kidney , Humans , Epithelial Cells/metabolism , Kidney/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Cells, Cultured , Vascular Endothelial Growth Factor A/metabolism , Gene Expression Regulation , Transforming Growth Factor beta1/metabolism
19.
FASEB J ; 38(17): e70039, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39258958

ABSTRACT

Platelets play a crucial role in tissue regeneration, and their involvement in liver regeneration is well-established. However, the specific contribution of platelet-derived Transforming Growth Factor Beta 1 (TGFß1) to liver regeneration remains unexplored. This study investigated the role of platelet-derived TGFß1 in initiating liver regeneration following 2/3 liver resection. Using platelet-specific TGFß1 knockout (Plt.TGFß1 KO) mice and wild-type littermates (Plt.TGFß1 WT) as controls, the study assessed circulating levels and hepatic gene expression of TGFß1, Platelet Factor 4 (PF4), and Thrombopoietin (TPO) at early time points post-hepatectomy (post-PHx). Hepatocyte proliferation was quantified through Ki67 staining and PCNA expression in total liver lysates at various intervals, and phosphohistone-H3 (PHH3) staining was employed to mark mitotic cells. Circulating levels of hepatic mitogens, Hepatocyte Growth Factor (HGF), and Interleukin-6 (IL6) were also assessed. Results revealed that platelet-TGFß1 deficiency significantly reduced total plasma TGFß1 levels at 5 h post-PHx in Plt.TGFß1 KO mice compared to controls. While circulating PF4 levels, liver platelet recruitment and activation appeared normal at early time points, Plt.TGFß1 KO mice showed more stable circulating platelet numbers with higher numbers at 48 h post-PHx. Notably, hepatocyte proliferation was significantly reduced in Plt.TGFß1 KO mice. The results show that a lack of TGFß1 in platelets leads to an unbalanced expression of IL6 in the liver and to strongly increased HGF levels 48 h after liver resection, and yet liver regeneration remains reduced. The study identifies platelet-TGFß1 as a regulator of hepatocyte proliferation and platelet homeostasis in the early stages of liver regeneration.


Subject(s)
Blood Platelets , Hepatectomy , Liver Regeneration , Mice, Knockout , Thrombopoietin , Transforming Growth Factor beta1 , Animals , Liver Regeneration/physiology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Mice , Blood Platelets/metabolism , Thrombopoietin/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Cell Proliferation , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/genetics , Liver/metabolism , Hepatocytes/metabolism , Male , Platelet Factor 4/metabolism , Platelet Factor 4/genetics , Mice, Inbred C57BL
20.
Theranostics ; 14(11): 4536-4553, 2024.
Article in English | MEDLINE | ID: mdl-39113797

ABSTRACT

Rationale: Acute kidney injury (AKI) has substantial rates of mortality and morbidity, coupled with an absence of efficacious treatment options. AKI commonly transits into chronic kidney disease (CKD) and ultimately culminates in end-stage renal failure. The interferon-stimulated gene 15 (ISG15) level was upregulated in the kidneys of mice injured by ischemia-reperfusion injury (IRI), cisplatin, or unilateral ureteral obstruction (UUO), however, its role in AKI development and subsequent AKI-to-CKD transition remains unknown. Methods: Isg15 knockout (Isg15 KO) mice challenged with bilateral or unilateral IRI, cisplatin, or UUO were used to investigate its role in AKI. We established cellular models with overexpression or knockout of ISG15 and subjected them to hypoxia-reoxygenation, cisplatin, or transforming growth factor- ß1 (TGF-ß1) stimulation. Renal RNA-seq data obtained from AKI models sourced from public databases and our studies, were utilized to examine the expression profiles of ISG15 and its associated genes. Additionally, published single cell RNA-seq data from human kidney allograft biopsies and mouse IRI model were analyzed to investigate the expression patterns of ISG15 and the type I TGF-ß receptor (TGFßR1). Western blotting, qPCR, co-immunoprecipitation, and immunohistochemical staining assays were performed to validate our findings. Results: Alleviated pathological injury and renal function were observed in Isg15 KO mice with IRI-, cisplatin-, or UUO-induced AKI and the following AKI-to-CKD transition. In hypoxia-reoxygenation, cisplatin or TGF-ß1 treated HK-2 cells, knockout ISG15 reduced stimulus-induced cell fibrosis, while overexpression of ISG15 with modification capacity exacerbated cell fibrosis. Immunoprecipitation assays demonstrated that ISG15 promoted ISGylation of TGFßR1, and inhibited its ubiquitination. Moreover, knockout of TGFßR1 blocked ISG15's fibrosis-exacerbating effect in HK-2 cells, while overexpression of TGFßR1 abolished the renal protective effect of ISG15 knockout during IRI-induced kidney injury. Conclusions: ISG15 plays an important role in the development of AKI and subsequent AKI-to-CKD transition by promoting TGFßR1 ISGylation.


Subject(s)
Acute Kidney Injury , Cisplatin , Cytokines , Mice, Knockout , Reperfusion Injury , Ubiquitins , Animals , Humans , Male , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Cisplatin/pharmacology , Cytokines/metabolism , Disease Models, Animal , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Ubiquitins/metabolism , Ubiquitins/genetics , Ureteral Obstruction/metabolism , Ureteral Obstruction/complications , Ureteral Obstruction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL