Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32.302
1.
Glob Chang Biol ; 30(6): e17347, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822663

Climate change (CC) necessitates reforestation/afforestation programs to mitigate its impacts and maximize carbon sequestration. But comprehending how tree growth, a proxy for fitness and resilience, responds to CC is critical to maximize these programs' effectiveness. Variability in tree response to CC across populations can notably be influenced by the standing genetic variation encompassing both neutral and adaptive genetic diversity. Here, a framework is proposed to assess tree growth potential at the population scale while accounting for standing genetic variation. We applied this framework to black spruce (BS, Picea mariana [Mill] B.S.P.), with the objectives to (1) determine the key climate variables having impacted BS growth response from 1974 to 2019, (2) examine the relative roles of local adaptation and the phylogeographic structure in this response, and (3) project BS growth under two Shared Socioeconomic Pathways while taking standing genetic variation into account. We modeled growth using a machine learning algorithm trained with dendroecological and genetic data obtained from over 2600 trees (62 populations divided in three genetic clusters) in four 48-year-old common gardens, and simulated growth until year 2100 at the common garden locations. Our study revealed that high summer and autumn temperatures negatively impacted BS growth. As a consequence of warming, this species is projected to experience a decline in growth by the end of the century, suggesting maladaptation to anticipated CC and a potential threat to its carbon sequestration capacity. This being said, we observed a clear difference in response to CC within and among genetic clusters, with the western cluster being more impacted than the central and eastern clusters. Our results show that intraspecific genetic variation, notably associated with the phylogeographic structure, must be considered when estimating the response of widespread species to CC.


Carbon Sequestration , Climate Change , Genetic Variation , Picea , Trees , Picea/genetics , Picea/growth & development , Trees/genetics , Trees/growth & development , Phylogeography
2.
Sensors (Basel) ; 24(10)2024 May 12.
Article En | MEDLINE | ID: mdl-38793928

In previous research, we presented an apparatus designed for comprehensive and systematic surveillance of trees against borers. This apparatus entailed the insertion of an uncoated waveguide into the tree trunk, enabling the transmission of micro-vibrations generated by moving or digging larvae to a piezoelectric probe. Subsequent recordings were then transmitted at predetermined intervals to a server, where analysis was conducted manually to assess the infestation status of the tree. However, this method is hampered by significant limitations when scaling to monitor thousands of trees across extensive spatial domains. In this study, we address this challenge by integrating signal processing techniques capable of distinguishing vibrations attributable to borers from those originating externally to the tree. Our primary innovation involves quantifying the impulses resulting from the fracturing of wood fibers due to borer activity. The device employs criteria such as impulse duration and a strategy of waiting for periods of relative quietness before commencing the counting of impulses. Additionally, we provide an annotated large-scale database comprising laboratory and field vibrational recordings, which will facilitate further advancements in this research domain.


Trees , Vibration , Animals , Trees/physiology , Acoustics , Signal Processing, Computer-Assisted , Larva/physiology
3.
Environ Monit Assess ; 196(6): 571, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777936

This study was conducted to determine the changes in carbon stocks of oriental beech (Fagus orientalis) according to stand development stage in the Marmara Region of Türkiye. For this purpose, sample plots were taken from a total of 32 areas encompassing four stand development stages (young, middle age, mature and overmature stand). The diameter at breast height and height of all trees in the sample plots were measured, and only three dominant trees's ages per plot were determined. Aboveground carbon stock was calculated using equations developed for beech forests, while the coefficients in the Agriculture, Forestry and Other Land Use guide were used to determine belowground carbon stocks. A soil pit was dug in each plot and soil samples were taken at different depths (0-10, 10-30, 30-60, 60-100 cm). In addition, litters were sampled from four different 25 × 25 cm sections in each plot, and then the physical and chemical properties of the soil and litters were analysed. The variations in carbon stocks in above- and below-ground tree mass, litter and soil, and in ecosystem carbon stocks according to development stage were examined by analysis of variance and Duncan test, and the relationships between the carbon stocks were investigated by correlation analysis. Aboveground (AG) and belowground (BG) tree, soil and ecosystem carbon stocks showed significant differences between the four stand development stages (P < 0.05), but not the litter carbon stocks (P > 0.05). AG and BG tree and ecosystem carbon stocks increased with progressive stand development stages, while the soil carbon stock was the highest at the young stage. These findings will contribute to the preparation of forest management plans and the national greenhouse gas inventory.


Carbon , Environmental Monitoring , Fagus , Forests , Soil , Fagus/growth & development , Carbon/analysis , Soil/chemistry , Turkey , Trees , Forestry , Ecosystem
4.
Tree Physiol ; 44(5)2024 May 05.
Article En | MEDLINE | ID: mdl-38696364

Modeling and simulating the growth of the branching of tree species remains a challenge. With existing approaches, we can reconstruct or rebuild the branching architectures of real tree species, but the simulation of the growth process remains unresolved. First, we present a tree growth model to generate branching architectures that resemble real tree species. Secondly, we use a quantitative morphometric approach to infer the shape similarity of the generated simulations and real tree species. Within a functional-structural plant model, we implement a set of biological parameters that affect the branching architecture of trees. By modifying the parameter values, we aim to generate basic shapes of spruce, pine, oak and poplar. Tree shapes are compared using geometric morphometrics of landmarks that capture crown and stem outline shapes. Five biological parameters, namely xylem flow, shedding rate, proprioception, gravitysense and lightsense, most influenced the generated tree branching patterns. Adjusting these five parameters resulted in the different tree shapes of spruce, pine, oak, and poplar. The largest effect was attributed to gravity, as phenotypic responses to this effect resulted in different growth directions of gymnosperm and angiosperm branching architectures. Since we were able to obtain branching architectures that resemble real tree species by adjusting only a few biological parameters, our model is extendable to other tree species. Furthermore, the model will also allow the simulation of structural tree-environment interactions. Our simplifying approach to shape comparison between tree species, landmark geometric morphometrics, showed that even the crown-trunk outlines capture species differences based on their contrasting branching architectures.


Models, Biological , Trees , Trees/growth & development , Trees/anatomy & histology , Xylem/growth & development , Xylem/anatomy & histology , Quercus/growth & development , Quercus/anatomy & histology , Quercus/physiology , Picea/growth & development , Picea/anatomy & histology , Picea/physiology , Plant Stems/growth & development , Plant Stems/anatomy & histology , Pinus/growth & development , Pinus/anatomy & histology , Computer Simulation
5.
Am J Bot ; 111(5): e16329, 2024 May.
Article En | MEDLINE | ID: mdl-38708705

PREMISE: Gynodioecy is a rare sexual system in which two genders (sensu Lloyd, 1980), cosexuals and females, coexist. To survive, female plants must compensate for their lack of siring capacity and male attractiveness. In European chestnut (Castanea sativa), an outcrossing tree, self-pollination reduces fruit set in cosexual individuals because of late-acting self-incompatibility and early inbreeding depression. Could this negative sexual interaction explain the presence of females in this species? METHODS: We studied gender variation in wild populations of European chestnut. In addition, we compared fruit set (the proportion of flowers giving fruits) and other key female fitness components as well as reproductive allocation between genders. We then performed emasculation experiments in cosexual trees, by removing nectar-producing fertile male inflorescences. We also removed sterile but nectar-producing male inflorescences from female trees, as a control. RESULTS: We found a highly variable proportion of male-sterile individuals in the wild in European chestnut. In the experimental plot, trees from each gender had similar size, flower density, and burr set, but different fruit set. Removing nectar-producing male inflorescences from branches or entire trees increased fruit set in cosexual but not in female trees. CONCLUSIONS: These results show that self-pollination impairs fruit set in cosexual trees. Female trees avoid these problems as they do not produce pollen but continue to attract pollinators thanks to their rewarding male-sterile inflorescences, resulting in a much higher fruit set than in cosexuals. This demonstrates that even outcrossed plants can benefit from the cessation of self-pollination, to the point that unisexuality can evolve.


Fagaceae , Fruit , Pollination , Fagaceae/physiology , Fruit/physiology , Flowers/physiology , Trees/physiology , Self-Incompatibility in Flowering Plants , Reproduction
6.
Ecol Lett ; 27(5): e14427, 2024 May.
Article En | MEDLINE | ID: mdl-38698677

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Arthropods , Biodiversity , Birds , Climate , Predatory Behavior , Trees , Animals , Arthropods/physiology , Birds/physiology , Food Chain , Larva/physiology
7.
Glob Chang Biol ; 30(5): e17306, 2024 May.
Article En | MEDLINE | ID: mdl-38699931

Cattle heat stress causes billions of dollars' worth of losses to meat and milk production globally, and is projected to become more severe in the future due to climate change. Tree establishment in pastoral livestock systems holds potential to reduce cattle heat stress and thus provide nature-based adaptation. We developed a general model for the impact of trees on cattle heat stress, which can project milk and meat production under future climate scenarios at varying spatial scales. The model incorporates the key microclimate mechanisms influenced by trees, including shade, air temperature, humidity, and wind speed. We conducted sensitivity analyses to demonstrate the relative influence of different mechanisms through which trees can impact cattle heat stress, and how tree impacts are influenced by climatic context globally. Trees hold the greatest potential to reduce cattle heat stress in higher latitudes and altitudes, with minor benefits in the lowland tropics. We projected the future contributions of current trees in mitigating climate change impacts on the dairy and beef herds of Aotearoa-New Zealand (A-NZ) in 2070-2080. Trees were simulated to contribute to A-NZ milk yields by over 491 million liters (lower CI = 112 million liters, upper CI = 850 million liters), and meat yields by over 8316 tonnes (lower CI = 2431 tonnes, upper CI = 13,668 tonnes) annually. The total economic contribution of existing trees in mitigating future cattle heat stress was valued at $US 244 million (lower CI = $US 58 million, upper CI = $US 419 million). Our findings demonstrate the importance of existing trees in pastoral landscapes and suggest that strategic tree establishment can be a valuable adaptation option for reducing cattle heat stress under climate change. Tree establishment in the next few years is critical to provide adaptation capacity and economic benefit in future decades.


Climate Change , Milk , Trees , Animals , Cattle/physiology , New Zealand , Heat-Shock Response , Models, Theoretical
8.
Environ Monit Assess ; 196(6): 504, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700595

Urbanisation has emerged as a formidable challenge for urban policymakers, reaching unparalleled heights and unsettling the ecological equilibrium of the cities. Urban areas now grapple with many issues encompassing climate change, resource depletion, population surges and increased pollution levels. Many planned cities have planted trees and other vegetation within the urban sectors to enhance air quality, mitigate climate effects and provide valuable ecosystem services. This study assessed tree species diversity and their potential for carbon sequestration in Panjab University Campus, Chandigarh. We established 188 plots, each comprising randomly selected quadrats measuring 10 m × 10 m, encompassing areas with varying levels of vegetation, ranging from low to moderate and high density. We used four different allometric equations to estimate tree biomass and carbon stock. Our findings revealed that 92 tree species belong to 72 genera and 35 families, with a total tree density of 975 ha-1. The total CO2 sequestration in form of carbon stock was 18,769.46 Mg C ha-1, with Manilkara hexandra (1239.20 Mg C ha-1), Ficus benghalensis (1072.24 Mg C ha-1), Kigelia pinnata (989.89 Mg C ha-1) and Lagerstroemia floribunda (716.88 Mg C ha-1) being the top contributors. Specifically, the equation of Chave et al. (2005) without tree height yielded the highest biomass and carbon stock estimates than other equations. The present study underscores the vital role of trees on the campus as potent carbon reservoirs meet to maintain an aesthetic sense for biotic components and alleviate rising levels of CO2 in the atmospheric environment. By emphasising the role of urban trees as potent carbon reservoirs, the study underscores the importance of integrating green infrastructure into urban planning strategies. Furthermore, it offers valuable guidance for urban planners. It suggests that strategic tree planting and maintenance can enhance green spaces, regulate temperatures and ultimately support regional and global climate change mitigation goals. Incorporating these findings into urban planning processes can aid policymakers in developing resilient, ecologically sustainable cities worldwide.


Carbon Sequestration , Cities , Environmental Monitoring , Trees , Climate Change , Urbanization , Biomass , Ecosystem , Carbon/analysis
9.
Sci Rep ; 14(1): 10330, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710804

Climate change has significantly influenced the growth and distribution of plant species, particularly those with a narrow ecological niche. Understanding climate change impacts on the distribution and spatial pattern of endangered species can improve conservation strategies. The MaxEnt model is widely applied to predict species distribution and environmental tolerance based on occurrence data. This study investigated the suitable habitats of the endangered Ormosia microphylla in China and evaluated the importance of bioclimatic factors in shaping its distribution. Occurrence data and environmental variables were gleaned to construct the MaxEnt model, and the resulting suitable habitat maps were evaluated for accuracy. The results showed that the MaxEnt model had an excellent simulation quality (AUC = 0.962). The major environmental factors predicting the current distribution of O. microphylla were the mean diurnal range (bio2) and precipitation of the driest month (bio14). The current core potential distribution areas were concentrated in Guangxi, Fujian, Guizhou, Guangdong, and Hunan provinces in south China, demonstrating significant differences in their distribution areas. Our findings contribute to developing effective conservation and management measures for O. microphylla, addressing the critical need for reliable prediction of unfavorable impacts on the potential suitable habitats of the endangered species.


Conservation of Natural Resources , Ecosystem , Endangered Species , China , Conservation of Natural Resources/methods , Climate Change , Trees
10.
Sci Rep ; 14(1): 10611, 2024 05 09.
Article En | MEDLINE | ID: mdl-38719887

Forest growth varies across landscapes due to the intricate relationships between various environmental drivers and forest management. In this study, we analysed the variation of tree growth potential across a landscape scale and its relation to soil moisture. We hypothesised that soil moisture conditions drive landscape-level variation in site quality and that intermediate soil moisture conditions demonstrate the highest potential forest production. We used an age-independent difference model to estimate site quality in terms of maximum achievable tree height by measuring the relative change in Lorey's mean height for a five year period across 337 plots within a 68 km2 boreal landscape. We achieved wall-to-wall estimates of site quality by extrapolating the modelled relationship using repeated airborne laser scanning data collected in connection to the field surveys. We found a clear decrease in site quality under the highest soil moisture conditions. However, intermediate soil moisture conditions did not demonstrate clear site quality differences; this is most likely a result of the nature of the modelled soil moisture conditions and limitations connected to the site quality estimation. There was considerable unexplained variation in the modelled site quality both on the plot and landscape levels. We successfully demonstrated that there is a significant relationship between soil moisture conditions and site quality despite limitations associated with a short study period in a low productive region and the precision of airborne laser scanning measurements of mean height.


Soil , Trees , Soil/chemistry , Trees/growth & development , Water , Forests , Taiga
11.
Environ Monit Assess ; 196(6): 530, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724828

Increasingly, dry conifer forest restoration has focused on reestablishing horizontal and vertical complexity and ecological functions associated with frequent, low-intensity fires that characterize these systems. However, most forest inventory approaches lack the resolution, extent, or spatial explicitness for describing tree-level spatial aggregation and openings that were characteristic of historical forests. Uncrewed aerial system (UAS) structure from motion (SfM) remote sensing has potential for creating spatially explicit forest inventory data. This study evaluates the accuracy of SfM-estimated tree, clump, and stand structural attributes across 11 ponderosa pine-dominated stands treated with four different silvicultural prescriptions. Specifically, UAS-estimated tree height and diameter-at-breast-height (DBH) and stand-level canopy cover, density, and metrics of individual trees, tree clumps, and canopy openings were compared to forest survey data. Overall, tree detection success was high in all stands (F-scores of 0.64 to 0.89), with average F-scores > 0.81 for all size classes except understory trees (< 5.0 m tall). We observed average height and DBH errors of 0.34 m and - 0.04 cm, respectively. The UAS stand density was overestimated by 53 trees ha-1 (27.9%) on average, with most errors associated with understory trees. Focusing on trees > 5.0 m tall, reduced error to an underestimation of 10 trees ha-1 (5.7%). Mean absolute errors of bole basal area, bole quadratic mean diameter, and canopy cover were 11.4%, 16.6%, and 13.8%, respectively. While no differences were found between stem-mapped and UAS-derived metrics of individual trees, clumps of trees, canopy openings, and inter-clump tree characteristics, the UAS method overestimated crown area in two of the five comparisons. Results indicate that in ponderosa pine forests, UAS can reliably describe large- and small-grained forest structures to effectively inform spatially explicit management objectives.


Environmental Monitoring , Forests , Pinus ponderosa , Remote Sensing Technology , Environmental Monitoring/methods , Trees
12.
PLoS One ; 19(5): e0303341, 2024.
Article En | MEDLINE | ID: mdl-38728347

The field of landscape architecture has placed significant emphasis on low-carbon landscapes due to the increasing challenges posed by global warming and environmental deterioration in recent years. The soil ecological conditions in saline-alkaline areas are characterized by poor quality, resulting in suboptimal growth conditions for trees. This, in turn, hampers their ability to effectively sequester carbon, thereby diminishing the potential benefits of carbon sinks. Additionally, the maintenance of tree landscapes in such areas generates more carbon emissions than does conventional green land, making it difficult to reap the benefits of tree-based carbon. A comprehensive evaluation of trees in green park spaces in saline-alkaline areas is conducted from a low-carbon perspective; by identifying the dominant tree species that are well suited to greening, we can offer a precise scientific foundation for implementing low-carbon greening initiatives in cities situated in saline-alkaline environments. Therefore, as a case study, this study investigates Tianjin Qiaoyuan Park, a typical saline park in the Bohai Bay region. The hierarchical analysis method (AHP) was used to evaluate 50 species of trees and shrubs in the park from a low-carbon perspective. The results show that the evaluation system consists of four criterion layers and 15 indicator factors. The relative weight of the criterion layer followed the order of habitat adaptability (B2) > carbon sequestration capacity (B1) > low-carbon management and conservation (B3) > landscape aesthetics (B4). The indicator layer assigned greater weight values to net assimilation (C1), saline and alkaline adaptability (C3), drought tolerance (C4), irr igation and fertilization needs (C8), growth rate (C2), and adaptability to barrenness (C5). The trees were classified into five distinct categories, with each exhibiting significant variation in terms of the strengths and weaknesses of the indicators. According to the comprehensive score, the trees were categorized into three levels. The Grade I plants exhibited the best carbon efficiency performance, comprising a total of 12 species (e.g. Sabina chinensis, Fraxinus chinensis 'Aurea' and Hibiscus syriacu), and demonstrated superior performance in all aspects. Grade II trees, consisting of 26 species (e.g Pinus tabuliformis, Paulownia fortunei, Ligustrum × vicaryi), had the second-highest comprehensive score. Moreover, Grade III trees, encompassing 12 species (e.g Acer mono, Cedrus deodara, Magnolia denudata), exhibited lower comprehensive scores. The extensive use of Grade I and II tree species is recommended in the implementation of low-carbon greening projects in the Bohai Bay region, while Grade III tree species should be judiciously utilized. The findings of this research can serve as a valuable resource for the scientific identification of tree species that are suitable for urban park green spaces in the Bohai Bay region, which is characterized by predominantly saline and alkaline soil. Additionally, the development of an evaluation system can guide the selection of low-carbon tree species when evaluating other types of saline and alkaline lands.


Carbon , Carbon/analysis , Carbon/metabolism , China , Trees/growth & development , Parks, Recreational , Conservation of Natural Resources/methods , Ecosystem , Soil/chemistry , Carbon Sequestration
13.
Proc Natl Acad Sci U S A ; 121(23): e2308811121, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38805274

Climate change will likely shift plant and microbial distributions, creating geographic mismatches between plant hosts and essential microbial symbionts (e.g., ectomycorrhizal fungi, EMF). The loss of historical interactions, or the gain of novel associations, can have important consequences for biodiversity, ecosystem processes, and plant migration potential, yet few analyses exist that measure where mycorrhizal symbioses could be lost or gained across landscapes. Here, we examine climate change impacts on tree-EMF codistributions at the continent scale. We built species distribution models for 400 EMF species and 50 tree species, integrating fungal sequencing data from North American forest ecosystems with tree species occurrence records and long-term forest inventory data. Our results show the following: 1) tree and EMF climate suitability to shift toward higher latitudes; 2) climate shifts increase the size of shared tree-EMF habitat overall, but 35% of tree-EMF pairs are at risk of declining habitat overlap; 3) climate mismatches between trees and EMF are projected to be greater at northern vs. southern boundaries; and 4) tree migration lag is correlated with lower richness of climatically suitable EMF partners. This work represents a concentrated effort to quantify the spatial extent and location of tree-EMF climate envelope mismatches. Our findings also support a biotic mechanism partially explaining the failure of northward tree species migrations with climate change: reduced diversity of co-occurring and climate-compatible EMF symbionts at higher latitudes. We highlight the conservation implications for identifying areas where tree and EMF responses to climate change may be highly divergent.


Climate Change , Mycorrhizae , Symbiosis , Trees , Mycorrhizae/physiology , Trees/microbiology , North America , Forests , Biodiversity , Ecosystem
14.
Glob Chang Biol ; 30(5): e17350, 2024 May.
Article En | MEDLINE | ID: mdl-38804101

With over one-third of terrestrial net primary productivity transferring to the litter layer annually, the carbon release from litter serves as a crucial valve in atmospheric carbon dioxide concentrations. However, few quantitative global projections of litter carbon release rate in response to climate change exist. Here, we combined a global foliar litter carbon release dataset (8973 samples) to generate spatially explicitly estimates of the response of their residence time (τ) to climate change. Results show a global mean litter carbon release rate ( k $$ k $$ ) of 0.69 year-1 (ranging from 0.09-5.6 year-1). Under future climate scenarios, global mean τ is projected to decrease by a mean of 2.7% (SSP 1-2.6) and 5.9% (SSP 5-8.5) during 2071-2100 period. Locally, the alleviation of temperature and moisture restrictions corresponded to obvious decreases in τ in cold and arid regions, respectively. In contract, τ in tropical humid broadleaf forests increased by 4.6% under SSP 5-8.5. Our findings highlight the vegetation type as a powerful proxy for explaining global patterns in foliar litter carbon release rates and the role of climate conditions in predicting responses of carbon release to climate change. Our observation-based estimates could refine carbon cycle parameterization, improving projections of carbon cycle-climate feedbacks.


Carbon , Climate Change , Plant Leaves , Plant Leaves/metabolism , Carbon/metabolism , Carbon Cycle , Forests , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Global Warming , Trees/metabolism
15.
Microb Pathog ; 191: 106659, 2024 Jun.
Article En | MEDLINE | ID: mdl-38701959

There is an increasing focus on genetically altering Paulownia trees to enhance their resistance against fungal infections, given their rapid growth and quality wood production. The aim of this research was to establish a technique for incorporating two antimicrobial thionin genes, namely thionin-60 (thio-60) and thionin-63 (thio-63), into Paulownia tomentosa and Paulownia hybrid 9501 through the utilization of chitosan nanoparticles. The outcomes revealed the successful gene transfer into Paulownia trees utilizing chitosan nanoparticles. The effectiveness of thionin proteins against plant pathogens Fusarium and Aspergillus was examined, with a specific focus on Fusarium equiseti due to limited available data. In non-transgenic Paulownia species, the leaf weight inhibition percentage varied from 25 to 36 %, whereas in transgenic species, it ranged from 22 to 7 %. In general, Paulownia species expressing thio-60 displayed increased resistance to F. equiseti, while those expressing thio-63 exhibited heightened resistance to A. niger infection. The thionin proteins displayed a strong affinity for the phospholipid bilayer of the fungal cell membrane, demonstrating their capability to disrupt its structure. The transgenic plants created through this technique showed increased resistance to fungal infections. Thionin-60 demonstrated superior antifungal properties in comparison to thio-63, being more effective at disturbing the fungal cell membrane. These findings indicate that thio-60 holds potential as a novel antifungal agent and presents a promising approach for enhancing the antimicrobial traits of genetically modified Paulownia trees.


Antifungal Agents , Chitosan , Fusarium , Nanoparticles , Plant Diseases , Plants, Genetically Modified , Thionins , Chitosan/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Diseases/genetics , Fusarium/drug effects , Fusarium/genetics , Plants, Genetically Modified/genetics , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Thionins/genetics , Thionins/metabolism , Aspergillus/genetics , Aspergillus/drug effects , Disease Resistance/genetics , Trees/microbiology , Plant Leaves/microbiology , Plant Leaves/genetics
16.
Glob Chang Biol ; 30(5): e17317, 2024 May.
Article En | MEDLINE | ID: mdl-38747199

Each year, an average of 45 tropical cyclones affect coastal areas and potentially impact forests. The proportion of the most intense cyclones has increased over the past four decades and is predicted to continue to do so. Yet, it remains uncertain how topographical exposure and tree characteristics can mediate the damage caused by increasing wind speed. Here, we compiled empirical data on the damage caused by 11 cyclones occurring over the past 40 years, from 74 forest plots representing tropical regions worldwide, encompassing field data for 22,176 trees and 815 species. We reconstructed the wind structure of those tropical cyclones to estimate the maximum sustained wind speed (MSW) and wind direction at the studied plots. Then, we used a causal inference framework combined with Bayesian generalised linear mixed models to understand and quantify the causal effects of MSW, topographical exposure to wind (EXP), tree size (DBH) and species wood density (ρ) on the proportion of damaged trees at the community level, and on the probability of snapping or uprooting at the tree level. The probability of snapping or uprooting at the tree level and, hence, the proportion of damaged trees at the community level, increased with increasing MSW, and with increasing EXP accentuating the damaging effects of cyclones, in particular at higher wind speeds. Higher ρ decreased the probability of snapping and to a lesser extent of uprooting. Larger trees tended to have lower probabilities of snapping but increased probabilities of uprooting. Importantly, the effect of ρ decreasing the probabilities of snapping was more marked for smaller than larger trees and was further accentuated at higher MSW. Our work emphasises how local topography, tree size and species wood density together mediate cyclone damage to tropical forests, facilitating better predictions of the impacts of such disturbances in an increasingly windier world.


Cyclonic Storms , Forests , Trees , Tropical Climate , Wind , Trees/growth & development , Bayes Theorem
17.
Water Sci Technol ; 89(9): 2240-2253, 2024 May.
Article En | MEDLINE | ID: mdl-38747947

The banana tree circle (BTC) is a low-cost system for local greywater management, using a natural treatment and disposal process, providing additional resource recovery benefits. However, there are no standard design criteria for BTC that would allow for quality control of its efficiency and sustainability, and little is currently known about the full-scale performance of BTC. Based on the scoping literature review of 31 documents in the scientific database and eight documents from grey literature, a standard design model was proposed for the BTC technology based on the concept of water balance, greywater flows, rain, infiltration, and evapotranspiration. The first two steps of the BTC design were determining the areas required for infiltration and evapotranspiration. A cylindrical form trench, the soil percolation rate, and the hydraulic loading rate were considered for the infiltration area. The banana trees' evapotranspiration rate was taken into consideration for the evapotranspiration area. The proposed model was applied in a case study where we used a trench with 0.8 m depth and 1.5 m diameter. This study proposes a standard design criterion for the BTC based on environmental factors, and the scoping of the literature provides the basis for future studies to evaluate its environmental sustainability.


Models, Theoretical , Musa , Conservation of Natural Resources/methods , Waste Disposal, Fluid/methods , Trees
18.
Sci Data ; 11(1): 476, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724536

Estimating growing stock is one of the main objectives of forest inventories. It refers to the stem volume of individual trees which is typically derived by models as it cannot be easily measured directly. These models are thus based on measurable tree dimensions and their parameterization depends on the available empirical data. Historically, such data were collected by measurements of tree stem sizes, which is very time- and cost-intensive. Here, we present an exceptionally large dataset with section-wise stem measurements on 40'349 felled individual trees collected on plots of the Experimental Forest Management project. It is a revised and expanded version of previously unpublished data and contains the empirically derived coarse (diameter ≥7 cm) and fine branch volume of 27'297 and 18'980, respectively, individual trees. The data were collected between 1888 and 1974 across Switzerland covering a large topographic gradient and a diverse species range and can thus support estimations and verification of volume functions also outside Switzerland including the derivation of whole tree volume in a consistent manner.


Trees , Switzerland , Plant Stems/anatomy & histology , Forests
19.
Sci Rep ; 14(1): 10948, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740964

While the forests on Mount Taishan are predominantly man-made, there is a notable vertical variation in vegetation. This study employs the method of cloud model, quantifying uncertainty (fuzziness and randomness) of things. Utilizing digital elevation model (DEM) and vegetation distribution data, we constructed elevation cloud models for Mount Taishan's deciduous broad-leaved, temperate coniferous, and mixed coniferous-broadleaved forests. Using three numerical features of the cloud model-Expectation (EX), Entropy (EN), and Hyper-entropy (HE)-we quantitatively analyzed the macro regularity and local heterogeneity of Mount Taishan's forests vertical distribution from the perspective of uncertainty theory. The results indicate: (1) The EX of the core zone elevation of deciduous broad-leaved forest is 716.65 m, temperate coniferous forest is 1053.51 m, and mixed coniferous-broadleaved forest is 1384.09 m. The variation range of the core zone distribution height is smaller in the mixed coniferous-broadleaved forest (EN: 53.74 m) compared to deciduous broad-leaved forest (EN: 99.63 m) and temperate coniferous forest (EN: 121.70 m). (2) The fuzziness and randomness of the distribution height of the lower extension zones of deciduous broad-leaved forest and temperate coniferous forest (EN: 75.15 m, 184.56 m; HE: 24.09 m, 63.54 m) are greater than those of the upper extension zones (EN: 44.75 m, 42.49 m; HE: 14.48 m, 13.23 m). (3) The distribution fuzziness and randomness within temperate coniferous forests exceed those of deciduous broad-leaved forests. Within the core zones, the uncertainty regarding the vertical distribution of vegetation across different aspects remains consistent, which retains the characteristic of man-made forests. However, in transition areas, there is significant disparity, reflecting the adaptive relationship between vegetation and its environment to some extent. In the upper and lower extension zones of deciduous broad-leaved forests, the EX values for the vertical distribution height of mixed coniferous and broad-leaved forests differ significantly from those of deciduous broad-leaved forests (the difference is 22.82-39.15 m), yet closely resemble those of temperate coniferous forests (the difference is 4.79-7.94 m). This suggests a trend wherein deciduous broad-leaved tree species exhibit a proclivity to encroach upon coniferous forest habitats. The elevation cloud model of vertical vegetation zones provides a novel perspective and method for the detailed analysis of Mount Taishan's vegetation vertical differentiation.


Forests , China , Models, Theoretical , Trees/growth & development , Tracheophyta/growth & development , Ecosystem
20.
Sci Adv ; 10(20): eadl1947, 2024 May 17.
Article En | MEDLINE | ID: mdl-38748796

Forest canopy structural complexity (CSC) plays a crucial role in shaping forest ecosystem productivity and stability, but the precise nature of their relationships remains controversial. Here, we mapped the global distribution of forest CSC and revealed the factors influencing its distribution using worldwide light detection and ranging data. We find that forest CSC predominantly demonstrates significant positive relationships with forest ecosystem productivity and stability globally, although substantial variations exist among forest ecoregions. The effects of forest CSC on productivity and stability are the balanced results of biodiversity and resource availability, providing valuable insights for comprehending forest ecosystem functions. Managed forests are found to have lower CSC but more potent enhancing effects of forest CSC on ecosystem productivity and stability than intact forests, highlighting the urgent need to integrate forest CSC into the development of forest management plans for effective climate change mitigation.


Biodiversity , Climate Change , Ecosystem , Forests , Conservation of Natural Resources , Trees/growth & development
...