Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.745
1.
PLoS Biol ; 22(5): e3002299, 2024 May.
Article En | MEDLINE | ID: mdl-38713712

Activation of immune cells requires the remodeling of cell metabolism in order to support immune function. We study these metabolic changes through the infection of Drosophila larvae by parasitoid wasp. The parasitoid egg is neutralized by differentiating lamellocytes, which encapsulate the egg. A melanization cascade is initiated, producing toxic molecules to destroy the egg while the capsule also protects the host from the toxic reaction. We combined transcriptomics and metabolomics, including 13C-labeled glucose and trehalose tracing, as well as genetic manipulation of sugar metabolism to study changes in metabolism, specifically in Drosophila hemocytes. We found that hemocytes increase the expression of several carbohydrate transporters and accordingly uptake more sugar during infection. These carbohydrates are metabolized by increased glycolysis, associated with lactate production, and cyclic pentose phosphate pathway (PPP), in which glucose-6-phosphate is re-oxidized to maximize NADPH yield. Oxidative PPP is required for lamellocyte differentiation and resistance, as is systemic trehalose metabolism. In addition, fully differentiated lamellocytes use a cytoplasmic form of trehalase to cleave trehalose to glucose and fuel cyclic PPP. Intracellular trehalose metabolism is not required for lamellocyte differentiation, but its down-regulation elevates levels of reactive oxygen species, associated with increased resistance and reduced fitness. Our results suggest that sugar metabolism, and specifically cyclic PPP, within immune cells is important not only to fight infection but also to protect the host from its own immune response and for ensuring fitness of the survivor.


Glucose , Hemocytes , Pentose Phosphate Pathway , Trehalose , Animals , Trehalose/metabolism , Glucose/metabolism , Hemocytes/metabolism , Larva/metabolism , Larva/parasitology , Drosophila melanogaster/metabolism , Drosophila melanogaster/parasitology , Disease Resistance , Glycolysis , Host-Parasite Interactions , Wasps/metabolism , Wasps/physiology , Cell Differentiation , Drosophila/metabolism , Drosophila/parasitology
2.
Molecules ; 29(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38731579

Trehalose is a naturally occurring, non-reducing saccharide widely distributed in nature. Over the years, research on trehalose has revealed that this initially thought simple storage molecule is a multifunctional and multitasking compound protecting cells against various stress factors. This review presents data on the role of trehalose in maintaining cellular homeostasis under stress conditions and in the virulence of bacteria and fungi. Numerous studies have demonstrated that trehalose acts in the cell as an osmoprotectant, chemical chaperone, free radical scavenger, carbon source, virulence factor, and metabolic regulator. The increasingly researched medical and therapeutic applications of trehalose are also discussed.


Trehalose , Trehalose/pharmacology , Trehalose/metabolism , Humans , Animals , Fungi/metabolism , Fungi/drug effects , Bacteria/metabolism , Bacteria/drug effects , Homeostasis/drug effects , Stress, Physiological/drug effects
3.
BMC Microbiol ; 24(1): 165, 2024 May 15.
Article En | MEDLINE | ID: mdl-38745279

Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.


Arachis , Droughts , Stress, Physiological , Arachis/microbiology , Arachis/growth & development , Arachis/metabolism , Arachis/physiology , Proline/metabolism , Bacillus amyloliquefaciens/metabolism , Bacillus amyloliquefaciens/physiology , Soil Microbiology , Osmotic Pressure , Betaine/metabolism , Indoleacetic Acids/metabolism , Salicylic Acid/metabolism , Acinetobacter/metabolism , Acinetobacter/growth & development , Acinetobacter/physiology , Hydrogen Cyanide/metabolism , Trehalose/metabolism
4.
Sci Adv ; 10(20): eadn0895, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758793

SUCROSE-NON-FERMENTING1-RELATED PROTEIN KINASE1 (SnRK1), a central plant metabolic sensor kinase, phosphorylates its target proteins, triggering a global shift from anabolism to catabolism. Molecular modeling revealed that upon binding of KIN10 to GEMINIVIRUS REP-INTERACTING KINASE1 (GRIK1), KIN10's activation T-loop reorients into GRIK1's active site, enabling its phosphorylation and activation. Trehalose 6-phosphate (T6P) is a proxy for cellular sugar status and a potent inhibitor of SnRK1. T6P binds to KIN10, a SnRK1 catalytic subunit, weakening its affinity for GRIK1. Here, we investigate the molecular details of T6P inhibition of KIN10. Molecular dynamics simulations and in vitro phosphorylation assays identified and validated the T6P binding site on KIN10. Under high-sugar conditions, T6P binds to KIN10, blocking the reorientation of its activation loop and preventing its phosphorylation and activation by GRIK1. Under these conditions, SnRK1 maintains only basal activity levels, minimizing phosphorylation of its target proteins, thereby facilitating a general shift from catabolism to anabolism.


Arabidopsis Proteins , Molecular Dynamics Simulation , Protein Serine-Threonine Kinases , Sugar Phosphates , Trehalose , Sugar Phosphates/metabolism , Trehalose/analogs & derivatives , Trehalose/metabolism , Protein Serine-Threonine Kinases/metabolism , Phosphorylation , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/chemistry , Protein Binding , Arabidopsis/metabolism , Binding Sites , Transcription Factors
5.
PeerJ ; 12: e17332, 2024.
Article En | MEDLINE | ID: mdl-38799059

The burgeoning issue of landfill leachate, exacerbated by urbanization, necessitates evaluating its biological impact, traditionally overshadowed by physical and chemical assessments. This study harnesses Caenorhabditis elegans, a model organism, to elucidate the physiological toxicity of landfill leachate subjected to different treatment processes: nanofiltration reverse osmosis tail water (NFRO), membrane bioreactor (MBR), and raw leachate (RAW). Our investigation focuses on the modulation of sugar metabolism, particularly trehalose-a disaccharide serving dual functions as an energy source and an anti-adversity molecule in invertebrates. Upon exposure, C. elegans showcased a 60-70% reduction in glucose and glycogen levels alongside a significant trehalose increase, highlighting an adaptive response to environmental stress by augmenting trehalose synthesis. Notably, trehalose-related genes in the NFRO group were up-regulated, contrasting with the MBR and RAW groups, where trehalose synthesis genes outpaced decomposition genes by 20-30 times. These findings suggest that C. elegans predominantly counters landfill leachate-induced stress through trehalose accumulation. This research not only provides insights into the differential impact of leachate treatment methods on C. elegans but also proposes a molecular framework for assessing the environmental repercussions of landfill leachate, contributing to the development of novel strategies for pollution mitigation and environmental preservation.


Caenorhabditis elegans , Trehalose , Water Pollutants, Chemical , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Trehalose/metabolism , Stress, Physiological/drug effects
6.
BMC Plant Biol ; 24(1): 460, 2024 May 27.
Article En | MEDLINE | ID: mdl-38797833

Trehalose serves as a crucial osmolyte and plays a significant role in stress tolerance. The influence of exogenously added trehalose (1 and 5 mM) in alleviating the chromium (Cr; 0.5 mM) stress-induced decline in growth, photosynthesis, mineral uptake, antioxidant system and nitrate reductase activity in Vigna radiata was studied. Chromium (Cr) significantly declined shoot height (39.33%), shoot fresh weight (35.54%), shoot dry weight (36.79%), total chlorophylls (50.70%), carotenoids (29.96%), photosynthesis (33.97%), net intercellular CO2 (26.86%), transpiration rate (36.77%), the content of N (35.04%), P (35.77%), K (31.33%), S (23.91%), Mg (32.74%), and Ca (29.67%). However, the application of trehalose considerably alleviated the decline. Application of trehalose at both concentrations significantly reduced hydrogen peroxide accumulation, lipid peroxidation and electrolyte leakage, which were increased due to Cr stress. Application of trehalose significantly mitigated the Cr-induced oxidative damage by up-regulating the activity of reactive oxygen species (ROS) scavenging enzymes, including superoxide dismutase (182.03%), catalase (125.40%), ascorbate peroxidase (72.86%), and glutathione reductase (68.39%). Besides this, applied trehalose proved effective in enhancing ascorbate (24.29%) and reducing glutathione content (34.40%). In addition, also alleviated the decline in ascorbate by Cr stress to significant levels. The activity of nitrate reductase enhanced significantly (28.52%) due to trehalose activity and declined due to Cr stress (34.15%). Exogenous application of trehalose significantly improved the content of osmolytes, including proline, glycine betaine, sugars and total phenols under normal and Cr stress conditions. Furthermore, Trehalose significantly increased the content of key mineral elements and alleviated the decline induced by Cr to considerable levels.


Chromium , Oxidative Stress , Photosynthesis , Reactive Oxygen Species , Trehalose , Vigna , Trehalose/metabolism , Trehalose/pharmacology , Oxidative Stress/drug effects , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism , Vigna/drug effects , Vigna/growth & development , Vigna/metabolism , Minerals/metabolism , Lipid Peroxidation/drug effects , Chlorophyll/metabolism , Antioxidants/metabolism
7.
Food Res Int ; 186: 114331, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729716

Peach fruit is prone to chilling injury (CI) during low-temperature storage, resulting in quality deterioration and economic losses. Our previous studies have found that exogenous trehalose treatment can alleviate the CI symptoms of peach by increasing sucrose accumulation. The purpose of this study was to explore the potential molecular mechanism of trehalose treatment in alleviating CI in postharvest peach fruit. Transcriptome analysis showed that trehalose induced gene expression in pathways of plant MAPK signaling, calcium signaling, and reactive oxygen species (ROS) signaling. Furthermore, molecular docking analysis indicated that PpCDPK24 may activate the ROS signaling pathway by phosphorylating PpRBOHE. Besides, PpWRKY40 mediates the activation of PpMAPKKK2-induced ROS signaling pathway by interacting with the PpRBOHE promoter. Accordingly, trehalose treatment significantly enhanced the activities of antioxidant-related enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and gluathione reductase (GR), as well as the transcription levels AsA-GSH cycle related gene, which led to the reduction of H2O2 and malondialdehyde (MDA) content in peach during cold storage. In summary, our results suggest that the potential molecular mechanism of trehalose treatment is to enhance antioxidant capacity by activating CDPK-mediated Ca2 + -ROS signaling pathway and WRKY-mediated MAPK-WRKY-ROS signaling pathway, thereby reducing the CI in peach fruit.


Antioxidants , Cold Temperature , Fruit , Gene Expression Profiling , Gene Expression Regulation, Plant , Prunus persica , Reactive Oxygen Species , Signal Transduction , Trehalose , Trehalose/pharmacology , Trehalose/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Signal Transduction/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Molecular Docking Simulation , Malondialdehyde/metabolism
8.
Biochem Biophys Res Commun ; 716: 149971, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38697009

α,α-trehalose is a well-known sugar that plays a key role in establishing tolerance to environmental stresses in many organisms, except unicellular eukaryotes. However, almost nothing is known about α,ß-trehalose, including their synthesis, function, and even presence in living organisms. In this study, we identified α,ß-trehalose in the resting cyst, a dormancy cell form characterized by extreme tolerance to environmental stresses, of the ciliated protist Colpoda cucullus, using high-performance liquid chromatography (HPLC), and a proton nuclear magnetic resonance (1H NMR). Gene expression analysis revealed that the expression of trehalose-6-phosphate synthase (TPS), glycosyltransferase (GT), alpha-amylase (AMY), and trehalose transporter 1 (TRET1), were up-regulated in encystment, while the expression of α-glucosidase 2 (AG2) and trehalase (TREH) was up-regulated in excystment. These results suggest that α,ß-trehalose is synthesized during encystment process, while and contributes to extreme tolerances to environmental stressors, stored carbohydrates, and energy reserve during resting cyst and/or during excystment.


Ciliophora , Trehalose , Ciliophora/metabolism , Ciliophora/genetics , Trehalose/metabolism , Trehalose/analogs & derivatives , Stress, Physiological , Glucosyltransferases/metabolism , Glucosyltransferases/genetics
9.
BMC Plant Biol ; 24(1): 472, 2024 May 30.
Article En | MEDLINE | ID: mdl-38811894

Salinity stress, an ever-present challenge in agriculture and environmental sciences, poses a formidable hurdle for plant growth and productivity in saline-prone regions worldwide. Therefore, this study aimed to explore the effectiveness of trehalose and mannitol induce salt resistance in wheat seedlings. Wheat grains of the commercial variety Sakha 94 were divided into three groups : a group that was pre-soaked in 10 mM trehalose, another group was soaked in 10 mM mannitol, and the last was soaked in distilled water for 1 hour, then the pre soaked grains cultivated in sandy soil, each treatment was divided into two groups, one of which was irrigated with 150 mM NaCl and the other was irrigated with tap water. The results showed that phenols content in wheat seedlings increased and flavonoids reduced due to salt stress. Trehalose and mannitol cause slight increase in total phenols content while total flavonoids were elevated highy in salt-stressed seedlings. Furthermore, Trehalose or mannitol reduced salt-induced lipid peroxidation. Salt stress increases antioxidant enzyme activities of guaiacol peroxidase (G-POX), ascorbate peroxidase (APX), and catalase (CAT) in wheat seedlings, while polyphenol oxidase (PPO) unchanged. Trehalose and mannitol treatments caused an increase in APX, and CAT activities, whereas G-POX not altered but PPO activity were decreased under salt stress conditions. Molecular docking confirmed the interaction of Trehalose or mannitol with peroxidase and ascorbic peroxidase enzymes. Phenyl alanine ammonia layase (PAL) activity was increased in salt-stressed seedlings. We can conclude that pre-soaking of wheat grains in 10 mM trehalose or mannitol improves salinity stress tolerance by enhancing antioxidant defense enzyme and/or phenol biosynthesis, with docking identifying interactions with G-POX, CAT, APX, and PPO.


Mannitol , Salt Tolerance , Seedlings , Trehalose , Triticum , Triticum/drug effects , Triticum/physiology , Triticum/metabolism , Trehalose/metabolism , Seedlings/drug effects , Seedlings/physiology , Mannitol/pharmacology , Salt Tolerance/drug effects , Molecular Docking Simulation , Antioxidants/metabolism , Salt Stress/drug effects , Flavonoids/metabolism , Phenols/metabolism
10.
Plant Physiol Biochem ; 211: 108620, 2024 Jun.
Article En | MEDLINE | ID: mdl-38714124

Desiccation is a state of extreme water loss that is lethal to many plant species. Some desert plants have evolved unique strategies to cope with desiccation stress in their natural environment. Here we present the remarkable stress management mechanism of Syntrichia caninervis, a desert moss species which exhibits an 'A' category of desiccation tolerance. Our research demonstrated that desiccation stress triggers autophagy in S. caninervis while inhibiting Programmed Cell Death (PCD). Silencing of two autophagy-related genes, ATG6 and ATG2, in S. caninervis promoted PCD. Desiccation treatment accelerated cell death in ATG6 and ATG2 gene-silenced S. caninervis. Notably, trehalose was not detected during desiccation, and exogenous application of trehalose cannot activate autophagy. These results suggested that S. caninervis is independent of trehalose accumulation to triggered autophagy. Our results showed that autophagy function as prosurvival mechanism to enhance desiccation tolerance of S. caninervis. Our findings enrich the knowledge of the role of autophagy in plant stress response and may provide new insight into understanding of plant desiccation tolerance.


Autophagy , Desiccation , Trehalose , Trehalose/metabolism , Apoptosis , Plant Proteins/metabolism , Plant Proteins/genetics , Stress, Physiological , Gene Expression Regulation, Plant
11.
Plant Physiol Biochem ; 211: 108695, 2024 Jun.
Article En | MEDLINE | ID: mdl-38744088

The presence of sugar in plant tissue can lead to an increase in the osmotic pressure within cells, a decrease in the freezing point of plants, and protection against ice crystal damage to the tissue. Trehalose is closely related to sucrose, which comprises the largest proportion of sugar and has become a hot topic of research in recent years. Our previous studies have confirmed that a key trehalose synthesis gene, TaTPS11, from the cold-resistant winter wheat DM1, could enhance the cold resistance of plants by increasing sugar content. However, the underlying mechanism behind this phenomenon remains unclear. In this study, we cloned TaTPS11-6D, edited TaTPS11-6D using CRISPR/Cas9 technology and transformed 'Fielder' to obtain T2 generation plants. We screened out OE3-3 and OE8-7 lines with significantly higher cold resistance than that of 'Fielder' and Cri 4-3 edited lines with significantly lower cold resistance than that of 'Fielder'. Low temperature storage limiting factors were measured for OE3-3, OE8-7 and Cri 4-3 treated at different temperatures.The results showed that TaTPS11-6D significantly increased the content of sugar in plants and the transfer of sugar from source to storage organs under cold conditions. The TaTPS11-6D significantly increased the levels of salicylic, jasmonic, and abscisic acids while also significantly decreasing the level of gibberellic acid. Our research improves the model of low temperature storage capacity limiting factor.


Cold Temperature , Plant Proteins , Triticum , Triticum/genetics , Triticum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant , Trehalose/metabolism , Abscisic Acid/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Gibberellins/metabolism , Sucrose/metabolism
12.
Sci Rep ; 14(1): 10243, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702388

The widespread use of multipotent mesenchymal stromal cell-derived secretome (MSC-sec) requires optimal preservation methods. Lyophilization offers benefits like concentrating the secretome, reducing the storage volume, and making storage conditions more flexible. This study evaluated the influence of storage duration and temperature on lyophilized MSC-sec. The conditioned medium from Wharton's jelly MSCs was stored at - 80 °C or lyophilized with or without trehalose. Lyophilized formulations were kept at - 80 °C, - 20 °C, 4 °C, or room temperature (RT) for 3 and 30 months. After storage and reconstitution, the levels of growth factors and cytokines were assessed using multiplex assay. The storage of lyophilized MSC-sec at - 80 °C ensured biomolecule preservation for 3 and 30 months. Following 3 month storage at 4 °C and RT, a notable decrease occurred in BDNF, bNGF, and sVCAM-1 levels. Prolonged 30 month storage at the same temperatures significantly reduced BDNF, bNGF, VEGF-A, IL-6, and sVCAM-1, while storage at - 20 °C decreased BDNF, bNGF, and VEGF- A levels. Trehalose supplementation of MSC-sec improved the outcome during storage at 4 °C and RT. Proper storage conditions were crucial for the preservation of lyophilized MSC-sec composition. Short-term storage at various temperatures maintained over 60% of the studied growth factors and cytokines; long-term preservation was only adequate at -80 °C.


Freeze Drying , Mesenchymal Stem Cells , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Secretome/metabolism , Trehalose/metabolism , Trehalose/pharmacology , Cytokines/metabolism , Cells, Cultured , Culture Media, Conditioned/chemistry , Cryopreservation/methods , Temperature
13.
Plant Cell Environ ; 47(7): 2475-2490, 2024 Jul.
Article En | MEDLINE | ID: mdl-38567814

Phosphorus (P)-hyperaccumulators for phytoextraction from P-polluted areas generally show rapid growth and accumulate large amounts of P without any toxicity symptom, which depends on a range of physiological processes and gene expression patterns that have never been explored. We investigated growth, leaf element concentrations, P fractions, photosynthetic traits, and leaf metabolome and transcriptome response in amphibious P-hyperaccumulators, Polygonum hydropiper and P. lapathifolium, to high-P exposure (5 mmol L-1), with 0.05 mmol L-1 as the control. Under high-P exposure, both species demonstrated good growth, allocating more P to metabolite P and inorganic P (Pi) accompanied by high potassium and calcium. The expression of a cluster of unigenes associated with photosynthesis was maintained or increased in P. lapathifolium, explaining the increase in net photosynthetic rate and the rapid growth under high-P exposure. Metabolites of trehalose metabolism, including trehalose 6-phosphate and trehalose, were sharply increased in both species by the high-P exposure, in line with the enhanced expression of associated unigenes, indicating that trehalose metabolic pathway was closely related to high-P tolerance. These findings elucidated the physiological and molecular responses involved in the photosynthesis and trehalose metabolism in P-hyperaccumulators to high-P exposure, and provides potential regulatory pathways to improve the P-phytoextraction capability.


Gene Expression Regulation, Plant , Phosphorus , Photosynthesis , Plant Leaves , Polygonum , Phosphorus/metabolism , Polygonum/metabolism , Polygonum/genetics , Polygonum/drug effects , Polygonum/physiology , Plant Leaves/metabolism , Gene Expression Regulation, Plant/drug effects , Trehalose/metabolism , Metabolome , Transcriptome
14.
Cryobiology ; 115: 104898, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663665

Trehalose is widely acknowledged for its ability to stabilize plasma membranes during dehydration. However, the exact mechanism by which trehalose interacts with lipid bilayers remains presently unclear. In this study, we conducted atomistic molecular dynamic simulations on asymmetric model bilayers that mimic the membrane of human red blood cells at various trehalose and water contents. We considered three different hydration levels mimicking the full hydration to desiccation scenarios. Results indicate that the asymmetric distribution of lipids did not significantly influence the computed structural characteristics at full and low hydration. At dehydration, however, the order parameter obtained from the symmetric bilayer is significantly higher compared to those obtained from asymmetric ones. Analysis of hydrogen bonds revealed that the protective ability of trehalose is well described by the water replacement hypothesis at full and low hydration, while at dehydration other interaction mechanisms associated with trehalose exclusion from the bilayer may involve. In addition, we found that trehalose exclusion is not attributed to sugar saturation but rather to the reduction in hydration levels. It can be concluded that the protective effect of trehalose is not only related to the hydration level of the bilayer, but also closely tied to the asymmetric distribution of lipids within each leaflet.


Erythrocyte Membrane , Hydrogen Bonding , Lipid Bilayers , Molecular Dynamics Simulation , Trehalose , Trehalose/metabolism , Trehalose/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Humans , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/chemistry , Water/chemistry , Water/metabolism , Erythrocytes/metabolism , Erythrocytes/chemistry , Desiccation
15.
Skin Res Technol ; 30(4): e13666, 2024 Apr.
Article En | MEDLINE | ID: mdl-38606717

BACKGROUND: It is known that heparinoid, a mucopolysaccharide polysulfate, is effective in improving rough skin and promoting blood circulation as medicines for diseased areas. However, heparinoid has a molecular weight of more than 5000 and cannot penetrate healthy stratum corneum. OBJECTIVE: We tested the efficacy of sulfated oligosaccharides with a molecular weight of less than 2000 on the human skin barrier function and moisturizing function. METHODS: We measured the transepidermal water loss (TEWL) of a three-dimensional human epidermis model cultured for 3 days after topical application of sulfated oligosaccharides, then observed the effects on TEWL suppression. The mRNA levels of proteins involved in intercellular lipid transport and storage in the stratum corneum, and moisture retention were measured using RT-qPCR. RESULTS: An increase in the mRNA levels of the ATP-binding cassette subfamily A member 12 (ABCA12), which transports lipids into stratum granulosum, was confirmed. Increases were also observed in the mRNA levels of filaggrin (FLG), which is involved in the generation of natural moisturizing factors, and of caspase-14, calpain-1 and bleomycin hydrolase, which are involved in the degradation of FLG. Antibody staining confirmed that the application of sodium trehalose sulfate to 3D model skin resulted in more ABCA12, ceramide, transglutaminase1, and FLG than those in controls. In a randomized, placebo-controlled, double-blind study, participants with low stratum corneum water content applied a lotion and emulsion containing sodium trehalose sulfate to their faces for 4 weeks. Sodium trehalose sulfate decreased the TEWL and increased the stratum corneum water content. CONCLUSION: These results suggest that cosmetics containing sodium trehalose sulfate act on the epidermis by increasing barrier factors and moisturizing factors, thereby ameliorating dry skin.


Heparinoids , Trehalose , Humans , Trehalose/pharmacology , Trehalose/metabolism , Heparinoids/metabolism , Heparinoids/pharmacology , Skin/metabolism , Epidermis/metabolism , Skin Care , Water/metabolism , RNA, Messenger/metabolism , Sodium/metabolism , Sodium/pharmacology
16.
PLoS One ; 19(3): e0299669, 2024.
Article En | MEDLINE | ID: mdl-38452127

To investigate the role of sugar metabolism in desiccation-sensitive seeds, we performed a natural desiccation treatment on Phoebe chekiangensis seeds in a room and systematically analyzed the changes in seed germination, sugar compounds, malondialdehyde, and relative electrical conductivity during the seed desiccation. The results revealed that the initial moisture content of P. chekiangensis seed was very high (37.06%) and the seed was sensitive to desiccation, the germination percentage of the seed decreased to 5.33% when the seed was desiccated to 22.04% of moisture content, therefore, the seeds were considered recalcitrant. Based on the logistic model, we know that the moisture content of the seeds is 29.05% when the germination percentage drops to 50% and that it is desirable to keep the seed moisture content above 31.74% during ambient transportation. During seed desiccation, sucrose and trehalose contents exhibited increasing trends, and raffinose also increased during the late stage of desiccation, however, low levels of the non-reducing sugar accumulations may not prevent the loss of seed viability caused by desiccation. Glucose and fructose predominated among sugar compounds, and they showed a slight increase followed by a significant decrease. Their depletion may have contributed to the accumulation of sucrose and raffinose family oligosaccharides. Correlation analysis revealed a significant relationship between the accumulation of sucrose, trehalose, and soluble sugars, and the reduction in seed viability. Sucrose showed a significant negative correlation with glucose and fructose. Trehalose also exhibited the same pattern of correlation. These results provided additional data and theoretical support for understanding the mechanism of sugar metabolism in seed desiccation sensitivity.


Desiccation , Sugars , Sugars/metabolism , Desiccation/methods , Raffinose/metabolism , Trehalose/metabolism , Seeds/metabolism , Germination , Sucrose/metabolism , Glucose/metabolism , Fructose/metabolism
17.
J Agric Food Chem ; 72(11): 5725-5733, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38452362

The destructive agricultural pest oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), has been causing huge damage to the fruits and vegetable industry. Although many pertinent studies have been conducted on B. dorsalis, the functions of fat body still remain largely unknown. To this end, the comparative transcriptome analysis between fat body and carcass was performed in an attempt to provide insights into functions of fat body of B. dorsalis in the present study. A total of 1431 upregulated and 2511 downregulated unigenes were discovered in the fat body vs carcass comparison, respectively. The enrichment analysis of differentially expressed genes (DEG) revealed that most of the enriched pathways were related to metabolism. The reliability of DEG analysis was validated by qRT-PCR measurements of 12 genes in starch and sucrose metabolism pathway, including the trehalose-6-phosphate synthase (BdTPS) which was highly expressed in eggs, 5 d-old adults, and fat body. The RNAi of BdTPS significantly affected trehalose and chitin metabolism, larval growth, and larva-pupa metamorphosis. Collectively, the findings in this study enriched our understanding of fat body functions in metabolism and demonstrated the indispensable roles of BdTPS in trehalose-related physiological pathways.


Fat Body , Glucosyltransferases , Tephritidae , Animals , Reproducibility of Results , Trehalose/metabolism , Gene Expression Profiling , Tephritidae/genetics , Tephritidae/metabolism , Transcriptome
18.
Proc Natl Acad Sci U S A ; 121(14): e2317254121, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38551840

Pv11 is the only animal cell line that, when preconditioned with a high concentration of trehalose, can be preserved in the dry state at room temperature for more than one year while retaining the ability to resume proliferation. This extreme desiccation tolerance is referred to as anhydrobiosis. Here, we identified a transporter that contributes to the recovery of Pv11 cells from anhydrobiosis. In general, the solute carrier 5 (SLC5)-type secondary active transporters cotransport Na+ and carbohydrates including glucose. The heterologous expression systems showed that the transporter belonging to the SLC5 family, whose expression increases upon rehydration, exhibits Na+-dependent trehalose transport activity. Therefore, we named it STRT1 (sodium-ion trehalose transporter 1). We report an SLC5 family member that transports a naturally occurring disaccharide, such as trehalose. Knockout of the Strt1 gene significantly reduced the viability of Pv11 cells upon rehydration after desiccation. During rehydration, when intracellular trehalose is no longer needed, Strt1-knockout cells released the disaccharide more slowly than the parental cell line. During rehydration, Pv11 cells became roughly spherical due to osmotic pressure changes, but then returned to their original spindle shape after about 30 min. Strt1-knockout cells, however, required about 50 min to adopt their normal morphology. STRT1 probably regulates intracellular osmolality by releasing unwanted intracellular trehalose with Na+, thereby facilitating the recovery of normal cell morphology during rehydration. STRT1 likely improves the viability of dried Pv11 cells by rapidly alleviating the significant physical stresses that arise during rehydration.


Chironomidae , Desiccation , Animals , Trehalose/metabolism , Larva/metabolism , Chironomidae/genetics , Insecta/metabolism , Cell Line
19.
ACS Infect Dis ; 10(4): 1391-1404, 2024 04 12.
Article En | MEDLINE | ID: mdl-38485491

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death worldwide by infectious disease. Treatment of Mtb infection requires a six-month course of multiple antibiotics, an extremely challenging regimen necessitated by Mtb's ability to form drug-tolerant persister cells. Mtb persister formation is dependent on the trehalose catalytic shift, a stress-responsive metabolic remodeling mechanism in which the disaccharide trehalose is liberated from cell surface glycolipids and repurposed as an internal carbon source to meet energy and redox demands. Here, using a biofilm-persister model, metabolomics, and cryo-electron microscopy (EM), we found that azidodeoxy- and aminodeoxy-d-trehalose analogues block the Mtb trehalose catalytic shift through inhibition of trehalose synthase TreS (Rv0126), which catalyzes the isomerization of trehalose to maltose. Out of a focused eight-member compound panel constructed by chemoenzymatic synthesis, the natural product 2-trehalosamine exhibited the highest potency and significantly potentiated first- and second-line TB drugs in broth culture and macrophage infection assays. We also report the first structure of TreS bound to a substrate analogue inhibitor, obtained via cryo-EM, which revealed conformational changes likely essential for catalysis and inhibitor binding that can potentially be exploited for future therapeutic development. Our results demonstrate that inhibition of the trehalose catalytic shift is a viable strategy to target Mtb persisters and advance trehalose analogues as tools and potential adjunctive therapeutics for investigating and targeting mycobacterial persistence.


Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Trehalose/chemistry , Trehalose/metabolism , Cryoelectron Microscopy , Tuberculosis/microbiology , Catalysis
20.
Extremophiles ; 28(1): 17, 2024 Feb 11.
Article En | MEDLINE | ID: mdl-38342818

Yeasts from cold environments have a wide range of strategies to prevent the negative effects of extreme conditions, including the production of metabolites of biotechnological interest. We investigated the growth profile and production of metabolites in yeast species isolated from cold environments. Thirty-eight strains were tested for their ability to grow at different temperatures (5-30 °C) and solute concentrations (3-12.5% NaCl and 50% glucose). All strains tested were able to grow at 5 °C, and 77% were able to grow with 5% NaCl at 18 °C. We were able to group strains based on different physicochemical/lifestyle profiles such as polyextremotolerant, osmotolerant, psychrotolerant, or psychrophilic. Five strains were selected to study biomass and metabolite production (glycerol, trehalose, ergosterol, and mycosporines). These analyses revealed that the accumulation pattern of trehalose and ergosterol was related to each lifestyle profile. Also, our findings would suggest that mycosporines does not have a role as an osmolyte. Non-conventional fermentative yeasts such as Phaffia tasmanica and Saccharomyces eubayanus may be of interest for trehalose production. This work contributes to the knowledge of non-conventional yeasts with biotechnological application from cold environments, including their growth profile, metabolites, and biomass production under different conditions.


Basidiomycota , Trehalose , Trehalose/metabolism , Sodium Chloride/metabolism , Yeasts , Ergosterol/metabolism , Cold Temperature
...