Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.612
1.
Mol Biol Rep ; 51(1): 720, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824268

BACKGROUND: Tumor-associated macrophages (TAM) exert a significant influence on the progression and heterogeneity of various subtypes of breast cancer (BRCA). However, the roles of heterogeneous TAM within BRCA subtypes remain unclear. Therefore, this study sought to elucidate the role of TAM across the following three BRCA subtypes: triple-negative breast cancer, luminal, and HER2. MATERIALS AND METHODS: This investigation aimed to delineate the variations in marker genes, drug sensitivity, and cellular communication among TAM across the three BRCA subtypes. We identified specific ligand-receptor (L-R) pairs and downstream mechanisms regulated by VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Experimental verification of these pairs was conducted by co-culturing macrophages with three subtypes of BRCA cells. RESULTS: Our findings reveal the heterogeneity of macrophages within the three BRCA subtypes, evidenced by variations in marker gene expression, composition, and functional characteristics. Notably, heterogeneous TAM were found to promote invasive migration and epithelial-mesenchymal transition (EMT) in MDA-MB-231, MCF-7, and SKBR3 cells, activating NF-κB pathway via P38 MAPK, TGF-ß1, and AKT, respectively, through distinct VEGFA-VEGFR1, SPP1-CD44, and SPP1-ITGB1 L-R pairs. Inhibition of these specific L-R pairs effectively reversed EMT, migration, and invasion of each cancer cells. Furthermore, we observed a correlation between ligand gene expression and TAM sensitivity to anticancer drugs, suggesting a potential strategy for optimizing personalized treatment guidance. CONCLUSION: Our study highlights the capacity of heterogeneous TAM to modulate biological functions via distinct pathways mediated by specific L-R pairs within diverse BRCA subtypes. This study might provide insights into precision immunotherapy of different subtypes of BRCA.


Breast Neoplasms , Epithelial-Mesenchymal Transition , Tumor-Associated Macrophages , Humans , Female , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Single-Cell Analysis/methods , MCF-7 Cells , Cell Movement/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Sequence Analysis, RNA/methods , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Signal Transduction/genetics , Tumor Microenvironment/genetics
2.
PeerJ ; 12: e17360, 2024.
Article En | MEDLINE | ID: mdl-38737746

Breast cancer is the most common invasive neoplasm and the leading cause of cancer death in women worldwide. The main cause of mortality in cancer patients is invasion and metastasis, where the epithelial-mesenchymal transition (EMT) is a crucial player in these processes. Pharmacological therapy has plants as its primary source, including isoflavonoids. Brazilin is an isoflavonoid isolated from Haematoxilum brasiletto that has shown antiproliferative activity in several cancer cell lines. In this study, we evaluated the effect of Brazilin on canonical markers of EMT such as E-cadherin, vimentin, Twist, and matrix metalloproteases (MMPs). By Western blot, we evaluated E-cadherin, vimentin, and Twist expression and the subcellular localization by immunofluorescence. Using gelatin zymography, we determined the levels of secretion of MMPs. We used Transwell chambers coated with matrigel to determine the in vitro invasion of breast cancer cells treated with Brazilin. Interestingly, our results show that Brazilin increases 50% in E-cadherin expression and decreases 50% in vimentin and Twist expression, MMPs, and cell invasion in triple-negative breast cancer (TNBC) MDA-MB-231 and to a lesser extend in MCF7 ER+ breast cancer cells. Together, these findings position Brazilin as a new molecule with great potential for use as complementary or alternative treatment in breast cancer therapy in the future.


Benzopyrans , Breast Neoplasms , Cadherins , Epithelial-Mesenchymal Transition , Twist-Related Protein 1 , Vimentin , Humans , Epithelial-Mesenchymal Transition/drug effects , Female , Cadherins/metabolism , Vimentin/metabolism , Vimentin/genetics , Cell Line, Tumor , Twist-Related Protein 1/metabolism , Twist-Related Protein 1/genetics , Benzopyrans/pharmacology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , MCF-7 Cells , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Neoplasm Invasiveness/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Nuclear Proteins
3.
Sci Rep ; 14(1): 11278, 2024 05 17.
Article En | MEDLINE | ID: mdl-38760384

In our previous study, we developed a triple-negative breast cancer (TNBC) subtype classification that correlated with the TNBC molecular subclassification. In this study, we aimed to evaluate the predictor variables of this subtype classification on the whole slide and to validate the model's performance by using an external test set. We explored the characteristics of this subtype classification and investigated genomic alterations, including genomic scar signature scores. First, TNBC was classified into the luminal androgen receptor (LAR) and non-luminal androgen receptor (non-LAR) subtypes based on the AR Allred score (≥ 6 and < 6, respectively). Then, the non-LAR subtype was further classified into the lymphocyte-predominant (LP), lymphocyte-intermediate (LI), and lymphocyte-depleted (LD) groups based on stromal tumor-infiltrating lymphocytes (TILs) (< 20%, > 20% but < 60%, and ≥ 60%, respectively). This classification showed fair agreement with the molecular classification in the test set. The LAR subtype was characterized by a high rate of PIK3CA mutation, CD274 (encodes PD-L1) and PDCD1LG2 (encodes PD-L2) deletion, and a low homologous recombination deficiency (HRD) score. The non-LAR LD TIL group was characterized by a high frequency of NOTCH2 and MYC amplification and a high HRD score.


Lymphocytes, Tumor-Infiltrating , Receptors, Androgen , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/classification , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/immunology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Female , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Mutation , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism
4.
Mol Med ; 30(1): 61, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760717

BACKGROUND: Triple negative breast cancer (TNBC) is a heterogeneous and aggressive disease characterized by a high risk of mortality and poor prognosis. It has been reported that Laminin γ2 (LAMC2) is highly expressed in a variety of tumors, and its high expression is correlated with cancer development and progression. However, the function and mechanism by which LAMC2 influences TNBC remain unclear. METHODS: Kaplan-Meier survival analysis and Immunohistochemical (IHC) staining were used to examine the expression level of LAMC2 in TNBC. Subsequently, cell viability assay, wound healing and transwell assay were performed to detect the function of LAMC2 in cell proliferation and migration. A xenograft mouse model was used to assess tumorigenic function of LAMC2 in vivo. Luciferase reporter assay and western blot were performed to unravel the underlying mechanism. RESULTS: In this study, we found that higher expression of LAMC2 significantly correlated with poor survival in the TNBC cohort. Functional characterization showed that LAMC2 promoted cell proliferation and migration capacity of TNBC cell lines via up-regulating CD44. Moreover, LAMC2 exerted oncogenic roles in TNBC through modulating the expression of epithelial-mesenchymal transition (EMT) markers. Luciferase reporter assay verified that LAMC2 targeted ZEB1 to promote its transcription. Interestingly, LAMC2 regulated cell migration in TNBC via STAT3 signaling pathway. CONCLUSION: LAMC2 targeted ZEB1 via activating CD44/STAT3 signaling pathway to promote TNBC proliferation and migration, suggesting that LAMC2 could be a potential therapeutic target in TNBC patients.


Cell Proliferation , Gene Expression Regulation, Neoplastic , Hyaluronan Receptors , Laminin , STAT3 Transcription Factor , Signal Transduction , Triple Negative Breast Neoplasms , Zinc Finger E-box-Binding Homeobox 1 , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Animals , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/mortality , Cell Line, Tumor , Female , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Laminin/metabolism , Laminin/genetics , Mice , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
5.
J Med Chem ; 67(10): 7973-7994, 2024 May 23.
Article En | MEDLINE | ID: mdl-38728549

Triple-negative breast cancer is a highly aggressive and heterogeneous breast cancer subtype characterized by early metastasis, poor prognosis, and high recurrence. Targeting histone citrullination-mediated chromatin dysregulation to induce epigenetic alterations shows great promise in TNBC therapy. We report the synthesis, optimization, and evaluation of a novel series of ß-carboline-derived peptidyl arginine deiminase 4 inhibitors that exhibited potent inhibition of TNBC cell proliferation. The most outstanding PAD4 inhibitor, compound 28, hindered the PAD4-H3cit-NET signaling pathway and inhibited the growth of solid tumors and pulmonary metastatic nodules in the 4T1 in situ mouse model. Furthermore, 28 improved the tumor immune microenvironment by reshaping neutrophil phenotype, upregulating the proportions of dendritic cells and M1 macrophages, and reducing the amount of myeloid-derived suppressor cells. In conclusion, our work offered 28 as an efficacious PAD4 inhibitor that exerts a combination of conventional chemotherapy and immune-boosting effects, which represents a potential therapy strategy for TNBC.


Antineoplastic Agents , Carbolines , Neutrophils , Protein-Arginine Deiminase Type 4 , Triple Negative Breast Neoplasms , Tumor Microenvironment , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Carbolines/pharmacology , Carbolines/chemistry , Carbolines/therapeutic use , Carbolines/chemical synthesis , Animals , Protein-Arginine Deiminase Type 4/antagonists & inhibitors , Female , Humans , Tumor Microenvironment/drug effects , Mice , Neutrophils/drug effects , Neutrophils/metabolism , Neutrophils/immunology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Mice, Inbred BALB C , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/therapeutic use , Phenotype , Structure-Activity Relationship
6.
Cell Rep Med ; 5(5): 101552, 2024 May 21.
Article En | MEDLINE | ID: mdl-38729158

Y-box binding protein-1 (YB-1) is a proto-oncogenic protein associated with protein translation regulation. It plays a crucial role in the development and progression of triple-negative breast cancer (TNBC). In this study, we describe a promising approach to inhibit YB-1 using SU056, a small-molecule inhibitor. SU056 physically interacts with YB-1 and reduces its expression, which helps to restrain the progression of TNBC. Proteome profiling analysis indicates that the inhibition of YB-1 by SU056 can alter the proteins that regulate protein translation, an essential process for cancer cell growth. Preclinical studies on human cells, mice, and patient-derived xenograft tumor models show the effectiveness of SU056. Moreover, toxicological studies have shown that SU056 treatment and dosing are well tolerated without any adverse effects. Overall, our study provides a strong foundation for the further development of SU056 as a potential treatment option for patients with TNBC by targeting YB-1.


Protein Biosynthesis , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Y-Box-Binding Protein 1 , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Humans , Animals , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , Female , Cell Line, Tumor , Mice , Protein Biosynthesis/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude
7.
J Nanobiotechnology ; 22(1): 240, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735931

Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e--h+) pairs. Herein, the hybrid plasmonic system Au@ZnO (AZ) with graphene quantum dots (GQDs) doping (AZG) nano heterostructures is rationally designed for optimal NIR-driven cancer treatment. Significantly, a multifold increase in ROS generation can be achieved through the following creative initiatives: (i) plasmonic Au nanorods expands the photocatalytic capabilities of AZG into the NIR domain, offering a foundation for NIR-induced ROS generation for clinical utilization; (ii) elaborate design of mesoporous core-shell AZ structures facilitates the redistribution of electron-hole pairs; (iii) the incorporation GQDs in mesoporous structure could efficiently restrain the recombination of the e--h+ pairs; (iv) Modification of hyaluronic acid (HA) can enhance CD44 receptor mediated targeted triple-negative breast cancer (TNBC). In addition, the introduced Au NRs present as catalysts for enhancing photothermal therapy (PTT), effectively inducing apoptosis in tumor cells. The resulting HA-modified AZG (AZGH) exhibits efficient hot electron injection and e--h+ separation, affording unparalleled convenience for ROS production and enabling NIR-induced PDT for the cancer treanment. As a result, our well-designed mesoporous core-shell AZGH hybrid as photosensitizers can exhibit excellent PDT efficacy.


Gold , Graphite , Oxidative Stress , Quantum Dots , Reactive Oxygen Species , Triple Negative Breast Neoplasms , Zinc Oxide , Triple Negative Breast Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Humans , Oxidative Stress/drug effects , Female , Cell Line, Tumor , Gold/chemistry , Graphite/chemistry , Zinc Oxide/chemistry , Animals , Quantum Dots/chemistry , Mice , Metal Nanoparticles/chemistry , Apoptosis/drug effects , Hyaluronic Acid/chemistry , Electrons
8.
Front Immunol ; 15: 1355130, 2024.
Article En | MEDLINE | ID: mdl-38742103

Pre-operative radiation therapy is not currently integrated into the treatment protocols for breast cancer. However, transforming immunological "cold" breast cancers by neoadjuvant irradiation into their "hot" variants is supposed to elicit an endogenous tumor immune defense and, thus, enhance immunotherapy efficiency. We investigated cellular and immunological effects of sub-lethal, neoadjuvant irradiation of ER pos., HER2 pos., and triple-negative breast cancer subtypes in-vitro and in-vivo in humanized tumor mice (HTM). This mouse model is characterized by a human-like immune system and therefore facilitates detailed analysis of the mechanisms and efficiency of neoadjuvant, irradiation-induced "in-situ vaccination", especially in the context of concurrently applied checkpoint therapy. Similar to clinical appearances, we observed a gradually increased immunogenicity from the luminal over the HER2-pos. to the triple negative subtype in HTM indicated by an increasing immune cell infiltration into the tumor tissue. Anti-PD-L1 therapy divided the HER2-pos. and triple negative HTM groups into responder and non-responder, while the luminal HTMs were basically irresponsive. Irradiation alone was effective in the HER2-pos. and luminal subtype-specific HTM and was supportive for overcoming irresponsiveness to single anti-PD-L1 treatment. The treatment success correlated with a significantly increased T cell proportion and PD-1 expression in the spleen. In all subtype-specific HTM combination therapy proved most effective in diminishing tumor growth, enhancing the immune response, and converted non-responder into responder during anti-PD-L1 therapy. In HTM, neoadjuvant irradiation reinforced anti-PD-L1 checkpoint treatment of breast cancer in a subtype -specific manner. According to the "bench to bedside" principle, this study offers a vital foundation for clinical translating the use of neoadjuvant irradiation in the context of checkpoint therapy.


B7-H1 Antigen , Immune Checkpoint Inhibitors , Neoadjuvant Therapy , Receptor, ErbB-2 , Triple Negative Breast Neoplasms , Animals , Female , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/radiotherapy , Triple Negative Breast Neoplasms/therapy , Neoadjuvant Therapy/methods , Mice , Humans , Receptor, ErbB-2/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Cell Line, Tumor , Receptors, Estrogen/metabolism , Disease Models, Animal , Xenograft Model Antitumor Assays , Breast Neoplasms/immunology , Breast Neoplasms/radiotherapy , Breast Neoplasms/therapy
9.
J Transl Med ; 22(1): 450, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741146

BACKGROUND: Estetrol (E4) is a natural estrogen produced by the fetal liver during pregnancy. Due to its favorable safety profile, E4 was recently approved as estrogenic component of a new combined oral contraceptive. E4 is a selective ligand of estrogen receptor (ER)α and ERß, but its binding to the G Protein-Coupled Estrogen Receptor (GPER) has not been described to date. Therefore, we aimed to explore E4 action in GPER-positive Triple-Negative Breast Cancer (TNBC) cells. METHODS: The potential interaction between E4 and GPER was investigated by molecular modeling and binding assays. The whole transcriptomic modulation triggered by E4 in TNBC cells via GPER was explored through high-throughput RNA sequencing analyses. Gene and protein expression evaluations as well as migration and invasion assays allowed us to explore the involvement of the GPER-mediated induction of the plasminogen activator inhibitor type 2 (SERPINB2) in the biological responses triggered by E4 in TNBC cells. Furthermore, bioinformatics analysis was aimed at recognizing the biological significance of SERPINB2 in ER-negative breast cancer patients. RESULTS: After the molecular characterization of the E4 binding capacity to GPER, RNA-seq analysis revealed that the plasminogen activator inhibitor type 2 (SERPINB2) is one of the most up-regulated genes by E4 in a GPER-dependent manner. Worthy, we demonstrated that the GPER-mediated increase of SERPINB2 is engaged in the anti-migratory and anti-invasive effects elicited by E4 in TNBC cells. In accordance with these findings, a correlation between SERPINB2 levels and a good clinical outcome was found in ER-negative breast cancer patients. CONCLUSIONS: Overall, our results provide new insights into the mechanisms through which E4 can halt migratory and invasive features of TNBC cells.


Cell Movement , Estetrol , Gene Expression Regulation, Neoplastic , Plasminogen Activator Inhibitor 2 , Receptors, Estrogen , Receptors, G-Protein-Coupled , Signal Transduction , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Cell Movement/drug effects , Cell Line, Tumor , Receptors, G-Protein-Coupled/metabolism , Receptors, Estrogen/metabolism , Estetrol/pharmacology , Estetrol/metabolism , Female , Plasminogen Activator Inhibitor 2/metabolism , Protein Binding/drug effects , Neoplasm Invasiveness
10.
Toxicon ; 243: 107747, 2024 May 28.
Article En | MEDLINE | ID: mdl-38714236

Breast cancer is still the leading cause of death among women worldwide. Due to the lack of effective drug targets, triple-negative breast cancer has a worse prognosis and higher mortality compared with other types of breast cancer, and chemotherapy is still the main treatment for triple-negative breast cancer at present. Quercetin (QUE) is a flavonoid compound found in a variety of fruits and vegetables. The mechanism of QUE has been extensively studied, such as prostate cancer, colon cancer, ovarian cancer, etc. However, the anti-tumor immune mechanism of QUE in triple-negative breast cancer remains unclear. Therefore, we assessed the anti-tumor immune effects of QUE on triple-negative breast cancer using both 4T1 cells and a xenograft mouse model of 4T1 cells. In vitro, we examined the inhibitory effects of QUE on 4T1 cells and its molecular mechanisms through MTT, Transwell, ELISA, and Western blotting. In vivo, by establishing a xenograft mouse model, we utilized flow cytometry, immunohistochemistry, ELISA, and Western blotting to evaluate the anti-tumor immune effects of QUE on triple-negative breast cancer. The results indicate that QUE inhibits the proliferation, migration, and invasion of 4T1 cells, concurrently significantly suppressing the IL-6/JAK2/STAT3 signaling pathway. Furthermore, it depletes Treg cell content in 4T1 xenograft mice, thereby improving the tumor immune microenvironment and promoting the cytotoxicity of relevant tumor immune cells. These findings suggest that QUE may serve as a potential adjuvant for immune therapy in triple-negative breast cancer.


Interleukin-6 , Janus Kinase 2 , Quercetin , STAT3 Transcription Factor , Signal Transduction , T-Lymphocytes, Regulatory , Triple Negative Breast Neoplasms , Quercetin/pharmacology , Janus Kinase 2/metabolism , Animals , STAT3 Transcription Factor/metabolism , Interleukin-6/metabolism , Mice , T-Lymphocytes, Regulatory/drug effects , Signal Transduction/drug effects , Cell Line, Tumor , Female , Triple Negative Breast Neoplasms/drug therapy , Mice, Inbred BALB C , Humans , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Xenograft Model Antitumor Assays
11.
BMC Womens Health ; 24(1): 285, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734591

BACKGROUND: Metaplastic breast carcinomas are a rare variant group of breast carcinomas. They are usually high-grade and triple-negative tumors. They often present with large primary tumor sizes. However, the involvement of axillary lymph nodes is infrequent at the time of diagnosis. Metaplastic breast carcinomas are associated with a worse prognosis and a poorer response to chemotherapy in comparison with other non-metaplastic triple-negative breast cancers. Up until this point, there are no specific treatment recommendations for metaplastic breast carcinomas beyond those intended for invasive breast cancer in general. CASE PRESENTATION: A 40-year-old woman complained of a palpable mass in her left axilla. On ultrasonography, the mass was solid, spindle-shaped, hypoechoic with regular borders, and exhibited decreased vascularity. At first, the mass appeared to be of a muscular origin. There was not any clinical nor ultrasonic evidence of a primary breast tumor. On magnetic resonance imaging, the axillary mass was a well-defined with regular borders, measuring 24 × 35 mm. Needle biopsy showed a spindle cell tumor with mild to moderate atypia. The subsequent surgical resection revealed a spindle cell neoplasm within a lymph node, favoring a metastatic origin of the tumor. The tumor cells lacked expression of estrogen, progesterone, and HER2 receptors. PET-CT scan indicated pathological uptake in the left breast. Accordingly, the patient was diagnosed with metaplastic breast cancer that had metastasized to the axillary lymph node. She commenced a combined chemotherapy regimen of doxorubicin and cyclophosphamide. After six treatment cycles, she underwent left modified radical mastectomy with axillary lymph node dissection. Pathological examination of the specimens revealed a total burn-out tumor in the breast due to excellent treatment response. There were no residual tumor cells. All dissected lymph nodes were free of tumor. At the one-year follow-up, the patient showed no signs of tumor recurrence. CONCLUSION: This report sheds light on a distinctive presentation of metaplastic breast carcinoma, emphasizing the need for vigilance in diagnosing this rare and aggressive breast cancer variant. In addition, the patient's remarkable response to chemotherapy highlights potential treatment avenues for metaplastic breast cancer.


Breast Neoplasms , Humans , Female , Adult , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Axilla , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lymphatic Metastasis , Metaplasia , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology
12.
Chemistry ; 30(28): e202401199, 2024 May 17.
Article En | MEDLINE | ID: mdl-38695718

Invited for the cover of this issue are Tatiyana Serebryanskaya, Mikhail Kinzhalov and co-workers at St. Petersburg State University, the Research Institute for Physical Chemical Problems, Belarusian State University, Togliatti State University and Blokhin National Medical Research Center of Oncology. The image depicts the shield of Pallas Athena with the structure of a palladium carbene complex that protects against triple-negative breast cancer. Read the full text of the article at 10.1002/chem.202400101.


Antineoplastic Agents , Cell Proliferation , Coordination Complexes , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Humans , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Female , Cell Line, Tumor , Palladium/chemistry , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology
13.
Pharm Biol ; 62(1): 394-403, 2024 Dec.
Article En | MEDLINE | ID: mdl-38739003

CONTEXT: Tabersonine has been investigated for its role in modulating inflammation-associated pathways in various diseases. However, its regulatory effects on triple-negative breast cancer (TNBC) have not yet been fully elucidated. OBJECTIVE: This study uncovers the anticancer properties of tabersonine in TNBC cells, elucidating its role in enhancing chemosensitivity to cisplatin (CDDP). MATERIALS AND METHODS: After tabersonine (10 µM) and/or CDDP (10 µM) treatment for 48 h in BT549 and MDA-MB-231 cells, cell proliferation was evaluated using the cell counting kit-8 and colony formation assays. Quantitative proteomics, online prediction tools and molecular docking analyses were used to identify potential downstream targets of tabersonine. Transwell and wound-healing assays and Western blot analysis were used to assess epithelial-mesenchymal transition (EMT) phenotypes. RESULTS: Tabersonine demonstrated inhibitory effects on TNBC cells, with IC50 values at 48 h being 18.1 µM for BT549 and 27.0 µM for MDA-MB-231. The combined treatment of CDDP and tabersonine synergistically suppressed cell proliferation in BT549 and MDA-MB-231 cells. Enrichment analysis revealed that the proteins differentially regulated by tabersonine were involved in EMT-related signalling pathways. This combination treatment also effectively restricted EMT-related phenotypes. Through the integration of online target prediction and proteomic analysis, Aurora kinase A (AURKA) was identified as a potential downstream target of tabersonine. AURKA expression was reduced in TNBC cells post-treatment with tabersonine. DISCUSSION AND CONCLUSIONS: Tabersonine significantly enhances the chemosensitivity of CDDP in TNBC cells, underscoring its potential as a promising therapeutic agent for TNBC treatment.


Aurora Kinase A , Cell Proliferation , Cisplatin , Epithelial-Mesenchymal Transition , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Cisplatin/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Aurora Kinase A/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Antineoplastic Agents/pharmacology , Molecular Docking Simulation , Drug Synergism , Indole Alkaloids/pharmacology
14.
Med Oncol ; 41(6): 143, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717628

Picrorhiza kurroa, an "Indian gentian," a known Himalayan medicinal herb with rich source of phytochemicals like picrosides I, II, and other glycosides, has been traditionally used for the treatment of liver and respiratory ailments. Picrosides anti-proliferative, anti-oxidant, anti-inflammatory and other pharmacological properties were evaluated in treating triple-negative breast cancer (TNBC). Picroside I and II were procured from Sigma-Aldrich and were analyzed for anti-cancer activity in triple-negative breast cancer (MDA-MB-231) cells. Cell viability was analyzed using MTT and trypan blue assays. Apoptosis was analyzed through DNA fragmentation and Annexin V/PI flow cytometric analysis. Wound healing and cell survival assays were employed to determine the inhibition of invasion capacity and anti-proliferative activity of picrosides in MDA-MB-231 cells. Measurement of intracellular ROS was studied through mitochondrial membrane potential assessment using DiOC6 staining for anti-oxidant activity of picrosides in MDA-MB-231 cells. Both Picroside I and II have shown decreased cell viability of MDA-MB-231 cells with increasing concentrations. IC50 values of 95.3 µM and 130.8 µM have been obtained for Picroside I and II in MDA-MB-231 cells. Early apoptotic phase have shown an increase of 20% (p < 0.05) with increasing concentrations (0, 50, 75, and 100 µM) of Picroside I and 15% (p < 0.05) increase with Picroside II. Decrease in mitochondrial membrane potential of 2-2.5-fold (p < 0.05) was observed which indicated decreased reactive oxygen species (ROS) generation with increasing concentrations of Picroside I and II. An increasing percentage of 70-80% (p < 0.05) cell population was arrested in G0/G1 phase of cell cycle after Picroside I and II treatment in cancer cells. Our results suggest that Picroside I and II possess significant anti-proliferative and anti-cancer activity which is mediated by inhibition of cell growth, decreased mitochondrial membrane potential, DNA damage, apoptosis, and cell cycle arrest. Therefore, Picroside I and II can be developed as a potential anti-cancer drug of future and further mechanistic studies are underway to identify the mechanism of anti-cancer potential.


Apoptosis , Cell Proliferation , Cinnamates , Iridoid Glucosides , Membrane Potential, Mitochondrial , Reactive Oxygen Species , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Iridoid Glucosides/pharmacology , Reactive Oxygen Species/metabolism , Female , Membrane Potential, Mitochondrial/drug effects , Cinnamates/pharmacology , Cell Survival/drug effects , Antineoplastic Agents, Phytogenic/pharmacology
15.
J Transl Med ; 22(1): 423, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704606

BACKGROUND: Cancer stem cells (CSCs) and long non-coding RNAs (lncRNAs) are known to play a crucial role in the growth, migration, recurrence, and drug resistance of tumor cells, particularly in triple-negative breast cancer (TNBC). This study aims to investigate stemness-related lncRNAs (SRlncRNAs) as potential prognostic indicators for TNBC patients. METHODS: Utilizing RNA sequencing data and corresponding clinical information from the TCGA database, and employing Weighted Gene Co-expression Network Analysis (WGCNA) on TNBC mRNAsi sourced from an online database, stemness-related genes (SRGs) and SRlncRNAs were identified. A prognostic model was developed using univariate Cox and LASSO-Cox analysis based on SRlncRNAs. The performance of the model was evaluated using Kaplan-Meier analysis, ROC curves, and ROC-AUC. Additionally, the study delved into the underlying signaling pathways and immune status associated with the divergent prognoses of TNBC patients. RESULTS: The research identified a signature of six SRlncRNAs (AC245100.6, LINC02511, AC092431.1, FRGCA, EMSLR, and MIR193BHG) for TNBC. Risk scores derived from this signature were found to correlate with the abundance of plasma cells. Furthermore, the nominated chemotherapy drugs for TNBC exhibited considerable variability between different risk score groups. RT-qPCR validation confirmed abnormal expression patterns of these SRlncRNAs in TNBC stem cells, affirming the potential of the SRlncRNAs signature as a prognostic biomarker. CONCLUSION: The identified signature not only demonstrates predictive power in terms of patient outcomes but also provides insights into the underlying biology, signaling pathways, and immune status associated with TNBC prognosis. The findings suggest the possibility of guiding personalized treatments, including immune checkpoint gene therapy and chemotherapy strategies, based on the risk scores derived from the SRlncRNA signature. Overall, this research contributes valuable knowledge towards advancing precision medicine in the context of TNBC.


Computer Simulation , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells , RNA, Long Noncoding , Triple Negative Breast Neoplasms , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Prognosis , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Female , Treatment Outcome , Animals , Kaplan-Meier Estimate , Gene Regulatory Networks , Middle Aged , Cell Line, Tumor , ROC Curve , Gene Expression Profiling , Proportional Hazards Models , Immunity/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
16.
Cell Biochem Funct ; 42(4): e4020, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702967

The regulatory potential of long noncoding RNA (lncRNA) FBXL19-AS1 has been highlighted in various cancers, but its effect on triple-negative breast cancer (TNBC) remains unclear. Here, we aimed to elucidate the role of FBXL19-AS1 in TNBC and its underlying mechanism. RT-qPCR was employed to detect the expressions of FBXL19-AS1 and miR-378a-3p in tissues and cells. Immunohistochemical staining and western blot were utilized to detect the expression levels of proteins. Cell activities were detected using flow cytometry, CCK-8, and transwell assay. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were deployed to investigate interactions of different molecules. Protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathways were used to analyze the downstream pathway. In vivo xenograft model was conducted to detect the effect of FBXL19-AS1 on tumor growth. FBXL19-AS1 was overexpressed in TNBC tissues and cell lines compared with counterparts. FBXL19-AS1 knockdown suppressed TNBC cell activities, whereas its overexpression exhibited the opposite effect. Mechanistically, FBXL19-AS1 was found to interact with miR-378a-3p. Further analysis revealed that miR-378a-3p exerted tumor-suppressive effects in TNBC cells. Additionally, miR-378a-3p targeted and downregulated the expression of ubiquitin aldehyde binding 2 (OTUB2), a deubiquitinase associated with TNBC progression. In vivo experiments substantiated the inhibitory effects of FBXL19-AS1 knockdown on TNBC tumorigenesis, and a miR-378a-3p inhibitor partially rescued these effects. The downstream pathway of the miR-378a-3p/OTUB2 axis was explored, revealing connections with proteins involved in modifying other proteins, removing ubiquitin molecules, and influencing signaling pathways, including the Hippo signaling pathway. Western blot analysis confirmed changes in YAP and TAZ expression levels, indicating a potential regulatory network. In summary, FBXL19-AS1 promotes exacerbation in TNBC by suppressing miR-378a-3p, leading to increased OTUB2 expression. The downstream mechanism may be related to the Hippo signaling pathway. These findings propose potential therapeutic targets for TNBC treatment.


MicroRNAs , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Deubiquitinating Enzymes/metabolism , F-Box Proteins/metabolism , F-Box Proteins/genetics , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics
17.
Front Endocrinol (Lausanne) ; 15: 1328679, 2024.
Article En | MEDLINE | ID: mdl-38779451

Objective: The established link between posttranslational modifications of histone and non-histone lysine (K) residues in cell metabolism, and their role in cancer progression, is well-documented. However, the lactylation expression signature in triple-negative breast cancer (TNBC) remains underexplored. Methods: We conducted a comprehensive lactylproteome profiling of eight pairs of TNBC samples and their matched adjacent tissues. This was achieved through 4-Dimensional label-free quantitative proteomics combined with lactylation analysis (4D-LFQP-LA). The expression of identified lactylated proteins in TNBC was detected using immunoblotting and immunohistochemistry (IHC) with specific primary antibodies, and their clinicopathological and prognostic significance was evaluated. Results: Our analysis identified 58 lactylation sites on 48 proteins, delineating the protein lactylation alteration signature in TNBC. Bioinformatic and functional analyses indicated that these lactylated proteins play crucial roles in regulating key biological processes in TNBC. Notably, lactylation of lysine at position 12 (H4K12lac) in the histone H4 domain was found to be upregulated in TNBC. Further investigations showed a high prevalence of H4K12lac upregulation in TNBC, with positive rates of 93.19% (137/147) and 92.93% (92/99) in TNBC tissue chip and validation cohorts, respectively. H4K12lac expression correlated positively with Ki-67 and inversely with overall survival (OS) in TNBC (HR [hazard ratio] =2.813, 95%CI [credibility interval]: 1.242-6.371, P=0.0164), suggesting its potential as an independent prognostic marker (HR=3.477, 95%CI: 1.324-9.130, P=0.011). Conclusions: Lactylation is a significant post-translational modification in TNBC proteins. H4K12lac emerges as a promising biomarker for TNBC, offering insights into the lactylation profiles of TNBC proteins and linking histone modifications to clinical implications in TNBC.


Biomarkers, Tumor , Histones , Protein Processing, Post-Translational , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Humans , Histones/metabolism , Female , Biomarkers, Tumor/metabolism , Prognosis , Middle Aged , Proteomics/methods , Proteome/metabolism , Adult , Lysine/metabolism
18.
Bioorg Med Chem Lett ; 107: 129795, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38750906

Chalcones are chemical scaffolds found in natural products, particularly in plants, and are considered for structural diversity in medicinal chemistry for drug development. Herein, we designed and synthesised novel acetamide derivatives of chalcone, characterizing them using 1H NMR, 13C NMR, HRMS, and IR spectroscopic methods. These derivatives were then screened against human cancer cells for cytotoxicity using the SRB assay. Among the tested derivatives, 7g, with a pyrrolidine group, exhibited better cell growth inhibition activity against triple-negative breast cancer (TNBC) cells. Further assays, including SRB, colony formation, and fluorescent dye-based microscopic analysis, confirmed that 7g significantly inhibited MDA-MB-231 cell proliferation. Furthermore, 7g promoted apoptosis by upregulating cellular reactive oxygen species (ROS) levels and disrupting mitochondrial membrane potential (MMP). Elevated expression of pro-apoptotic proteins (Bax and caspase-3) and a higher Bax/Bcl-2 ratio with downregulation of anti-apoptotic (Bcl-2) protein levels were observed in TNBC cells. The above results suggest that 7g can promote cellular death through apoptotic mechanisms in TNBC cells.


Acetamides , Antineoplastic Agents , Apoptosis , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , Acetamides/pharmacology , Acetamides/chemical synthesis , Acetamides/chemistry , Apoptosis/drug effects , Molecular Structure , Cell Line, Tumor , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Dose-Response Relationship, Drug , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/chemical synthesis , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects
19.
BMC Cancer ; 24(1): 639, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789954

Breast cancer patients often have a poor prognosis largely due to lack of effective targeted therapy. It is now well established that monosaccharide enhances growth retardation and chemotherapy sensitivity in tumor cells. However, Pectinose whether has capability to restrict the proliferation of tumor cells remain unclear. Here, we report that Pectinose induced cytotoxicity is modulated by autophagy and p38 MAPK signaling pathway in breast cancer cell lines. The proliferation of cells was dramatically inhibited by Pectinose exposure in a dose-dependent manner, which was relevant to cell cycle arrest, as demonstrated by G2/M cell cycle restriction and ectopic expression of Cyclin A, Cyclin B, p21and p27. Mechanistically, we further identified that Pectinose is positively associated with autophagy and the activation of the p38 MAPK signaling in breast cancer. In contrast, 3-Ma or SB203580, the inhibitor of autophagy or p38 MAPK, reversed the efficacy of Pectinose suppressing on breast cancer cell lines proliferation and cell cycle process. Additionally, Pectinose in vivo treatment could significantly inhibit xenograft growth of breast cancer cells. Taken together, our findings were the first to reveal that Pectinose triggered cell cycle arrest by inducing autophagy through the activation of p38 MAPK signaling pathway in breast cancer cells,especially in luminal A and triple-negative breast cancer.


Autophagy , Cell Cycle Checkpoints , Cell Proliferation , Pectins , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , p38 Mitogen-Activated Protein Kinases , Humans , Autophagy/drug effects , Female , Animals , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Pectins/pharmacology , Mice , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , MAP Kinase Signaling System/drug effects
20.
Int J Mol Sci ; 25(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38791148

Triple-negative breast cancer (TNBC) is characterized by the absence of the estrogen receptor, progesterone receptor, and receptor tyrosine kinase HER2 expression. Due to the limited number of FDA-approved targeted therapies for TNBC, there is an ongoing need to understand the molecular underpinnings of TNBC for the development of novel combinatorial treatment strategies. This study evaluated the role of the MerTK receptor tyrosine kinase on proliferation and invasion/metastatic potential in TNBC. Immunohistochemical analysis demonstrated MerTK expression in 58% of patient-derived TNBC xenografts. The stable overexpression of MerTK in human TNBC cell lines induced an increase in proliferation rates, robust in vivo tumor growth, heightened migration/invasion potential, and enhanced lung metastases. NanoString nCounter analysis of MerTK-overexpressing SUM102 cells (SUM102-MerTK) revealed upregulation of several signaling pathways, which ultimately drive cell cycle progression, reduce apoptosis, and enhance cell survival. Proteomic profiling indicated increased endoglin (ENG) production in SUM102-MerTK clones, suggesting that MerTK creates a conducive environment for increased proliferative and metastatic activity via elevated ENG expression. To determine ENG's role in increasing proliferation and/or metastatic potential, we knocked out ENG in a SUM102-MerTK clone with CRISPR technology. Although this ENG knockout clone exhibited similar in vivo growth to the parental SUM102-MerTK clone, lung metastasis numbers were significantly decreased ~4-fold, indicating that MerTK enhances invasion and metastasis through ENG. Our data suggest that MerTK regulates a unique proliferative signature in TNBC, promoting robust tumor growth and increased metastatic potential through ENG upregulation. Targeting MerTK and ENG simultaneously may provide a novel therapeutic approach for TNBC patients.


Cell Proliferation , Triple Negative Breast Neoplasms , c-Mer Tyrosine Kinase , Humans , c-Mer Tyrosine Kinase/metabolism , c-Mer Tyrosine Kinase/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Animals , Female , Mice , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Endoglin/metabolism , Endoglin/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Neoplasm Metastasis , Signal Transduction , Apoptosis/genetics
...