Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.711
1.
PeerJ ; 12: e17360, 2024.
Article En | MEDLINE | ID: mdl-38737746

Breast cancer is the most common invasive neoplasm and the leading cause of cancer death in women worldwide. The main cause of mortality in cancer patients is invasion and metastasis, where the epithelial-mesenchymal transition (EMT) is a crucial player in these processes. Pharmacological therapy has plants as its primary source, including isoflavonoids. Brazilin is an isoflavonoid isolated from Haematoxilum brasiletto that has shown antiproliferative activity in several cancer cell lines. In this study, we evaluated the effect of Brazilin on canonical markers of EMT such as E-cadherin, vimentin, Twist, and matrix metalloproteases (MMPs). By Western blot, we evaluated E-cadherin, vimentin, and Twist expression and the subcellular localization by immunofluorescence. Using gelatin zymography, we determined the levels of secretion of MMPs. We used Transwell chambers coated with matrigel to determine the in vitro invasion of breast cancer cells treated with Brazilin. Interestingly, our results show that Brazilin increases 50% in E-cadherin expression and decreases 50% in vimentin and Twist expression, MMPs, and cell invasion in triple-negative breast cancer (TNBC) MDA-MB-231 and to a lesser extend in MCF7 ER+ breast cancer cells. Together, these findings position Brazilin as a new molecule with great potential for use as complementary or alternative treatment in breast cancer therapy in the future.


Benzopyrans , Breast Neoplasms , Cadherins , Epithelial-Mesenchymal Transition , Twist-Related Protein 1 , Vimentin , Humans , Epithelial-Mesenchymal Transition/drug effects , Female , Cadherins/metabolism , Vimentin/metabolism , Vimentin/genetics , Cell Line, Tumor , Twist-Related Protein 1/metabolism , Twist-Related Protein 1/genetics , Benzopyrans/pharmacology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , MCF-7 Cells , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Neoplasm Invasiveness/genetics , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Nuclear Proteins
2.
J Med Chem ; 67(10): 7973-7994, 2024 May 23.
Article En | MEDLINE | ID: mdl-38728549

Triple-negative breast cancer is a highly aggressive and heterogeneous breast cancer subtype characterized by early metastasis, poor prognosis, and high recurrence. Targeting histone citrullination-mediated chromatin dysregulation to induce epigenetic alterations shows great promise in TNBC therapy. We report the synthesis, optimization, and evaluation of a novel series of ß-carboline-derived peptidyl arginine deiminase 4 inhibitors that exhibited potent inhibition of TNBC cell proliferation. The most outstanding PAD4 inhibitor, compound 28, hindered the PAD4-H3cit-NET signaling pathway and inhibited the growth of solid tumors and pulmonary metastatic nodules in the 4T1 in situ mouse model. Furthermore, 28 improved the tumor immune microenvironment by reshaping neutrophil phenotype, upregulating the proportions of dendritic cells and M1 macrophages, and reducing the amount of myeloid-derived suppressor cells. In conclusion, our work offered 28 as an efficacious PAD4 inhibitor that exerts a combination of conventional chemotherapy and immune-boosting effects, which represents a potential therapy strategy for TNBC.


Antineoplastic Agents , Carbolines , Neutrophils , Protein-Arginine Deiminase Type 4 , Triple Negative Breast Neoplasms , Tumor Microenvironment , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Carbolines/pharmacology , Carbolines/chemistry , Carbolines/therapeutic use , Carbolines/chemical synthesis , Animals , Protein-Arginine Deiminase Type 4/antagonists & inhibitors , Female , Humans , Tumor Microenvironment/drug effects , Mice , Neutrophils/drug effects , Neutrophils/metabolism , Neutrophils/immunology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Mice, Inbred BALB C , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/therapeutic use , Phenotype , Structure-Activity Relationship
3.
Cell Rep Med ; 5(5): 101552, 2024 May 21.
Article En | MEDLINE | ID: mdl-38729158

Y-box binding protein-1 (YB-1) is a proto-oncogenic protein associated with protein translation regulation. It plays a crucial role in the development and progression of triple-negative breast cancer (TNBC). In this study, we describe a promising approach to inhibit YB-1 using SU056, a small-molecule inhibitor. SU056 physically interacts with YB-1 and reduces its expression, which helps to restrain the progression of TNBC. Proteome profiling analysis indicates that the inhibition of YB-1 by SU056 can alter the proteins that regulate protein translation, an essential process for cancer cell growth. Preclinical studies on human cells, mice, and patient-derived xenograft tumor models show the effectiveness of SU056. Moreover, toxicological studies have shown that SU056 treatment and dosing are well tolerated without any adverse effects. Overall, our study provides a strong foundation for the further development of SU056 as a potential treatment option for patients with TNBC by targeting YB-1.


Protein Biosynthesis , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Y-Box-Binding Protein 1 , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Humans , Animals , Y-Box-Binding Protein 1/metabolism , Y-Box-Binding Protein 1/genetics , Female , Cell Line, Tumor , Mice , Protein Biosynthesis/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude
4.
J Nanobiotechnology ; 22(1): 240, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735931

Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e--h+) pairs. Herein, the hybrid plasmonic system Au@ZnO (AZ) with graphene quantum dots (GQDs) doping (AZG) nano heterostructures is rationally designed for optimal NIR-driven cancer treatment. Significantly, a multifold increase in ROS generation can be achieved through the following creative initiatives: (i) plasmonic Au nanorods expands the photocatalytic capabilities of AZG into the NIR domain, offering a foundation for NIR-induced ROS generation for clinical utilization; (ii) elaborate design of mesoporous core-shell AZ structures facilitates the redistribution of electron-hole pairs; (iii) the incorporation GQDs in mesoporous structure could efficiently restrain the recombination of the e--h+ pairs; (iv) Modification of hyaluronic acid (HA) can enhance CD44 receptor mediated targeted triple-negative breast cancer (TNBC). In addition, the introduced Au NRs present as catalysts for enhancing photothermal therapy (PTT), effectively inducing apoptosis in tumor cells. The resulting HA-modified AZG (AZGH) exhibits efficient hot electron injection and e--h+ separation, affording unparalleled convenience for ROS production and enabling NIR-induced PDT for the cancer treanment. As a result, our well-designed mesoporous core-shell AZGH hybrid as photosensitizers can exhibit excellent PDT efficacy.


Gold , Graphite , Oxidative Stress , Quantum Dots , Reactive Oxygen Species , Triple Negative Breast Neoplasms , Zinc Oxide , Triple Negative Breast Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Humans , Oxidative Stress/drug effects , Female , Cell Line, Tumor , Gold/chemistry , Graphite/chemistry , Zinc Oxide/chemistry , Animals , Quantum Dots/chemistry , Mice , Metal Nanoparticles/chemistry , Apoptosis/drug effects , Hyaluronic Acid/chemistry , Electrons
5.
Toxicon ; 243: 107747, 2024 May 28.
Article En | MEDLINE | ID: mdl-38714236

Breast cancer is still the leading cause of death among women worldwide. Due to the lack of effective drug targets, triple-negative breast cancer has a worse prognosis and higher mortality compared with other types of breast cancer, and chemotherapy is still the main treatment for triple-negative breast cancer at present. Quercetin (QUE) is a flavonoid compound found in a variety of fruits and vegetables. The mechanism of QUE has been extensively studied, such as prostate cancer, colon cancer, ovarian cancer, etc. However, the anti-tumor immune mechanism of QUE in triple-negative breast cancer remains unclear. Therefore, we assessed the anti-tumor immune effects of QUE on triple-negative breast cancer using both 4T1 cells and a xenograft mouse model of 4T1 cells. In vitro, we examined the inhibitory effects of QUE on 4T1 cells and its molecular mechanisms through MTT, Transwell, ELISA, and Western blotting. In vivo, by establishing a xenograft mouse model, we utilized flow cytometry, immunohistochemistry, ELISA, and Western blotting to evaluate the anti-tumor immune effects of QUE on triple-negative breast cancer. The results indicate that QUE inhibits the proliferation, migration, and invasion of 4T1 cells, concurrently significantly suppressing the IL-6/JAK2/STAT3 signaling pathway. Furthermore, it depletes Treg cell content in 4T1 xenograft mice, thereby improving the tumor immune microenvironment and promoting the cytotoxicity of relevant tumor immune cells. These findings suggest that QUE may serve as a potential adjuvant for immune therapy in triple-negative breast cancer.


Interleukin-6 , Janus Kinase 2 , Quercetin , STAT3 Transcription Factor , Signal Transduction , T-Lymphocytes, Regulatory , Triple Negative Breast Neoplasms , Quercetin/pharmacology , Janus Kinase 2/metabolism , Animals , STAT3 Transcription Factor/metabolism , Interleukin-6/metabolism , Mice , T-Lymphocytes, Regulatory/drug effects , Signal Transduction/drug effects , Cell Line, Tumor , Female , Triple Negative Breast Neoplasms/drug therapy , Mice, Inbred BALB C , Humans , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Xenograft Model Antitumor Assays
6.
BMC Womens Health ; 24(1): 285, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734591

BACKGROUND: Metaplastic breast carcinomas are a rare variant group of breast carcinomas. They are usually high-grade and triple-negative tumors. They often present with large primary tumor sizes. However, the involvement of axillary lymph nodes is infrequent at the time of diagnosis. Metaplastic breast carcinomas are associated with a worse prognosis and a poorer response to chemotherapy in comparison with other non-metaplastic triple-negative breast cancers. Up until this point, there are no specific treatment recommendations for metaplastic breast carcinomas beyond those intended for invasive breast cancer in general. CASE PRESENTATION: A 40-year-old woman complained of a palpable mass in her left axilla. On ultrasonography, the mass was solid, spindle-shaped, hypoechoic with regular borders, and exhibited decreased vascularity. At first, the mass appeared to be of a muscular origin. There was not any clinical nor ultrasonic evidence of a primary breast tumor. On magnetic resonance imaging, the axillary mass was a well-defined with regular borders, measuring 24 × 35 mm. Needle biopsy showed a spindle cell tumor with mild to moderate atypia. The subsequent surgical resection revealed a spindle cell neoplasm within a lymph node, favoring a metastatic origin of the tumor. The tumor cells lacked expression of estrogen, progesterone, and HER2 receptors. PET-CT scan indicated pathological uptake in the left breast. Accordingly, the patient was diagnosed with metaplastic breast cancer that had metastasized to the axillary lymph node. She commenced a combined chemotherapy regimen of doxorubicin and cyclophosphamide. After six treatment cycles, she underwent left modified radical mastectomy with axillary lymph node dissection. Pathological examination of the specimens revealed a total burn-out tumor in the breast due to excellent treatment response. There were no residual tumor cells. All dissected lymph nodes were free of tumor. At the one-year follow-up, the patient showed no signs of tumor recurrence. CONCLUSION: This report sheds light on a distinctive presentation of metaplastic breast carcinoma, emphasizing the need for vigilance in diagnosing this rare and aggressive breast cancer variant. In addition, the patient's remarkable response to chemotherapy highlights potential treatment avenues for metaplastic breast cancer.


Breast Neoplasms , Humans , Female , Adult , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Axilla , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lymphatic Metastasis , Metaplasia , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology
7.
Chemistry ; 30(28): e202401199, 2024 May 17.
Article En | MEDLINE | ID: mdl-38695718

Invited for the cover of this issue are Tatiyana Serebryanskaya, Mikhail Kinzhalov and co-workers at St. Petersburg State University, the Research Institute for Physical Chemical Problems, Belarusian State University, Togliatti State University and Blokhin National Medical Research Center of Oncology. The image depicts the shield of Pallas Athena with the structure of a palladium carbene complex that protects against triple-negative breast cancer. Read the full text of the article at 10.1002/chem.202400101.


Antineoplastic Agents , Cell Proliferation , Coordination Complexes , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Humans , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Female , Cell Line, Tumor , Palladium/chemistry , Methane/analogs & derivatives , Methane/chemistry , Methane/pharmacology
8.
Pharm Biol ; 62(1): 394-403, 2024 Dec.
Article En | MEDLINE | ID: mdl-38739003

CONTEXT: Tabersonine has been investigated for its role in modulating inflammation-associated pathways in various diseases. However, its regulatory effects on triple-negative breast cancer (TNBC) have not yet been fully elucidated. OBJECTIVE: This study uncovers the anticancer properties of tabersonine in TNBC cells, elucidating its role in enhancing chemosensitivity to cisplatin (CDDP). MATERIALS AND METHODS: After tabersonine (10 µM) and/or CDDP (10 µM) treatment for 48 h in BT549 and MDA-MB-231 cells, cell proliferation was evaluated using the cell counting kit-8 and colony formation assays. Quantitative proteomics, online prediction tools and molecular docking analyses were used to identify potential downstream targets of tabersonine. Transwell and wound-healing assays and Western blot analysis were used to assess epithelial-mesenchymal transition (EMT) phenotypes. RESULTS: Tabersonine demonstrated inhibitory effects on TNBC cells, with IC50 values at 48 h being 18.1 µM for BT549 and 27.0 µM for MDA-MB-231. The combined treatment of CDDP and tabersonine synergistically suppressed cell proliferation in BT549 and MDA-MB-231 cells. Enrichment analysis revealed that the proteins differentially regulated by tabersonine were involved in EMT-related signalling pathways. This combination treatment also effectively restricted EMT-related phenotypes. Through the integration of online target prediction and proteomic analysis, Aurora kinase A (AURKA) was identified as a potential downstream target of tabersonine. AURKA expression was reduced in TNBC cells post-treatment with tabersonine. DISCUSSION AND CONCLUSIONS: Tabersonine significantly enhances the chemosensitivity of CDDP in TNBC cells, underscoring its potential as a promising therapeutic agent for TNBC treatment.


Aurora Kinase A , Cell Proliferation , Cisplatin , Epithelial-Mesenchymal Transition , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Cisplatin/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Aurora Kinase A/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Antineoplastic Agents/pharmacology , Molecular Docking Simulation , Drug Synergism , Indole Alkaloids/pharmacology
9.
Med Oncol ; 41(6): 143, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717628

Picrorhiza kurroa, an "Indian gentian," a known Himalayan medicinal herb with rich source of phytochemicals like picrosides I, II, and other glycosides, has been traditionally used for the treatment of liver and respiratory ailments. Picrosides anti-proliferative, anti-oxidant, anti-inflammatory and other pharmacological properties were evaluated in treating triple-negative breast cancer (TNBC). Picroside I and II were procured from Sigma-Aldrich and were analyzed for anti-cancer activity in triple-negative breast cancer (MDA-MB-231) cells. Cell viability was analyzed using MTT and trypan blue assays. Apoptosis was analyzed through DNA fragmentation and Annexin V/PI flow cytometric analysis. Wound healing and cell survival assays were employed to determine the inhibition of invasion capacity and anti-proliferative activity of picrosides in MDA-MB-231 cells. Measurement of intracellular ROS was studied through mitochondrial membrane potential assessment using DiOC6 staining for anti-oxidant activity of picrosides in MDA-MB-231 cells. Both Picroside I and II have shown decreased cell viability of MDA-MB-231 cells with increasing concentrations. IC50 values of 95.3 µM and 130.8 µM have been obtained for Picroside I and II in MDA-MB-231 cells. Early apoptotic phase have shown an increase of 20% (p < 0.05) with increasing concentrations (0, 50, 75, and 100 µM) of Picroside I and 15% (p < 0.05) increase with Picroside II. Decrease in mitochondrial membrane potential of 2-2.5-fold (p < 0.05) was observed which indicated decreased reactive oxygen species (ROS) generation with increasing concentrations of Picroside I and II. An increasing percentage of 70-80% (p < 0.05) cell population was arrested in G0/G1 phase of cell cycle after Picroside I and II treatment in cancer cells. Our results suggest that Picroside I and II possess significant anti-proliferative and anti-cancer activity which is mediated by inhibition of cell growth, decreased mitochondrial membrane potential, DNA damage, apoptosis, and cell cycle arrest. Therefore, Picroside I and II can be developed as a potential anti-cancer drug of future and further mechanistic studies are underway to identify the mechanism of anti-cancer potential.


Apoptosis , Cell Proliferation , Cinnamates , Iridoid Glucosides , Membrane Potential, Mitochondrial , Reactive Oxygen Species , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Iridoid Glucosides/pharmacology , Reactive Oxygen Species/metabolism , Female , Membrane Potential, Mitochondrial/drug effects , Cinnamates/pharmacology , Cell Survival/drug effects , Antineoplastic Agents, Phytogenic/pharmacology
10.
Bioorg Med Chem Lett ; 107: 129795, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38750906

Chalcones are chemical scaffolds found in natural products, particularly in plants, and are considered for structural diversity in medicinal chemistry for drug development. Herein, we designed and synthesised novel acetamide derivatives of chalcone, characterizing them using 1H NMR, 13C NMR, HRMS, and IR spectroscopic methods. These derivatives were then screened against human cancer cells for cytotoxicity using the SRB assay. Among the tested derivatives, 7g, with a pyrrolidine group, exhibited better cell growth inhibition activity against triple-negative breast cancer (TNBC) cells. Further assays, including SRB, colony formation, and fluorescent dye-based microscopic analysis, confirmed that 7g significantly inhibited MDA-MB-231 cell proliferation. Furthermore, 7g promoted apoptosis by upregulating cellular reactive oxygen species (ROS) levels and disrupting mitochondrial membrane potential (MMP). Elevated expression of pro-apoptotic proteins (Bax and caspase-3) and a higher Bax/Bcl-2 ratio with downregulation of anti-apoptotic (Bcl-2) protein levels were observed in TNBC cells. The above results suggest that 7g can promote cellular death through apoptotic mechanisms in TNBC cells.


Acetamides , Antineoplastic Agents , Apoptosis , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , Acetamides/pharmacology , Acetamides/chemical synthesis , Acetamides/chemistry , Apoptosis/drug effects , Molecular Structure , Cell Line, Tumor , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Dose-Response Relationship, Drug , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/chemical synthesis , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects
11.
BMC Cancer ; 24(1): 639, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789954

Breast cancer patients often have a poor prognosis largely due to lack of effective targeted therapy. It is now well established that monosaccharide enhances growth retardation and chemotherapy sensitivity in tumor cells. However, Pectinose whether has capability to restrict the proliferation of tumor cells remain unclear. Here, we report that Pectinose induced cytotoxicity is modulated by autophagy and p38 MAPK signaling pathway in breast cancer cell lines. The proliferation of cells was dramatically inhibited by Pectinose exposure in a dose-dependent manner, which was relevant to cell cycle arrest, as demonstrated by G2/M cell cycle restriction and ectopic expression of Cyclin A, Cyclin B, p21and p27. Mechanistically, we further identified that Pectinose is positively associated with autophagy and the activation of the p38 MAPK signaling in breast cancer. In contrast, 3-Ma or SB203580, the inhibitor of autophagy or p38 MAPK, reversed the efficacy of Pectinose suppressing on breast cancer cell lines proliferation and cell cycle process. Additionally, Pectinose in vivo treatment could significantly inhibit xenograft growth of breast cancer cells. Taken together, our findings were the first to reveal that Pectinose triggered cell cycle arrest by inducing autophagy through the activation of p38 MAPK signaling pathway in breast cancer cells,especially in luminal A and triple-negative breast cancer.


Autophagy , Cell Cycle Checkpoints , Cell Proliferation , Pectins , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , p38 Mitogen-Activated Protein Kinases , Humans , Autophagy/drug effects , Female , Animals , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Pectins/pharmacology , Mice , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , MAP Kinase Signaling System/drug effects
12.
Int J Mol Sci ; 25(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38791158

Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the majority of patients experience limited improvements in clinical outcomes, highlighting the critical need for strategies to enhance the effectiveness of anthracycline/taxane-based chemotherapy in TNBC. In this study, we report on the potential of a DNA-PK inhibitor, peposertib, to improve the effectiveness of topoisomerase II (TOPO II) inhibitors, particularly anthracyclines, in TNBC. Our in vitro studies demonstrate the synergistic antiproliferative activity of peposertib in combination with doxorubicin, epirubicin and etoposide in multiple TNBC cell lines. Downstream analysis revealed the induction of ATM-dependent compensatory signaling and p53 pathway activation under combination treatment. These in vitro findings were substantiated by pronounced anti-tumor effects observed in mice bearing subcutaneously implanted tumors. We established a well-tolerated preclinical treatment regimen combining peposertib with pegylated liposomal doxorubicin (PLD) and demonstrated strong anti-tumor efficacy in cell-line-derived and patient-derived TNBC xenograft models in vivo. Taken together, our findings provide evidence that co-treatment with peposertib has the potential to enhance the efficacy of anthracycline/TOPO II-based chemotherapies, and it provides a promising strategy to improve treatment outcomes for TNBC patients.


Doxorubicin , Drug Synergism , Topoisomerase II Inhibitors , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Humans , Animals , Female , Mice , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Doxorubicin/analogs & derivatives , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Sulfones/pharmacology , Cell Proliferation/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Polyethylene Glycols/pharmacology , Etoposide/pharmacology , Etoposide/therapeutic use , DNA Topoisomerases, Type II/metabolism , Epirubicin/pharmacology
13.
Sci Rep ; 14(1): 11431, 2024 05 19.
Article En | MEDLINE | ID: mdl-38763930

Our current study reports the successful synthesis of thiolated chitosan-based nanoparticles for targeted drug delivery of 5-Fluorouracil. This process was achieved through the ionic gelation technique, aiming to improve the efficacy of the chemotherapeutic moiety by modifying the surface of the nanoparticles (NPs) with a ligand. We coated these NPs with hyaluronic acid (HA) to actively target the CD44 receptor, which is frequently overexpressed in various solid malignancies, including breast cancer. XRD, FTIR, SEM, and TEM were used for the physicochemical analysis of the NPs. These 5-Fluorouracil (5-FU) loaded NPs were evaluated on MDA-MB-231 (a triple-negative breast cell line) and MCF-10A (normal epithelial breast cells) to determine their in vitro efficacy. The developed 5-FU-loaded NPs exhibited a particle size within a favorable range (< 300 nm). The positive zeta potential of these nanoparticles facilitated their uptake by negatively charged cancer cells. Moreover, they demonstrated robust stability and achieved high encapsulation efficiency. These nanoparticles exhibited significant cytotoxicity compared to the crude drug (p < 0.05) and displayed a promising release pattern consistent with the basic diffusion model. These traits improve the pharmacokinetic profile, efficacy, and ability to precisely target these nanoparticles, offering a potentially successful anticancer treatment for breast cancer. However, additional in vivo assessments of these formulations are obligatory to confirm these findings.


Chitosan , Fluorouracil , Hyaluronan Receptors , Nanoparticles , Triple Negative Breast Neoplasms , Fluorouracil/administration & dosage , Fluorouracil/pharmacology , Fluorouracil/chemistry , Chitosan/chemistry , Humans , Hyaluronan Receptors/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Nanoparticles/chemistry , Cell Line, Tumor , Female , Drug Carriers/chemistry , Hyaluronic Acid/chemistry , Drug Delivery Systems , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/pharmacokinetics , Antimetabolites, Antineoplastic/chemistry , Cell Survival/drug effects , Particle Size
14.
ESMO Open ; 9(5): 102964, 2024 May.
Article En | MEDLINE | ID: mdl-38703428

BACKGROUND: Immune checkpoint blockade (ICB) in combination with chemotherapy improves outcome of patients with triple-negative breast cancer (TNBC) in metastatic and early settings. The identification of predictive biomarkers able to guide treatment decisions is challenging and currently limited to programmed death-ligand 1 (PD-L1) expression and high tumor mutational burden (TMB) in the advanced setting, with several limitations. MATERIALS AND METHODS: We carried out a retrospective analysis of clinical-pathological and molecular characteristics of tumor samples from 11 patients with advanced TNBC treated with single-agent pembrolizumab participating in two early-phase clinical trials: KEYNOTE-012 and KEYNOTE-086. Clinical, imaging, pathological [i.e. tumor-infiltrating lymphocytes (TILs), PD-L1 status], RNA sequencing, and whole-exome sequencing data were analyzed. We compared our results with publicly available transcriptomic data from TNBC cohorts from TCGA and METABRIC. RESULTS: Response to pembrolizumab was heterogeneous: two patients experienced exceptional long-lasting responses, six rapid progressions, and three relatively slower disease progression. Neither PD-L1 nor stromal TILs were significantly associated with response to treatment. Increased TMB values were observed in tumor samples from exceptional responders compared to the rest of the cohort (P = 3.4 × 10-4). Tumors from exceptional responders were enriched in adaptive and innate immune cell signatures. Expression of regulatory T-cell markers (FOXP3, CCR4, CCR8, TIGIT) was mainly observed in tumors from responders except for glycoprotein-A repetitions predominant (GARP), which was overexpressed in tumors from rapid progressors. GARP RNA expression in primary breast tumors from the public dataset was significantly associated with a worse prognosis. CONCLUSIONS: The wide spectrum of clinical responses to ICB supports that TNBC is a heterogeneous disease. Tumors with high TMB respond better to ICB. However, the optimal cut-off of 10 mutations (mut)/megabase (Mb) may not reflect the complexity of all tumor subtypes, despite its approval as a tumor-agnostic biomarker. Further studies are required to better elucidate the relevance of the tumor microenvironment and its components as potential predictive biomarkers in the context of ICB.


Antibodies, Monoclonal, Humanized , Biomarkers, Tumor , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Retrospective Studies , Female , Biomarkers, Tumor/metabolism , Middle Aged , Immunotherapy/methods , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/pharmacology , Aged , Adult , Lymphocytes, Tumor-Infiltrating/immunology
15.
Cells ; 13(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38786030

Triple-negative breast cancer (TNBC) lacks targeted therapies, leaving cytotoxic chemotherapy as the current standard treatment. However, chemotherapy resistance remains a major clinical challenge. Increased insulin-like growth factor 1 signaling can potently blunt chemotherapy response, and lysosomal processes including the nutrient scavenging pathway autophagy can enable cancer cells to evade chemotherapy-mediated cell death. Thus, we tested whether inhibition of insulin receptor/insulin-like growth factor 1 receptor with the drug BMS-754807 and/or lysosomal disruption with hydroxychloroquine (HCQ) could sensitize TNBC cells to the chemotherapy drug carboplatin. Using in vitro studies in multiple TNBC cell lines, in concert with in vivo studies employing a murine syngeneic orthotopic transplant model of TNBC, we show that BMS-754807 and HCQ each sensitized TNBC cells and tumors to carboplatin and reveal that exogenous metabolic modulators may work synergistically with carboplatin as indicated by Bliss analysis. Additionally, we demonstrate the lack of overt in vivo toxicity with our combination regimens and, therefore, propose that metabolic targeting of TNBC may be a safe and effective strategy to increase sensitivity to chemotherapy. Thus, we conclude that the use of exogenous metabolic modulators, such as BMS-754807 or HCQ, in combination with chemotherapy warrants additional study as a strategy to improve therapeutic responses in women with TNBC.


Carboplatin , Triple Negative Breast Neoplasms , Carboplatin/pharmacology , Carboplatin/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Animals , Humans , Female , Cell Line, Tumor , Mice , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Drug Synergism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Xenograft Model Antitumor Assays , Autophagy/drug effects , Lysosomes/metabolism , Lysosomes/drug effects
16.
Cells ; 13(10)2024 May 11.
Article En | MEDLINE | ID: mdl-38786044

Breast cancer includes tumor subgroups with morphological, molecular, and clinical differences. Intrinsic heterogeneity especially characterizes breast tumors with a triple negative phenotype, often leading to the failure of even the most advanced therapeutic strategies. To improve breast cancer treatment, the use of natural agents to integrate conventional therapies is the subject of ever-increasing attention. In this context, garlic (Allium sativum) shows anti-cancerous potential, interfering with the proliferation, motility, and malignant progression of both non-invasive and invasive breast tumor cells. As heterogeneity could be at the basis of variable effects, the main objective of our study was to evaluate the anti-tumoral activity of a garlic extract in breast cancer cells with a triple negative phenotype. Established triple negative breast cancer (TNBC) cell lines from patient-derived xenografts (PDXs) were used, revealing subtype-dependent effects on morphology, cell cycle, and invasive potential, correlated with the peculiar down-modulation of Akt signaling, a crucial regulator in solid tumors. Our results first demonstrate that the effects of garlic on TNBC breast cancer are not unique and suggest that only more precise knowledge of the mechanisms activated by this natural compound in each tumor will allow for the inclusion of garlic in personalized therapeutic approaches to breast cancer.


Garlic , Proto-Oncogene Proteins c-akt , Signal Transduction , Triple Negative Breast Neoplasms , Humans , Garlic/chemistry , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Female , Cell Line, Tumor , Animals , Phenotype , Cell Proliferation/drug effects , Mice , Plant Extracts/pharmacology , Down-Regulation/drug effects , Cell Movement/drug effects , Xenograft Model Antitumor Assays
17.
Cells ; 13(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38786060

Cells defend against oxidative stress by enhancing antioxidant capacity, including stress-activated metabolic alterations, but the underlying intracellular signaling mechanisms remain unclear. This paper reports that immunoglobulin superfamily containing leucine-rich repeat (ISLR) functions as a redox sensor that responds to reactive oxygen species (ROS) stimulation and modulates the antioxidant capacity by suppressing pyruvate kinase isozyme M2 (PKM2) activity. Following oxidative stress, ISLR perceives ROS stimulation through its cysteine residue 19, and rapidly degrades in the autophagy-lysosome pathway. The downregulated ISLR enhances the antioxidant capacity by promoting the tetramerization of PKM2, and then enhancing the pyruvate kinase activity, PKM2-mediated glycolysis is crucial to the ISLR-mediated antioxidant capacity. In addition, our results demonstrated that, in triple-negative breast cancer, cisplatin treatment reduced the level of ISLR, and PKM2 inhibition sensitizes tumors to cisplatin by enhancing ROS production; and argued that PKM2 inhibition can synergize with cisplatin to limit tumor growth. Our results demonstrate a molecular mechanism by which cells respond to oxidative stress and modulate the redox balance.


Antioxidants , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Humans , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Antioxidants/metabolism , Antioxidants/pharmacology , Oxidative Stress/drug effects , Animals , Cisplatin/pharmacology , Female , Membrane Proteins/metabolism , Thyroid Hormones/metabolism , Thyroid Hormone-Binding Proteins , Mice , Pyruvate Kinase/metabolism , Glycolysis/drug effects , Autophagy/drug effects , Carrier Proteins/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/enzymology
18.
Carbohydr Polym ; 338: 122196, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38763723

Triple negative breast cancer (TNBC) represents the most aggressive and heterogenous disease, and combination therapy holds promising potential. Here, an enzyme-responsive polymeric prodrug with self-assembly properties was synthesized for targeted co-delivery of paclitaxel (PTX) and ursolic acid (UA). Hyaluronic acid (HA) was conjugated with UA, yielding an amphiphilic prodrug with 13.85 mol% UA and a CMC of 32.3 µg/mL. The HA-UA conjugate exhibited ∼14 % and 47 % hydrolysis at pH 7.4 and in tumor cell lysate. HA-UA/PTX NPs exhibited a spherical structure with 173 nm particle size, and 0.15 PDI. The nanoparticles showed high drug loading (11.58 %) and entrapment efficiency (76.87 %) of PTX. Release experiments revealed accelerated drug release (∼78 %) in the presence of hyaluronidase enzyme. Cellular uptake in MDA-MB-231 cells showed enhanced uptake of HA-UA/PTX NPs through CD44 receptor-mediated endocytosis. In vitro, HA-UA/PTX NPs exhibited higher cytotoxicity, apoptosis, and mitochondrial depolarization compared to PTX alone. In vivo, HA-UA/PTX NPs demonstrated improved pharmacokinetic properties, with 2.18, 2.40, and 2.35-fold higher AUC, t1/2, and MRT compared to free PTX. Notably, HA-UA/PTX NPs exhibited superior antitumor efficacy with a 90 % tumor inhibition rate in 4T1 tumor model and low systemic toxicity, showcasing their significant potential as carriers for TNBC combination therapy.


Hyaluronic Acid , Nanoparticles , Paclitaxel , Triple Negative Breast Neoplasms , Triterpenes , Ursolic Acid , Triterpenes/chemistry , Triterpenes/pharmacology , Hyaluronic Acid/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Humans , Nanoparticles/chemistry , Animals , Female , Paclitaxel/pharmacology , Paclitaxel/chemistry , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Cell Line, Tumor , Drug Liberation , Apoptosis/drug effects , Mice , Drug Carriers/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Mice, Inbred BALB C , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/chemistry
19.
Eur J Pharm Biopharm ; 199: 114300, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697488

Triple-negative breast cancer (TNBC) is considered one of the most incurable malignancies due to its clinical characteristics, including high invasiveness, high metastatic potential, proneness to relapse, and poor prognosis. Therefore, it remains a critical unmet medical need. On the other hand, poor delivery efficiency continues to reduce the efficacy of anti-cancer therapeutics developed against solid tumours using various strategies, such as genetically engineered oncolytic vectors used as nanocarriers. The study was designed to evaluate the anti-tumour efficacy of a novel combinatorial therapy based on oncolytic adenovirus AdV5/3-D24-ICOSL-CD40L with an anti-PD-1 (pembrolizumab) and paclitaxel (PTX). Here, we first tested the antineoplastic effect in two-dimensional (2D) and three-dimensional (3D) breast cancer models in MDA-MB-231, MDA-MB-468 and MCF-7 cells. Then, to further evaluate the efficacy of combinatorial therapy, including immunological aspects, we established a three-dimensional (3D) co-culture model based on MDA-MB-231 cells with peripheral blood mononuclear cells (PBMCs) to create an integrated system that more closely mimics the complexity of the tumour microenvironment and interacts with the immune system. Treatment with OV as a priming agent, followed by pembrolizumab and then paclitaxel, was the most effective in reducing the tumour volume in TNBC co-cultured spheroids. Further, T-cell phenotyping analyses revealed significantly increased infiltration of CD8+, CD4+ T and Tregs cells. Moreover, the observed anti-tumour effects positively correlated with the level of CD4+ T cell infiltrates, suggesting the development of anti-cancer immunity. Our study demonstrated that combining different immunotherapeutic agents (virus, pembrolizumab) with PTX reduced the tumour volume of the TNBC co-cultured spheroids compared to relevant controls. Importantly, sequential administration of the investigational agents (priming with the vector) further enhanced the anti-cancer efficacy in 3D culture over other groups tested. Taken together, these results support further evaluation of the virus in combination with anti-PD-1 and PTX for the treatment of triple-negative breast cancer patients. Importantly, further studies with in vivo models should be conducted to better understand the translational aspects of tested therapy.


Adenoviridae , Antibodies, Monoclonal, Humanized , Oncolytic Virotherapy , Paclitaxel , Programmed Cell Death 1 Receptor , Triple Negative Breast Neoplasms , Paclitaxel/administration & dosage , Paclitaxel/pharmacology , Humans , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/immunology , Female , Adenoviridae/genetics , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/administration & dosage , Oncolytic Virotherapy/methods , Cell Line, Tumor , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Oncolytic Viruses , MCF-7 Cells , Combined Modality Therapy/methods , Tumor Microenvironment/drug effects , Animals , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/administration & dosage
20.
Asian Pac J Cancer Prev ; 25(5): 1649-1661, 2024 May 01.
Article En | MEDLINE | ID: mdl-38809637

OBJECTIVE: Triple-negative breast cancer presents a significant challenge in oncology due to its complex treatment and aggressive nature. This subtype lacks common cancer cell receptors like estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. This study aimed to identify, through bioinformatic analysis, the key genes associated with triple-negative breast cancer. In addition, CBD analogs with potential inhibitory effects on these genes were evaluated through docking and molecular dynamics. METHODS: Gene expression profiles from the GSE178748 dataset were analyzed, focusing on MDA-MB-231 breast cancer cell lines. Differentially expressed genes were determined through protein-protein interaction networks and subsequently validated. Additionally, the inhibitory effects of cannabidiol analogs on these hub genes were assessed using molecular docking and dynamics. RESULTS:  Analysis of the hub highlighted RPL7A, NHP2L1, and PSMD11 as significant players in TNBC regulation. Ligand 44409296 showed the best affinity energy with RPL7A, while 166505341 exhibited the highest affinity with NHP2L1 and PSMD11, surpassing CBD. Analyses of RMSD, RMSF, SASA, and Gyration Radius indicated structural stability and interactions of the proteins with ligands over time. MMGBSA calculations showed favorable binding energies for the ligands with the target proteins. CONCLUSION: In conclusion, this study identified key genes, namely RPL7A, NHP2L1, and PSMD11, associated with triple-negative breast cancer and demonstrated promising interactions with cannabidiol analogs, particularly 44409296 and 166505341. These findings suggest potential therapeutic targets and highlight the relevance of further clinical investigations. Additionally, the ligands exhibited favorable ADME properties and low toxicity, underscoring their potential in future drug development for TNBC treatment.


Cannabidiol , Molecular Docking Simulation , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Humans , Cannabidiol/pharmacology , Cannabidiol/chemistry , Female , Computational Biology/methods , Computer Simulation , Gene Expression Regulation, Neoplastic/drug effects , Protein Interaction Maps/drug effects , Molecular Dynamics Simulation , Antineoplastic Agents/pharmacology , Cell Line, Tumor
...