ABSTRACT
Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri (X. citri), is a plant disease affecting Citrus crops worldwide. However, little is known about defense compounds in Citrus. Here, we conducted a mass spectrometry-based metabolomic approach to obtain an overview of the chemical responses of Citrus leaves to X. citri infection. To facilitate result interpretation, the multivariate analyses were combined with molecular networking to identify biomarkers. Metabolite variations among untreated and X. citri-inoculated Citrus samples under greenhouse conditions highlighted induced defense biomarkers. Notably, the plant tryptophan metabolism pathway was activated, leading to the accumulation of N-methylated tryptamine derivatives. This finding was subsequently confirmed in symptomatic leaves in the field. Several tryptamine derivatives showed inhibitory effects in vitro against X. citri. This approach has enabled the identification of new chemically related biomarker groups and their dynamics in the response of Citrus leaves to Xanthomonas infection.
Subject(s)
Citrus sinensis , Citrus , Xanthomonas , Citrus sinensis/microbiology , Plant Diseases/microbiology , Citrus/microbiology , Plant Leaves/microbiology , Tryptamines/pharmacologyABSTRACT
Melatonin MT1 and MT2 receptors are expressed in the glomerular layer of the olfactory bulb (OB); however, the role of these receptors has not been evaluated until now. Considering the association of the OB with olfactory and depressive disorders in Parkinson's disease (PD), we sought to investigate the involvement of melatonin receptors in these non-motor disturbances in an intranigral 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD. We demonstrate the presence of functional melatonin receptors in dopaminergic neurons of the glomerular layer. Local administration of melatonin (MLT, 1 µg/µl), luzindole (LUZ, 5 µg/µl) or the MT2-selective receptor drug 4-P-PDOT (5 µg/µl) reversed the depressive-like behavior elicited by 6-OHDA. Sequential administration of 4-P-PDOT and MLT (5 µg/µl, 1 µg/µl) promoted additive antidepressant-like effects. In the evaluation of olfactory discrimination, LUZ induced an olfactory impairment when associated with the nigral lesion-induced impairment. Thus, our results suggest that melatonin MT2 receptors expressed in the glomerular layer are involved in depressive-like behaviors and in olfactory function associated with PD.
Subject(s)
Anosmia/metabolism , Behavior, Animal , Depressive Disorder/metabolism , Dopaminergic Neurons/metabolism , Olfactory Bulb/metabolism , Parkinsonian Disorders/metabolism , Receptor, Melatonin, MT2/metabolism , Animals , Anosmia/etiology , Anosmia/physiopathology , Anosmia/psychology , Behavior, Animal/drug effects , Depressive Disorder/etiology , Depressive Disorder/physiopathology , Depressive Disorder/psychology , Disease Models, Animal , Dopaminergic Neurons/drug effects , Locomotion/drug effects , Male , Melatonin/pharmacology , Olfactory Bulb/drug effects , Olfactory Bulb/physiopathology , Olfactory Perception/drug effects , Oxidopamine , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/psychology , Rats, Wistar , Receptor, Melatonin, MT2/drug effects , Signal Transduction , Smell/drug effects , Swimming , Tetrahydronaphthalenes/pharmacology , Tryptamines/pharmacologyABSTRACT
Objective: Several studies have shown that the time of day regulates the reinforcing effects of cocaine. Additionally, melatonin and its MT1 and MT2 receptors have been found to participate in modulation of the reinforcing effects of such addictive drugs as cocaine. Loss of the diurnal variation in cocaine-induced locomotor sensitization and cocaine-induced place preference has been identified in pinealectomized mice. In addition, several studies in rodents have shown that administration of melatonin decreased the reinforcing effects of cocaine. The objective of this study was to evaluate the effect of melatonin on cocaine-induced locomotor activity in pinealectomized rats at different times of day (zeitgeber time [ZT]4, ZT10, ZT16, and ZT22). Methods: Naïve, pinealectomized Wistar rats received cocaine at different times of day. Melatonin was administered 30 min before cocaine; luzindole was administered 15 min prior to melatonin and 45 min before cocaine. After administration of each treatment, locomotor activity for each animal was recorded for a total of 30 min. Pinealectomy was confirmed at the end of the experiment through melatonin quantitation by ELISA. Results: Cocaine-induced locomotor activity varied according to the time of day. Continuous lighting and pinealectomy increased cocaine-induced locomotor activity. Melatonin administration decreased cocaine-induced locomotor activity in naïve and pinealectomized rats at different times of day. Luzindole blocked the melatonin-induced reduction in cocaine-induced locomotor activity in pinealectomized rats. Conclusion: Given its ability to mitigate various reinforcing effects of cocaine, melatonin could be a useful therapy for cocaine abuse.
Subject(s)
Humans , Animals , Male , Central Nervous System Depressants/pharmacology , Cocaine-Related Disorders/drug therapy , Pinealectomy , Locomotion/drug effects , Melatonin/pharmacology , Time Factors , Enzyme-Linked Immunosorbent Assay , Random Allocation , Tryptamines/pharmacology , Reproducibility of Results , Circadian Rhythm , Treatment Outcome , Rats, WistarABSTRACT
Extracts from aerial parts of Prosopis ruscifolia, Bidens pilosa, Cercidium praecox and Phoradendron liga were assayed against toxigenic Aspergillus species. They were obtained by sequential extraction of the aerial parts with hexane (fHex), dichloromethane (fDCM), ethyl acetate (fEtOAc) and methanol (fMeOH). The fMeOH from P. ruscifolia showed the highest antifungal spectrum (MIC = 750-1500 µg mL-1; MID = 50-200 µg; DI = 1.7-3.0 mm). Indolizidine alkaloids (juliflorine and juliprosine) and tryptamine were identified with strong (MIC = 188 µg mL-1) and moderate antifungal activities (MIC = 750 µg mL-1), respectively, towards A. parasiticus and A. flavus. The fMeOH, the indolizidine alkaloids and tryptamine synergized the fungitoxic effect of potassium sorbate and propiconazole. They completely suppressed the biosynthesis of aflatoxins at concentrations of 47, 94 and 375 µg mL-1, respectively. Our results indicate that fMeOH and its identified alkaloids are promisory additives of commercial antifungals and are antiaflatoxigenic agents at concentrations below of those required for complete suppression of fungal growth.
Subject(s)
Antifungal Agents/pharmacology , Aspergillus/drug effects , Plant Extracts/pharmacology , Plants/chemistry , Aflatoxins/metabolism , Alkaloids/chemistry , Alkaloids/pharmacology , Antifungal Agents/chemistry , Argentina , Aspergillus/metabolism , Bidens/chemistry , Drug Evaluation, Preclinical , Food Microbiology , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Indolizines/pharmacology , Methanol/chemistry , Microbial Sensitivity Tests , Plant Components, Aerial/chemistry , Plant Components, Aerial/metabolism , Plant Extracts/chemistry , Prosopis/chemistry , Tryptamines/pharmacologyABSTRACT
OBJECTIVE: Several studies have shown that the time of day regulates the reinforcing effects of cocaine. Additionally, melatonin and its MT1 and MT2 receptors have been found to participate in modulation of the reinforcing effects of such addictive drugs as cocaine. Loss of the diurnal variation in cocaine-induced locomotor sensitization and cocaine-induced place preference has been identified in pinealectomized mice. In addition, several studies in rodents have shown that administration of melatonin decreased the reinforcing effects of cocaine. The objective of this study was to evaluate the effect of melatonin on cocaine-induced locomotor activity in pinealectomized rats at different times of day (zeitgeber time [ZT]4, ZT10, ZT16, and ZT22). METHODS: Naïve, pinealectomized Wistar rats received cocaine at different times of day. Melatonin was administered 30 min before cocaine; luzindole was administered 15 min prior to melatonin and 45 min before cocaine. After administration of each treatment, locomotor activity for each animal was recorded for a total of 30 min. Pinealectomy was confirmed at the end of the experiment through melatonin quantitation by ELISA. RESULTS: Cocaine-induced locomotor activity varied according to the time of day. Continuous lighting and pinealectomy increased cocaine-induced locomotor activity. Melatonin administration decreased cocaine-induced locomotor activity in naïve and pinealectomized rats at different times of day. Luzindole blocked the melatonin-induced reduction in cocaine-induced locomotor activity in pinealectomized rats. CONCLUSION: Given its ability to mitigate various reinforcing effects of cocaine, melatonin could be a useful therapy for cocaine abuse.
Subject(s)
Central Nervous System Depressants/pharmacology , Cocaine-Related Disorders/drug therapy , Locomotion/drug effects , Melatonin/pharmacology , Pinealectomy , Animals , Circadian Rhythm , Enzyme-Linked Immunosorbent Assay , Humans , Male , Random Allocation , Rats, Wistar , Reproducibility of Results , Time Factors , Treatment Outcome , Tryptamines/pharmacologyABSTRACT
The last fifteen years have seen the emergence and overflow into the drug scene of "superpotent" N-benzylated phenethylamines belonging to the "NBOMe" series, accompanied by numerous research articles. Although N-benzyl substitution of 5-methoxytryptamine is known to increase its affinity and potency at 5-HT2 receptors associated with psychedelic activity, N-benzylated tryptamines have been studied much less than their phenethylamine analogs. To further our knowledge of the activity of N-benzyltryptamines, we have synthesized a family of tryptamine derivatives and, for comparison, a few 5-methoxytryptamine analogs with many different substitution patterns on the benzyl moiety, and subjected them to in vitro affinity and functional activity assays vs. the human 5-HT2 receptor subtypes. In the binding (radioligand displacement) studies some of these compounds exhibited only modest selectivity for either 5-HT2A or 5-HT2C receptors suggesting that a few of them, with affinities in the 10-100 nanomolar range for 5-HT2A receptors, might presumably be psychedelic. Unexpectedly, their functional (calcium mobilization) assays reflected very different trends. All of these compounds proved to be 5-HT2C receptor full agonists while most of them showed low efficacy at the 5-HT2A subtype. Furthermore, several showed moderate-to-strong preferences for activation of the 5-HT2C subtype at nanomolar concentrations. Thus, although some N-benzyltryptamines might be abuse-liable, others might represent new leads for the development of therapeutics for weight loss, erectile dysfunction, drug abuse, or schizophrenia.
Subject(s)
Receptors, Serotonin, 5-HT2/metabolism , Tryptamines/pharmacology , 5-Methoxytryptamine/analogs & derivatives , 5-Methoxytryptamine/pharmacology , Animals , Benzyl Compounds/pharmacology , CHO Cells , Cricetulus , HeLa Cells , Humans , Molecular Structure , Phenethylamines , Radioligand Assay , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Tryptamines/chemical synthesisABSTRACT
The N-salicyloyltryptamine (NST) is an indole derivative compound analogue to the alkaloid N-benzoyltryptamine. In the present study, the antiedematogenic activity of NST was investigated in animal models. Firstly, the acute toxicity for NST was assessed according to the OECD Guideline no. 423. The potential NST-induced antiedematogenic activity was evaluated by carrageenan-induced paw edema in rats, as well as by dextran-, compound 48/80-, histamine-, serotonin-, capsaicine-, and prostaglandin E2-induced paw edema in mice. The effect of NST on compound 48/80-induced ex vivo mast cell degranulation on mice mesenteric bed was investigated. No death or alteration of behavioral parameters was observed after administration of NST (2000 mg/kg, i.p.) during the observation time of 14 days. The NST (100 and 200 mg/kg, i.p.) inhibited the carrageenan-induced edema from the 1st to the 5th hour (**p<0.01; ***p<0.001). The edematogenic activity induced by dextran, compound 48/80, histamine, serotonin, capsaicin, and prostaglandin E2 was inhibited by NST (100 mg/kg, i.p.) throughout the observation period (**p<0.01; ***p<0.001). The pretreatment with NST (50, 100 or 200 mg/kg, i.p) attenuates the compound 48/80-induced mast cell degranulation (**p<0.01; ***p<0.001). Thus, the inhibition of both mast cell degranulation and release of endogenous mediators are probably involved in the NST-induced antiedematogenic effect.
Subject(s)
Anti-Inflammatory Agents/pharmacology , Edema/drug therapy , Salicylates/pharmacology , Tryptamines/pharmacology , Animals , Anti-Inflammatory Agents/toxicity , Carrageenan , Disease Models, Animal , Edema/chemically induced , Female , Hindlimb , Inflammation Mediators , Male , Mice , Peptides/drug effects , Rats, Wistar , Salicylates/toxicity , Time Factors , Tryptamines/toxicityABSTRACT
ABSTRACT The N-salicyloyltryptamine (NST) is an indole derivative compound analogue to the alkaloid N-benzoyltryptamine. In the present study, the antiedematogenic activity of NST was investigated in animal models. Firstly, the acute toxicity for NST was assessed according to the OECD Guideline no. 423. The potential NST-induced antiedematogenic activity was evaluated by carrageenan-induced paw edema in rats, as well as by dextran-, compound 48/80-, histamine-, serotonin-, capsaicine-, and prostaglandin E2-induced paw edema in mice. The effect of NST on compound 48/80-induced ex vivo mast cell degranulation on mice mesenteric bed was investigated. No death or alteration of behavioral parameters was observed after administration of NST (2000 mg/kg, i.p.) during the observation time of 14 days. The NST (100 and 200 mg/kg, i.p.) inhibited the carrageenan-induced edema from the 1st to the 5th hour (**p<0.01; ***p<0.001). The edematogenic activity induced by dextran, compound 48/80, histamine, serotonin, capsaicin, and prostaglandin E2 was inhibited by NST (100 mg/kg, i.p.) throughout the observation period (**p<0.01; ***p<0.001). The pretreatment with NST (50, 100 or 200 mg/kg, i.p) attenuates the compound 48/80-induced mast cell degranulation (**p<0.01; ***p<0.001). Thus, the inhibition of both mast cell degranulation and release of endogenous mediators are probably involved in the NST-induced antiedematogenic effect.
Subject(s)
Animals , Male , Female , Rats , Tryptamines/pharmacology , Salicylates/pharmacology , Edema/drug therapy , Anti-Inflammatory Agents/pharmacology , Peptides/drug effects , Time Factors , Carrageenan , Tryptamines/toxicity , Salicylates/toxicity , Rats, Wistar , Inflammation Mediators , Disease Models, Animal , Edema/chemically induced , Hindlimb , Anti-Inflammatory Agents/toxicityABSTRACT
Benzoyltryptamine analogues act as neuroprotective and spasmolytic agents on smooth muscles. In this study, we investigated the ability of N-salicyloyltryptamine (STP) to produce vasorelaxation and determined its underlying mechanisms of action. Isolated rat mesenteric arteries with and without functional endothelium were studied in an isometric contraction system in the presence or absence of pharmacological inhibitors. Amperometric experiments were used to measure the nitric oxide (NO) levels in CD31+ cells using flow cytometry. GH3 cells were used to measure Ca2+ currents using the whole cell patch clamp technique. STP caused endothelium-dependent and -independent relaxation in mesenteric rings. The endothelial-dependent relaxations in response to STP were markedly reduced by L-NAME (endothelial NO synthase-eNOS-inhibitor), jHydroxocobalamin (NO scavenger, 30 µM) and ODQ (soluble Guanylyl Cyclase-sGC-inhibitor, 10 µM), but were not affected by the inhibition of the formation of vasoactive prostanoids. These results were reinforced by the increased NO levels observed in the amperometric experiments with freshly dispersed CD31+ cells. The endothelium-independent effect appeared to involve the inhibition of voltage-gated Ca2+ channels, due to the inhibition of the concentration-response Ca2+ curves in depolarizing solution, the increased relaxation in rings that were pre-incubated with high extracellular KCl (80 mM), and the inhibition of macroscopic Ca2+ currents. The present findings show that the activation of the NO/sGC/cGMP pathway and the inhibition of gated-voltage Ca2+ channels are the mechanisms underlying the effect of STP on mesenteric arteries.
Subject(s)
Calcium Signaling/drug effects , Endothelium, Vascular/metabolism , Mesenteric Arteries/metabolism , Nitric Oxide/metabolism , Salicylates/pharmacology , Soluble Guanylyl Cyclase/metabolism , Tryptamines/pharmacology , Vasodilation/drug effects , Animals , Male , Rats , Rats, Wistar , Salicylates/chemistry , Tryptamines/chemistryABSTRACT
This study evaluated the receptor- and/or antioxidant stress-mediated mechanisms by which melatonin prevents the ovarian toxicity of cisplatin treatment. The expression of the MT1 receptor in mouse ovaries was investigated by immunohistochemistry. Pretreatment with melatonin (5, 10, or 20 mg/kg body weight, i.p.) before cisplatin (5 mg/kg body weight, i.p.) was administered to mice once daily for 3 days (phase I). The pharmacological modulation via melatonin type 1 and/or 2 receptors was analyzed by administration of receptor antagonists (luzindole: nonselective MT1/MT2 antagonist; 5 mg/kg body weight or 4-phenyl-2-propionamidotetralin: selective MT2 antagonist; 4 mg/kg body weight) once daily for 3 days, 15 min before the treatment with melatonin and cisplatin (phase II). Thereafter, the ovaries were harvested and used for histological (morphology and activation), immunohistochemical (PCNA, activated caspase-3 and bcl-2 expression), terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, and fluorescence (reactive oxygen species [ROS], glutathione [GSH], and active mitochondria levels) analyses. The expression of the MT1 protein in mouse ovaries was documented. Pretreatment with 20 mg/kg melatonin before cisplatin administration preserved the normal follicular morphology and cell proliferation rate, reduced apoptosis, ROS production, mitochondrial damage and increased GSH expression, as compared to the cisplatin treatment alone. Additionally, administration of the nonselective MT1/MT2 receptor antagonist inhibited the melatonin ovarian protection from the cytotoxic effects of cisplatin. However, administration of a selective MT2 antagonist did not modify the protective effects observed at 20 mg/kg melatonin. In conclusion, pretreatment with 20 mg/kg melatonin effectively protected the ovaries against cisplatin-induced damage. Moreover, the MT1 receptor and melatonin antioxidant effects mediated this cytoprotective activity.
Subject(s)
Antioxidants/metabolism , Cisplatin/toxicity , Melatonin/pharmacology , Ovary/drug effects , Receptor, Melatonin, MT1/metabolism , Animals , Apoptosis/drug effects , Apoptosis/physiology , Biomarkers , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Melatonin/administration & dosage , Mice , Ovary/cytology , Receptor, Melatonin, MT1/antagonists & inhibitors , Receptor, Melatonin, MT2/antagonists & inhibitors , Receptor, Melatonin, MT2/metabolism , Tetrahydronaphthalenes/pharmacology , Tryptamines/pharmacologyABSTRACT
Melatonin (MEL), the main product synthesized by the pineal gland, stimulates early and late stages of neurodevelopment in the adult brain. MEL increases dendrite length, thickness and complexity in the hilar and mossy neurons of hippocampus. Dendrite formation involves activation of Ca2+/Calmodulin (CaM)-dependent kinase II (CaMKII) by CaM. Previous work showed that MEL increased the synthesis and translocation of CaM, suggesting that MEL activates CaM-dependent enzymes by this pathway. In this work we investigated whether MEL stimulates dendrite formation by CaMKII activation in organotypic cultures from adult rat hippocampus. We found that the CaMKII inhibitor, KN-62, abolished the MEL stimulatory effects on dendritogenesis and that MEL increased the relative amount of CaM in the soluble fraction of hippocampal slices. Also, PKC inhibition abolished dendritogenesis, while luzindole, an antagonist of MEL receptors (MT1/2), partially blocked the effects of MEL. Moreover, autophosphorylation of CaMKII and PKC was increased in presence of MEL, as well as phosphorylation of ERK1/2. Our results indicate that MEL stimulates dendrite formation through CaMKII and the translocation of CaM to the soluble fraction. Dendritogenesis elicited by MEL also required PKC activation, and signaling through MT1/2 receptors was partially involved. Data strongly suggest that MEL could repair the loss of hippocampal dendrites that occur in neuropsychiatric disorders by increasing CaM levels and activation of CaMKII.
Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium/metabolism , Calmodulin/metabolism , Dendrites/metabolism , Hippocampus/metabolism , Melatonin/pharmacology , Animals , Dendrites/drug effects , Hippocampus/drug effects , Male , Neurogenesis/drug effects , Phosphorylation/drug effects , Protein Kinase C/metabolism , Rats, Wistar , Receptors, Melatonin/metabolism , Tryptamines/pharmacologyABSTRACT
For the treatment of chronic ocular diseases such as glaucoma, continuous instillations of eye drops are needed. However, frequent administrations of hypotensive topical formulations can produce adverse ocular surface effects due to the active substance or other components of the formulation, such as preservatives or other excipients. Thus the development of unpreserved formulations that are well tolerated after frequent instillations is an important challenge to improve ophthalmic chronic topical therapies. Furthermore, several components can improve the properties of the formulation in terms of efficacy. In order to achieve the mentioned objectives, we have developed formulations of liposomes (150-200 nm) containing components similar to those in the tear film and loaded with the hypotensive melatonin analog 5-methoxycarbonylamino-N-acetyltryptamine (5-MCA-NAT, 100 µM). These formulations were combined with mucoadhesive (sodium hyaluronate or carboxymethylcellulose) or amphiphilic block thermosensitive (poloxamer) polymers to prolong the hypotensive efficacy of the drug. In rabbit eyes, the decrease of intraocular pressure with 5-MCA-NAT-loaded liposomes that were dispersed with 0.2% sodium hyaluronate, 39.1±2.2%, was remarkably higher compared to other liposomes formulated without or with other bioadhesive polymers, and the effect lasted more than 8 hours. According to the results obtained in the present work, these technological strategies could provide an improved modality for delivering therapeutic agents in patients with glaucoma.
Subject(s)
Adhesives/chemistry , Chemistry, Pharmaceutical/methods , Liposomes/chemistry , Melatonin/analogs & derivatives , Polymers/chemistry , Tryptamines/chemistry , Tryptamines/pharmacology , Animals , Antihypertensive Agents/adverse effects , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Drug Liberation , Hydrogen-Ion Concentration , Intraocular Pressure/drug effects , Male , Osmolar Concentration , Particle Size , Rabbits , Tears/chemistry , Tears/drug effects , Tryptamines/adverse effects , ViscosityABSTRACT
In spite of the wide variety of drugs available for treating anxiety, this disorder continues to represent a worldwide health problem that is classified within the first 10 causes of disability. Therefore, the search continues for new antianxiety agents, particularly those not related to benzodiazepines. Even though melatonin has been prescribed as an anxiolytic drug, its use is currently limited due to its short half-life and photo-sensitivity, among other disadvantages. The present study explores the antianxiety properties of a new 1-N substituted melatonin analog, M3C, in pinealectomized rats submitted to two behavioral tests (the cumulative burying behavior paradigm and the elevated plus-maze). Results from both tests show that M3C is effective as an anxiolytic-like agent, at doses lower than any other melatonin analog previously reported. The blocking of these actions by luzindole together with the available data suggests that the anxiolytic properties of M3C are mediated by MT1 and MT2 receptors.
Subject(s)
Anti-Anxiety Agents/pharmacology , Melatonin/analogs & derivatives , Melatonin/pharmacology , Pineal Gland/surgery , Analysis of Variance , Animals , Anti-Anxiety Agents/chemistry , Defense Mechanisms , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Male , Maze Learning/drug effects , Melatonin/chemistry , Rats , Rats, Wistar , Reaction Time/drug effects , Statistics, Nonparametric , Tryptamines/pharmacologyABSTRACT
Indoleamine 2,3-dioxygenase (IDO) is an interferon-γ (IFN-γ)-induced tryptophan-degrading enzyme, producing kynurenine (KYN) that participates in the mechanism of tumor immune tolerance. Thus, IDO inhibition has been considered a strategy for anticancer therapy. The aim of this study was to identify whether the metabolites originated from the competitive routes of tryptophan metabolism, such as the serotonergic or N, N-dimethyltryptamine (DMT) pathways, have inhibitory effects on recombinant human IDO (rhIDO) activity. Serotonin and melatonin had no effect; on the other hand, tryptamine (TRY) and DMT modulated the activity of rhIDO as classical non-competitive inhibitors, with Ki values of 156 and 506 µM, respectively. This inhibitory effect was also observed on constitutively expressed or IFN-γ-induced IDO in the A172 human glioma cell line. TRY and DMT increased the cytotoxic activity of peripheral blood mononuclear cells (PBMCs) in co-culture assays. We conclude that the IDO inhibition by TRY and DMT contributed to a more effective tumor-reactive response by the PBMCs.
Subject(s)
Cytotoxicity, Immunologic/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Leukocytes, Mononuclear/drug effects , N,N-Dimethyltryptamine/pharmacology , Tryptamines/pharmacology , Binding, Competitive , Cell Line, Tumor , Cell Proliferation/drug effects , Coculture Techniques , Enzyme Assays , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kinetics , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/enzymology , Leukocytes, Mononuclear/immunology , Protein Binding , Recombinant Proteins/metabolism , Tryptophan/metabolismABSTRACT
Many cells in the organism besides pinealocytes, synthesize melatonin. Here, we evaluate both the mechanism of zymosan-induced melatonin synthesis and its autocrine effect in human colostral mononuclear cells. The synthesis of melatonin was induced by activation of the transcription factor nuclear factor kappa B (NF-κB), as either the blockade of the proteasome or the binding of NF-κB to DNA inhibits zymosan-induced melatonin synthesis. As observed in RAW 264.7 lineage cells, the dimer involved is RelA/c-Rel. Melatonin plays a direct role in mononuclear cell activity, increasing zymosan-induced phagocytosis by stimulating MT2 melatonin receptors and increasing the expression of dectin-1. This role was confirmed by the blockade of melatonin receptors using the competitive antagonist luzindole and the MT2 -selective partial agonist 4P-PDOT. In summary, we show that melatonin produced by immune-competent cells acts in an autocrine manner, enhancing the clearance of pathogens by increasing phagocyte efficiency. Given that these cells are present in human colostrum for 4 or 5 days after birth, this mechanism may be relevant for the protection of infant health.
Subject(s)
Colostrum/metabolism , Lectins, C-Type/metabolism , Leukocytes, Mononuclear/metabolism , Melatonin/biosynthesis , Phagocytosis/physiology , Adolescent , Adult , Animals , Cell Line , Colostrum/cytology , DNA-Binding Proteins/metabolism , Female , Humans , Infant, Newborn , Leukocytes, Mononuclear/cytology , Melatonin/antagonists & inhibitors , Mice , Nuclear Proteins/metabolism , Phagocytosis/drug effects , Proto-Oncogene Proteins c-rel , Tetrahydronaphthalenes/pharmacology , Transcription Factor RelA/metabolism , Tryptamines/pharmacologyABSTRACT
Immunomodulatory actions exerted by some classes of tryptamines, such as benzoyltryptamine analogues, suggest these molecules as promising candidates to develop new therapies to treat conditions associated to acute and chronic pain and inflammation. N-salicyloyltryptamine (STP) was observed to act as an anticonvulsive agent and exert antinociceptive effects in mouse. In the present work, we performed a screening of cytotoxic, cytoprotective, immunomodulatory, and redox properties of STP in RAW 264.7 macrophages challenged with hydrogen peroxide and LPS. Our results show that STP presents no cytotoxicity in the range of 0.001 to 1 µg/mL, but doses of 50 and 100 µg/mL caused loss of cell viability (IC(50) = 22.75 µg/mL). Similarly, STP at 0.001 to 1 µg/mL did not cause oxidative stress to RAW 264.7 cells, although it did not prevent cell death induced by H(2)O(2) 0.5 mM. At 1 µg/mL, STP reversed some redox and inflammatory parameters induced by LPS. These include thiol (sulfhydryl) oxidation, superoxide dismutase activation, and morphological changes associated to macrophage activation. Besides, STP significantly inhibited LPS-induced TNF-α and IL-1ß release, as well as CD40 and TNF-α protein upregulation. Signaling events induced by LPS, such as phosphorylation of ERK 1/2 and IκBα and p65 nuclear translocation (NF-kB activation) were also inhibited by STP. These data indicate that STP is able to modulate inflammatory parameters at doses that do not interfere in cell viability.
Subject(s)
Immunomodulation , Macrophage Activation/drug effects , Macrophages/drug effects , Salicylates/pharmacology , Tryptamines/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Gene Expression Regulation , Hydrogen Peroxide/pharmacology , I-kappa B Proteins/genetics , I-kappa B Proteins/immunology , Inhibitory Concentration 50 , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/immunology , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , NF-KappaB Inhibitor alpha , NF-kappa B/genetics , NF-kappa B/immunology , Oxidative Stress , Signal Transduction , Superoxide Dismutase/genetics , Superoxide Dismutase/immunology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Several studies indicate that wild free-living vertebrates seasonally regulate plasma glucocorticoids. However, not only glucocorticoids but also the amount of receptors is important in determining biological responses. In this context, seasonal regulation of glucocorticoid receptor (GR) is crucial to modulate the response to glucocorticoids. Rhinella arenarum is an anuran exhibiting seasonal variations in plasma glucocorticoids and also in the number of binding sites (B(max)) of the testicular cytosolic GR. In this work, we evaluated if the annual pattern of GR protein in the testis varies seasonally and, by an in vitro approach, the role of glucocorticoids, androgens, and melatonin in the regulation of the GR B(max) and protein level. For this purpose, testes were treated with two physiological concentrations of melatonin (40 and 200 pg/ml), with or without luzindole (melatonin-receptor antagonist); with testosterone, cyanoketone (inhibitor of steroidogenesis) or casodex (androgen-receptor antagonist); or with dexamethasone or RU486 (GR antagonist). After treatments, B(max) and protein level were determined by the binding of [(3)H]dexamethasone and Western blot, respectively. Results showed that GR protein decreases in the winter. The in vitro treatment with melatonin produced a biphasic effect on the B(max) with the lowest concentration decreasing this parameter by a receptor-mediated mechanism. However, melatonin had no effect on the GR protein level. Conversely, a high concentration of dexamethasone up-regulated the GR protein and androgens neither changed the B(max) nor the protein level. These findings suggest that seasonal changes in plasma melatonin and glucocorticoids modulate the effect of glucocorticoids in the testis of R. arenarum.
Subject(s)
Bufo marinus/metabolism , Glucocorticoids/metabolism , Receptors, Glucocorticoid/metabolism , Testis/metabolism , Anilides/pharmacology , Animals , Binding Sites , Blotting, Western/veterinary , Cyanoketone/pharmacology , Dexamethasone/pharmacology , Gene Expression Regulation , Glucocorticoids/blood , In Vitro Techniques , Kinetics , Male , Melatonin/metabolism , Melatonin/pharmacology , Mifepristone/pharmacology , Nitriles/pharmacology , Random Allocation , Receptors, Glucocorticoid/genetics , Seasons , Testis/drug effects , Testosterone/metabolism , Testosterone/pharmacology , Tosyl Compounds/pharmacology , Tryptamines/pharmacologyABSTRACT
The antagonism exerted by melatonin on the glucocorticoid response has been well established, being strongly dependent on the cellular context. Previously, we found that melatonin inhibits glucocorticoid receptor (GR) dissociation from the chaperone hetero-complex and nuclear translocation on mouse thymocytes. Here, by performing confocal fluorescence microscopy and the Number and Brightness assay we show that in newborn hamster kidney cells (BHK21) melatonin neither affects GR nuclear translocation nor GR homodimerization. Instead, co-immunoprecipitation studies suggest that physiological concentrations of melatonin impair GR interaction with the transcriptional intermediary factor 2 (TIF2). This melatonin effect was not blocked by the MT(1)/MT(2) receptor antagonist luzindole. Curiously, luzindole behaved as an antiglucocorticoid per se by impairing the glucocorticoid-dependent MMTV-driven gene expression affecting neither GR translocation nor GR-TIF2 interaction.
Subject(s)
Melatonin/pharmacology , Nuclear Receptor Coactivator 2/metabolism , Receptors, Glucocorticoid/metabolism , Active Transport, Cell Nucleus , Animals , Cell Line , Cricetinae , Cyclic AMP/metabolism , Dexamethasone/pharmacology , Dimerization , Gene Expression/drug effects , Glucocorticoids/pharmacology , Immunoprecipitation , Mammary Tumor Virus, Mouse , Microscopy, Fluorescence , Nuclear Receptor Coactivator 2/genetics , Receptors, Glucocorticoid/genetics , Receptors, Melatonin/antagonists & inhibitors , Receptors, Melatonin/genetics , Receptors, Melatonin/metabolism , Signal Transduction , Tryptamines/pharmacologyABSTRACT
Melatonin and its derivatives modulate the Plasmodium falciparum and Plasmodium chabaudi cell cycle. Flow cytometry was employed together with the nucleic acid dye YOYO-1 allowing precise discrimination between mono- and multinucleated forms of P. falciparum-infected red blood cell. The use of YOYO-1 permitted excellent discrimination between uninfected and infected red blood cells as well as between early and late parasite stages. Fluorescence intensities of schizont-stage parasites were about 10-fold greater than those of ring-trophozoite form parasites. Melatonin and related indolic compounds including serotonin, N-acetyl-serotonin and tryptamine induced an increase in the percentage of multinucleated forms compared to non-treated control cultures. YOYO-1 staining of infected erythrocyte and subsequent flow cytometry analysis provides a powerful tool in malaria research for screening of bioactive compounds.
Subject(s)
Erythrocytes/parasitology , Flow Cytometry/methods , Malaria/parasitology , Plasmodium falciparum/cytology , Staining and Labeling/methods , Animals , Benzoxazoles/analysis , Cell Cycle , Erythrocytes/drug effects , Erythrocytes/pathology , Fluorescence , Fluorescent Dyes/analysis , Humans , Life Cycle Stages/physiology , Malaria/pathology , Melatonin/pharmacology , Plasmodium chabaudi/cytology , Plasmodium chabaudi/drug effects , Plasmodium chabaudi/physiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/physiology , Quinolinium Compounds/analysis , Serotonin/pharmacology , Tryptamines/pharmacologyABSTRACT
In the present study, we analysed the molecular mechanism(s) by which melatonin directly affects ovarian function in the mare. In Experiment 1, follicles and corpora lutea (CL) were collected from slaughterhouse ovaries and analysed for melatonin (MT(1)) receptor mRNA and protein. In Experiment 2, CL were collected from slaughterhouse ovaries and cultured in Dulbecco's modified Eagle's medium-F12 medium (control medium) supplemented with 50 ng mL(-1) equine chorionic gonadotrophin (eCG), 1 nM-1 µM melatonin, 1 µM forskolin or 1 µM luzindole. Explants were cultured for 3 h in the presence of these drugs. Conditioned media were analysed for progesterone production; luteal cells were analysed for cholesterol side-chain cleavage enzyme (P450scc), a steroidogenic enzyme that converts cholesterol into pregnenolone. Both MT(1) receptor mRNA and protein were expressed in follicles and CL. Melatonin inhibited both the eCG- and forskolin-stimulated production of progesterone, as well as the forskolin-stimulated expression of P450scc, in equine luteal cells and the effect was dose-dependent. The inhibitory effect of melatonin was blocked by luzindole, a non-selective melatonin MT(1) and MT(2) receptor antagonist. The data support the presence of functional melatonin receptors in luteal cells and a regulatory role for melatonin in the endocrine function of the equine CL.