Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 186(26): 5719-5738.e28, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38056463

ABSTRACT

Tumor-associated hydrocephalus (TAH) is a common and lethal complication of brain metastases. Although other factors beyond mechanical obstructions have been suggested, the exact mechanisms are unknown. Using single-nucleus RNA sequencing and spatial transcriptomics, we find that a distinct population of mast cells locate in the choroid plexus and dramatically increase during TAH. Genetic fate tracing and intracranial mast-cell-specific tryptase knockout showed that choroid plexus mast cells (CPMCs) disrupt cilia of choroid plexus epithelia via the tryptase-PAR2-FoxJ1 pathway and consequently increase cerebrospinal fluid production. Mast cells are also found in the human choroid plexus. Levels of tryptase in cerebrospinal fluid are closely associated with clinical severity of TAH. BMS-262084, an inhibitor of tryptase, can cross the blood-brain barrier, inhibit TAH in vivo, and alleviate mast-cell-induced damage of epithelial cilia in a human pluripotent stem-cell-derived choroid plexus organoid model. Collectively, we uncover the function of CPMCs and provide an attractive therapy for TAH.


Subject(s)
Brain Neoplasms , Choroid Plexus , Hydrocephalus , Mast Cells , Humans , Brain Neoplasms/secondary , Choroid Plexus/metabolism , Choroid Plexus/pathology , Hydrocephalus/metabolism , Hydrocephalus/pathology , Mast Cells/metabolism , Mast Cells/pathology , Tryptases/cerebrospinal fluid , Neoplasm Metastasis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...