Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.020
Filter
1.
Inhal Toxicol ; 36(4): 261-274, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38836331

ABSTRACT

OBJECTIVE: Our work is focused on tungsten, considered as an emerging contaminant. Its environmental dispersion is partly due to mining and military activities. Exposure scenario can also be occupational, in areas such as the hard metal industry and specific nuclear facilities. Our study investigated the cerebral effects induced by the inhalation of tungsten particles. METHODS: Inhalation exposure campaigns were carried out at two different concentrations (5 and 80 mg/m3) in single and repeated modes (4 consecutive days) in adult rats within a nose-only inhalation chamber. Processes involved in brain toxicity were investigated 24 h after exposure. RESULTS AND DISCUSSION: Site-specific effects in terms of neuroanatomy and concentration-dependent changes in specific cellular actors were observed. Results obtained in the olfactory bulb suggest a potential early effect on the survival of microglial cells. Depending on the mode of exposure, these cells showed a decrease in density accompanied by an increase in an apoptotic marker. An abnormal phenotype of the nuclei of mature neurons, suggesting neuronal suffering, was also observed in the frontal cortex, and can be linked to the involvement of oxidative stress. The differential effects observed according to exposure patterns could involve two components: local (brain-specific) and/or systemic. Indeed, tungsten, in addition to being found in the lungs and kidneys, was present in the brain of animals exposed to the high concentration. CONCLUSION: Our data question the perceived innocuity of tungsten relative to other metals and raise hypotheses regarding possible adaptive or neurotoxic mechanisms that could ultimately alter neuronal integrity.


Subject(s)
Brain , Inhalation Exposure , Rats, Wistar , Tungsten , Animals , Tungsten/toxicity , Male , Inhalation Exposure/adverse effects , Brain/drug effects , Brain/metabolism , Rats , Biomarkers/metabolism , Microglia/drug effects , Microglia/metabolism , Neurons/drug effects , Neurons/metabolism , Lung/drug effects , Lung/metabolism , Olfactory Bulb/drug effects , Olfactory Bulb/metabolism , Apoptosis/drug effects , Oxidative Stress/drug effects
2.
Sci Rep ; 14(1): 13840, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879660

ABSTRACT

In this research, an upgraded and environmentally friendly process involving WO3/Co-ZIF nanocomposite was used for the removal of Cefixime from the aqueous solutions. Intelligent decision-making was employed using various models including Support Vector Regression (SVR), Genetic Algorithm (GA), Artificial Neural Network (ANN), Simulation Optimization Language for Visualized Excel Results (SOLVER), and Response Surface Methodology (RSM). SVR, ANN, and RSM models were used for modeling and predicting results, while GA and SOLVER models were employed to achieve the optimal conditions for Cefixime degradation. The primary goal of applying different models was to achieve the best conditions with high accuracy in Cefixime degradation. Based on R analysis, the quadratic factorial model in RSM was selected as the best model, and the regression coefficients obtained from it were used to evaluate the performance of artificial intelligence models. According to the quadratic factorial model, interactions between pH and time, pH and catalyst amount, as well as reaction time and catalyst amount were identified as the most significant factors in predicting results. In a comparison between the different models based on Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R2 Score) indices, the SVR model was selected as the best model for the prediction of the results, with a higher R2 Score (0.98), and lower MAE (1.54) and RMSE (3.91) compared to the ANN model. Both ANN and SVR models identified pH as the most important parameter in the prediction of the results. According to the Genetic Algorithm, interactions between the initial concentration of Cefixime with reaction time, as well as between the initial concentration of Cefixime and catalyst amount, had the greatest impact on selecting the optimal values. Using the Genetic Algorithm and SOLVER models, the optimum values for the initial concentration of Cefixime, pH, time, and catalyst amount were determined to be (6.14 mg L-1, 3.13, 117.65 min, and 0.19 g L-1) and (5 mg L-1, 3, 120 min, and 0.19 g L-1), respectively. Given the presented results, this research can contribute significantly to advancements in intelligent decision-making and optimization of the pollutant removal processes from the environment.


Subject(s)
Cefixime , Machine Learning , Nanocomposites , Oxides , Tungsten , Nanocomposites/chemistry , Oxides/chemistry , Tungsten/chemistry , Cefixime/chemistry , Neural Networks, Computer , Cobalt/chemistry , Algorithms , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents/chemistry , Water Purification/methods
3.
J Environ Manage ; 363: 121332, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850906

ABSTRACT

This paper presents the synthesis of visible light-responsive ternary nanocomposites composed of cuprous oxide (Cu2O), tungsten trioxide (WO3), and titanium dioxide (TiO2) with varying weight percentages (wt.%) of the Cu2O. The resulting Cu2O/WO3/TiO2 (CWT) nanocomposites exhibited band gap energy ranging from 2.35 to 2.90 eV. Electrochemical and photoelectrochemical (PEC) studies confirmed a reduced recombination rate of photoexcited charge carriers in the CWT nanocomposites, facilitated by a direct Z-scheme heterojunction. The 0.50CWT nanocomposite demonstrated superior photodegradation activity (2.29 × 10-2 min-1) against Reactive Black 5 (RB5) dye under visible light activation. Furthermore, the 0.50CWT nanocomposite exhibited excellent stability with 80.51% RB5 photodegradation retention after five cycles. The 0.50CWT electrode achieved a maximum specific capacitance of 66.32 F/g at 10 mA/g current density, with a capacitance retention of 95.17% after 1000 charge-discharge cycles, affirming its stable and efficient supercapacitor performance. This was supported by well-defined peaks in cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) curves, indicating pseudocapacitive properties.


Subject(s)
Copper , Electrodes , Light , Nanocomposites , Titanium , Tungsten , Nanocomposites/chemistry , Titanium/chemistry , Tungsten/chemistry , Copper/chemistry , Catalysis , Oxides/chemistry
4.
PeerJ ; 12: e17601, 2024.
Article in English | MEDLINE | ID: mdl-38938608

ABSTRACT

Background: Tungsten (W) is an emerging heavy metal pollutant, yet research remains scarce on the biomonitor and sensitive biomarkers for W contamination. Methods: In this study, celery and pepper were chosen as study subjects and subjected to exposure cultivation in solutions with five different levels of W. The physiological and biochemical toxicities of W on these two plants were systematically analyzed. The feasibility of utilizing celery and pepper as biomonitor organisms for W contamination was explored and indicative biomarkers were screened. Results: The results indicated that W could inhibit plants' root length, shoot height, and fresh weight while concurrently promoting membrane lipid peroxidation. Additionally, W enhanced the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and total antioxidant capacity (TAOC) to counteract oxidative damage. From a physiological perspective, pepper exhibited potential as a biomonitor for W contamination. Biochemical indicators suggested that SOD could serve as a sensitive biomarker for W in celery, while TAOC and POD were more suitable for the roots and leaves of pepper. In conclusion, our study investigated the toxic effects of W on celery and pepper, contributing to the understanding of W's environmental toxicity. Furthermore, it provided insights for selecting biomonitor organisms and sensitive biomarkers for W contamination.


Subject(s)
Apium , Capsicum , Tungsten , Apium/drug effects , Capsicum/drug effects , Capsicum/growth & development , Capsicum/metabolism , Tungsten/toxicity , Lipid Peroxidation/drug effects , Superoxide Dismutase/metabolism , Antioxidants/metabolism , Catalase/metabolism , Biomarkers/metabolism , Ecotoxicology/methods , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Plant Leaves/drug effects , Plant Leaves/metabolism , Oxidative Stress/drug effects
5.
Chemosphere ; 361: 142556, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851499

ABSTRACT

In this study, the Fe(III)/WS2/peroxymonosulfate (PMS) system was found to remove up to 97% of cyclohexanecarboxylic acid (CHA) within 10 min. CHA is a model compound for naphthenic acids (NAs), which are prevalent in petroleum industrial wastewater. The addition of WS2 effectively activated the Fe(III)/PMS system, significantly enhancing its ability to produce reactive oxidative species (ROS) for the oxidation of CHA. Further experimental results and characterization analyses demonstrated that the metallic element W(IV) in WS2 could provide electrons for the direct reduction of Fe(III) to Fe(II), thus rapidly activating PMS and initiating a chain redox process to produce ROS (SO4•-, •OH, and 1O2). Repeated tests and practical exploratory experiments indicated that WS2 exhibited excellent catalytic performance, reusability and anti-interference capacity, achieving efficient degradation of commercial NAs mixtures. Therefore, applying WS2 to catalyze the Fe(III)/PMS system can overcome speed limitations and facilitate simple, economical engineering applications.


Subject(s)
Oxidation-Reduction , Peroxides , Tungsten , Peroxides/chemistry , Tungsten/chemistry , Catalysis , Carboxylic Acids/chemistry , Water Pollutants, Chemical/chemistry , Sulfides/chemistry , Ferric Compounds/chemistry , Wastewater/chemistry , Petroleum , Iron/chemistry , Reactive Oxygen Species/chemistry
6.
Talanta ; 277: 126430, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38878510

ABSTRACT

In the present work, we developed an aptasensor to determine chloramphenicol (CAP) based on the dual signal output of photoelectrochemistry (PEC) and colorimetry. The Fe3+-doped porous tungsten trioxide was prepared by sol-gel method and coated on the ITO conductive glass to form ITO/p-W(Fe)O3. After assembling the captured DNA (cDNA) and the aptamer of CAP (apt) successively, the constructed ITO/p-W(Fe)O3-cDNA/apt aptasensor exhibited excellent photocurrent response under visible light irradiation in the presence of glucose, which provided the feasibility for PEC measurement with high sensitivity. In the presence of CAP, the apt left the ITO/p-W(Fe)O3 surface and AuNPs linked on the probe DNA would be assembled on it, which led to the decrease of photocurrent. Thanks to the oxidase-mimic catalytic performance of AuNPs and the recycling catalytic hydrolysis by exonuclease I, the measurement signal of the aptasensor could be amplified significantly, and the photocurrent decrease of the aptasensor was linearly related to the concentration of CAP in the range of 1.0 pM-10.0 nM and low detection limit was 0.36 pM. Meanwhile, the H2O2 produced from catalytic oxidation of glucose could oxidize TMB to blue oxTMB under HRP catalysis, which absorbance at 652 nm was linearly related to the concentration of CAP in the range of 5.0 pM-10.0 nM and low detection limit was 1.72 pM. Therefore, an aptasensor that determine CAP in real samples was successfully constructed with good precision of the relative standard deviation less than 5.7 % for PEC method and 7.3 % for colorimetric method, which can meet the analysis needs in different scenarios.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Chloramphenicol , Colorimetry , Electrochemical Techniques , Gold , Metal Nanoparticles , Chloramphenicol/analysis , Chloramphenicol/chemistry , Aptamers, Nucleotide/chemistry , Colorimetry/methods , Biosensing Techniques/methods , Electrochemical Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Oxides/chemistry , Photochemical Processes , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Tungsten
7.
Environ Res ; 257: 119372, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38852832

ABSTRACT

The reduction of carbon dioxide (CO2) and nitrogen (N2) to value-added products is a substantial area of research in the fields of sustainable chemistry and renewable energy that aims at reducing greenhouse gas emissions and the production of alternative fuels and chemicals. The current work deals with the synthesis of pyrochlore-type europium stannate (Eu2Sn2O7: EuSnO), tungsten disulfide (WS2:WS), and novel EuSnO/WS heterostructure by a simple and facile co-precipitation-aided hydrothermal method. Using different methods, the morphological and structural analyses of the prepared samples were characterized. It was confirmed that a heterostructure was formed between the cubic EuSnO and the layered WS. Synthesized materials were used for photocatalytic CO2 and N2 reduction under UV and visible light. The amount of CO and CH4 evolved due to CO2 reduction is high in EuSnO/WS (CO = 104, CH4 = 64 µmol h-1 g-1) compared to pure EuSnO (CO = 36, CH4 = 70 µmol h-1 g-1) and WS (CO = 22, CH4 = 1.8 µmol h-1 g-1) under visible light. The same trend was observed even in the N2 fixation reaction under visible light, and the amount of NH4+ produced was found to be 13, 26, and 41 µmol h-1 g-1 in the presence of WS, EuSnO and EuSnO/WS, respectively. Enhanced light-driven activity towards CO2 and N2 reduction reactions in EuSnO/WS is due to the efficient charge separation through the formation of type-II heterostructure, which is in part associated with photocurrent response, photoluminescence, and electrochemical impedence spectroscopic (EIS) results. The EuSnO/WS heterostructure's exceptional stability and reusability may pique the attention of pyrochlore-based composite materials in photocatalytic energy and environmental applications.


Subject(s)
Carbon Dioxide , Nitrogen Fixation , Carbon Dioxide/chemistry , Light , Europium/chemistry , Disulfides/chemistry , Oxidation-Reduction , Tungsten/chemistry , Catalysis , Tungsten Compounds/chemistry
8.
Chemosphere ; 359: 142316, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735501

ABSTRACT

In recent years, the removal organic pollutants from wastewater by advanced oxidation processes, especially photocatalysis, has become a meaningful approach due to its eco-friendliness and low cost. Herein, staggered type-II Bi2WO6/WO3 heterojunction photocatalysts were prepared by a facile hydrothermal route and investigated by modern physicochemical methods (X-ray diffraction, scanning electron microscopy, low-temperature nitrogen adsorption-desorption, and diffuse reflectance spectroscopy). The optimized BWOW-5 photocatalyst exhibited a H2O2-assisted photocatalytic methylene blue removal efficiency of 94.1% (k = 0.01414 min-1) within 180 min under optimal reaction conditions, which is much higher than that of unmodified Bi2WO6 and WO3 due to efficient separation of the photogenerated charge carriers. The trapping experiments demonstrated that photogenerated hydroxyl radicals and holes play a key role in the photodegradation reaction. Moreover, the optimized BWOW-5 heterojunction photocatalyst exhibited excellent activity in the H2O2-assisted degradation of other pollutants, namely phenol, isoniazid, levofloxacin, and dibenzothiophene with the removal rate of 63.1, 73.6, 95.0, and 72.4%, respectively. This investigation offers a design strategy for Bi2WO6-based multifunctional photocatalytic composites with improved activity for organic pollutant degradation.


Subject(s)
Bismuth , Oxides , Tungsten , Wastewater , Water Pollutants, Chemical , Catalysis , Wastewater/chemistry , Tungsten/chemistry , Water Pollutants, Chemical/chemistry , Oxides/chemistry , Bismuth/chemistry , Hydrogen Peroxide/chemistry , Photolysis , Methylene Blue/chemistry , Waste Disposal, Fluid/methods , Photochemical Processes , Oxidation-Reduction , Water Purification/methods , Tungsten Compounds/chemistry
9.
Environ Int ; 188: 108774, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38810497

ABSTRACT

Fusion energy investigation has stepped to a new stage adopting deuterium and tritium as fuels from the previous stage concentrating hydrogen plasma physics. Special radiation safety issues would be introduced during this stage. In addition to industrial and military uses, tungsten is also regarded as the most promising plasma facing material for fusion reactors. During the operation of fusion reactors, tungsten-based plasma facing materials can be activated via neutron nuclear reaction. Meanwhile, activated tungsten dust can be produced when high-energy plasma interacts with the tungsten-based plasma facing materials, namely plasma wall interaction. Activated tungsten dust would be an emerging environmental pollutant with radiation toxicity containing various radionuclides in addition to the chemical toxicity of tungsten itself. Nonetheless, the historical underestimation of its environmental availability has led to limited research on tungsten compared to other environmental contaminants. This paper presents the first systematic review on the safety issue of emerging activated tungsten dust, encompassing source terms, environmental behaviors, and health effects. The key contents are as follows: 1) to detail the source terms of activated tungsten dust from aspects of tungsten basic properties, generation mechanism, physical morphology and chemical component, radioactivity, as well as potential release pathways, 2) to illustrate the environmental behaviors from aspects of atmospheric dispersion and deposition, transformation and migration in soil, as well as plant absorption and distribution, 3) to identify the toxicity and health effects from aspects of toxicity to plants, distribution in human body, as well as health effects by radiation and chemical toxicity, 4) based on the research progress, research and development issues needed are also pointed out to better knowledge of safety issue of activated tungsten dust, which would be beneficial to the area of fusion energy and ecological impact caused by the routine tungsten related industrial and military applications.


Subject(s)
Dust , Tungsten , Dust/analysis , Humans
10.
Waste Manag ; 184: 10-19, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788498

ABSTRACT

Solid waste challenges in both the tungsten and photovoltaic industries present significant barriers to achieving carbon neutrality. This study introduces an innovative strategy for the efficient extraction of valuable metals from hazardous tungsten leaching residue (W-residue) by leveraging photovoltaic silicon kerf waste (SKW) as a silicothermic reducing agent. W-residue contains 26.2% valuable metal oxides (WO3, CoO, Nb2O5, and Ta2O5) and other refractory oxides (SiO2, TiO2, etc.), while micron-sized SKW contains 91.9% Si with a surface oxide layer. The impact of SKW addition on the silicothermic reduction process for valuable metal oxides in W-residue was investigated. Incorporating SKW and Na2CO3 flux enables valuable metal oxides from W-residue to be effectively reduced and enriched as a valuable alloy phase, with unreduced refractory oxides forming a harmless slag phase during the Na2O-SiO2-TiO2 slag refining process. This process achieved an overall recovery yield of valuable metals of 91.7%, with individual recovery yields of W, Co, and Nb exceeding 90% with the addition of 8 wt.% SKW. This innovative approach not only achieves high-value recovery from W-residue and utilization of SKW but also minimizes environmental impact through an efficient and eco-friendly recycling pathway. The strategy contributes significantly to the establishment of a resource-efficient circular economy, wherein the recovered high-value alloy phase return to the tungsten supply chain, and the harmless slag phase become raw materials for microcrystalline glass production.


Subject(s)
Industrial Waste , Recycling , Tungsten , Tungsten/chemistry , Industrial Waste/analysis , Recycling/methods , Oxides/chemistry , Solid Waste/analysis , Waste Management/methods , Metals/chemistry , Carbonates/chemistry
11.
Biosens Bioelectron ; 259: 116387, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38754194

ABSTRACT

The incidence of esophageal cancer is positively associated with fumonisin contamination. It is necessary to develop methods for the rapid detection of fumonisins. In this work, a self-powered photoelectrochemical aptamer sensor based on ZnIn2S4/WO3 photoanode and Au@W-Co3O4 photocathode is proposed for the sensitive detection of fumonisin B1 (FB1). Among them, under visible light irradiation, the Z-type heterostructure of ZnIn2S4/WO3 acts as a photoanode to improve the electron transfer rate, which contributes to the enhancement of the photocathode signal and lays the foundation for a wider detection range. The Au@W-Co3O4 photocathode as a sensing interface reduces the probability of false positives (comparison of anode sensing platforms). The PEC sensor has a good working performance in the detection range (10 pg/mL-1000 ng/mL) with a detection limit of 2.7 pg/mL (S/N = 3). In addition, the sensor offers good selectivity, stability and excellent recoveries in real sample analysis. This work is expected to play a role in the field of analyzing environmental toxins.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Fumonisins , Limit of Detection , Fumonisins/analysis , Fumonisins/chemistry , Aptamers, Nucleotide/chemistry , Tungsten/chemistry , Electrodes , Oxides/chemistry , Gold/chemistry , Humans , Light , Zinc/chemistry
12.
ACS Appl Mater Interfaces ; 16(20): 25879-25891, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718301

ABSTRACT

Biological imaging-guided targeted tumor therapy has been a soughtafter goal in the field of cancer diagnosis and treatment. To this end, we proposed a strategy to modulate surface plasmon resonance and endow WO3-x nanoparticles (NPs) with enzyme-like catalytic properties by doping Fe2+ in the structure of the NPs. Doping of the Fe2+ introduced oxygen vacancies into the structure of the NPs, inducing a red shift of the maximum absorption wavelength into the near-infrared II (NIR-II) region and enhancing the photoacoustic (PA) and photothermal properties of the NPs for more effective imaging-guided cancer therapy. Under NIR-II laser irradiation, the Fe-WO3-x NPs produced very strong NIR-II PA and photothermal effects, which significantly enhanced the PA imaging and photothermal treatment effects. On the other hand, Fe2+ in Fe-WO3-x could undergo Fenton reactions with H2O2 in the tumor tissue to generate ·OH for chemodynamic therapy. In addition, Fe-WO3-x can also catalyze the above reactions to produce more reactive oxygen species (ROS) and induce the oxidation of NADH to interfere with intracellular adenosine triphosphate (ATP) synthesis, thereby further improving the efficiency of cancer therapy. Specific imaging of tumor tissue and targeted synergistic therapy was achieved after ligation of a MUC1 aptamer to the surface of the Fe-WO3-x NPs by the complexing of -COOH in MUC1 with tungsten ions on the surface of the NPs. These results demonstrated that Fe-WO3-x NPs could be a promising diagnosis and therapeutic agent for cancer. Such a study opens up new avenues into the rational design of nanodiagnosis and treatment agents for NIR-II PA imaging and cancer therapy.


Subject(s)
Photoacoustic Techniques , Surface Plasmon Resonance , Tungsten , Animals , Humans , Mice , Tungsten/chemistry , Infrared Rays , Oxides/chemistry , Neoplasms/diagnostic imaging , Neoplasms/therapy , Neoplasms/drug therapy , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Cell Line, Tumor , Reactive Oxygen Species/metabolism
13.
Int J Biol Macromol ; 269(Pt 2): 132156, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729480

ABSTRACT

Reasonable design of non-noble metal catalysts with hollow open structure for hydrodeoxygenation (HDO) of lignin derivatives to value-added chemicals is of great significance but challenging. Herein, a novel MOF-derived multilayer hollow sphere coated nickel­tungsten bimetallic catalyst (Ni2-WOx@CN-700) was fabricated via by confined pyrolysis strategy using bimetallic MOFs as a self-sacrificial template, which exhibits robust activity for the typical model HDO of vanillin to 2-methoxy-4-methylphenol (Yield of 100 % at 140 °C for no less than 10 cycles). The characterizations revealed that WOx facilitated the dispersion of Ni nanoparticles and adjusted the acidic capacity of the catalyst through the formed Ni-WOx heterojunction. Density functional theory (DFT) calculations confirms that WOx species enhanced the electron-rich nature of the active sites, while the adsorption energies of H2 and vanillin on Ni-WOx decreased from -0.572 eV and - 0.622 eV on Ni to -3.969 eV and - 4.922 eV, respectively. These results further indicated that the high activity of Ni2-WOx@CN-700 was attributed to the Ni-WOx heterojunction. Based on the characterizations and the thermodynamic calculations, the reaction mechanism was proposed. In addition, the catalyst shows good substrate universality, which enables its good commercial application prospect.


Subject(s)
Benzaldehydes , Nickel , Catalysis , Nickel/chemistry , Benzaldehydes/chemistry , Tungsten/chemistry , Lignin/chemistry , Thermodynamics , Metal-Organic Frameworks/chemistry , Adsorption , Density Functional Theory
14.
Int J Biol Macromol ; 270(Pt 1): 132342, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750851

ABSTRACT

This study synthesized biocomposites containing starch and WO3 at varying ratios of 10 %, 20 %, 30 %, 40 %, and 50 % and assessed their thermal and radiation-shielding properties. These biocomposites were characterized using Fourier-transform infrared spectroscopy, X-ray diffraction (XRD) analysis, particle-size distribution assessments, scanning electron microscopy-energy dispersive X-ray spectroscopy, and thermogravimetric analysis-differential thermogravimetry measurements. Furthermore, the linear attenuation coefficients of the biocomposites were experimentally measured using an NaI(Tl) gamma spectrometry system and theoretically computed using XCOM and GAMOS simulations for comparisons. The XRD and particle-size distribution profiles of the WO3.2H2O powder, respectively, demonstrated evident diffraction peaks and favorable pore-size distributions. Morphological characterizations revealed that the WO3 particles were homogeneously dispersed throughout the starch matrix without any agglomeration. Comparisons of the thermal degradation rates revealed that the pure starch and starch +50%WO3 biocomposite began decomposing at approximately 200°Cand 300 °C, respectively, indicating that increasing WO3 proportions enhanced thermal stability. Furthermore, the starch +50%WO3 biocomposite demonstrated the highest experimental linear attenuation coefficient, with a value of 0.2510 ± 0.0848 cm-1 at a gamma energy of 662 keV. Meanwhile, XCOM and GAMOS simulations revealed theoretical attenuation coefficients of 0.1229 and 0.1213 cm-1 for pure starch and 0.2202 cm-1 and 0.2178 cm-1 for the starch +50%WO3 biocomposite at 662 keV, respectively.


Subject(s)
Oxides , Starch , Tungsten , Starch/chemistry , Tungsten/chemistry , Oxides/chemistry , Photons , Thermogravimetry , X-Ray Diffraction , Particle Size , Spectroscopy, Fourier Transform Infrared , Temperature
15.
Anal Chem ; 96(21): 8814-8821, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751335

ABSTRACT

Highly responsive interface of semiconductor nanophotoelectrochemical materials provides a broad development prospect for the identification of low-abundance cancer marker molecules. This work innovatively proposes an efficient blank WO3/SnIn4S8 heterojunction interface formed by self-assembly on the working electrode for interface regulation and photoregulation. Different from the traditional biomolecular layered interface, a hydrogel layer containing manganese dioxide with a wide light absorption range is formed at the interface after an accurate response to external immune recognition. The formation of the hydrogel layer hinders the effective contact between the heterojunction interface and the electrolyte solution, and manganese dioxide in the hydrogel layer forms a strong competition between the light source and the substrate photoelectric material. The process effectively improves the carrier recombination efficiency at the interface, reduces the interface reaction kinetics and photoelectric conversion efficiency, and thus provides strong support for target identification. Taking advantage of the process, the resulting biosensors are being explored for sensitive detection of human epidermal growth factor receptor 2, with a limit of detection as low as 0.037 pg/mL. Also, this study contributes to the advancement of photoelectrochemical biosensing technology and opens up new avenues for the development of sensitive and accurate analytical tools in the field of bioanalysis.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Manganese Compounds , Oxides , Receptor, ErbB-2 , Humans , Electrochemical Techniques/methods , Oxides/chemistry , Manganese Compounds/chemistry , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Hydrogels/chemistry , Photochemical Processes , Limit of Detection , Electrodes , Immunoassay/methods , Tungsten/chemistry
16.
Occup Med (Lond) ; 74(4): 323-327, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38702919

ABSTRACT

A 38-year-old woman experienced a persistent dry cough and progressively worsening dyspnoea for 2 years. Spirometry testing revealed a moderate-to-severe restrictive abnormality. High-resolution chest computed tomography showed diffuse reticulonodular opacities. A lung biopsy disclosed alveolar parenchymal inflammation and fibrosis with bronchiolocentric features, prompting consideration of interstitial pneumonia. Following a thorough investigation of her occupational history and an on-site inspection, it was discovered that the patient had been grinding drill bits designed for printed circuit boards for 8 years, exposing her to hard metals. Mineralogical analyses confirmed excessive tungsten in urine, serum and hair, leading to a diagnosis of hard metal lung disease due to tungsten carbide-cobalt exposure. After discontinuing exposure and commencing corticosteroid therapy, her symptoms, pulmonary function and imaging showed modest improvement. This case highlights the significance of assessing occupational history in patients with interstitial pneumonia and understanding industrial hazards for accurate diagnosis and care.


Subject(s)
Lung Diseases, Interstitial , Occupational Diseases , Occupational Exposure , Humans , Female , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/chemically induced , Adult , Occupational Exposure/adverse effects , Occupational Diseases/diagnosis , Tomography, X-Ray Computed , Tungsten/adverse effects , Alloys/adverse effects , Cobalt/adverse effects , Lung/pathology , Lung/diagnostic imaging
17.
ACS Infect Dis ; 10(6): 1890-1895, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38738652

ABSTRACT

Currently used visible light catalysts either operate with high-power light sources or require prolonged periods of time for catalytic reactions. This presents a limitation regarding facile application in indoor environments and spaces frequented by the public. Furthermore, this gives rise to elevated power consumption. Here, we enhance photocatalytic performance with blue TiO2 and WO3 complexes covalently coupled through an organic molecule, 3-mercaptopropionic acid, under indoor light. Antibacterial experiments against 108 CFU/mL Escherichia coli (E. coli) suspensions were conducted under indoor light exposure conditions. They showed a sterilization effect of almost 90% within 70 min and nearly 100% after 110 min. The complex generates reactive oxygen species (ROS), such as •OH and O2•-, under natural air conditions. We also showed that h+ and •OH are important for sterilizing E. coli using common scavengers. This research highlights the potential of these complexes to generate ROS, effectively playing a crucial role in antibacterial effects under indoor light.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Light , Reactive Oxygen Species , Titanium , Tungsten , Escherichia coli/drug effects , Escherichia coli/radiation effects , Titanium/chemistry , Titanium/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tungsten/chemistry , Tungsten/pharmacology , Catalysis , Reactive Oxygen Species/metabolism , Oxides/pharmacology , Oxides/chemistry , Microbial Sensitivity Tests
18.
Anaerobe ; 87: 102855, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614289

ABSTRACT

OBJECTIVES: The objective of this study was to investigate the effects of medium composition on CO fermentation by Clostridium carboxidivorans. The focus was to reduce the medium cost preserving acceptable levels of solvent production. METHODS: Yeast extract (YE) concentration was set in the range of 0-3 g/L. Different reducing agents were investigated, including cysteine-HCl 0.6 g/L, pure cysteine 0.6 g/L, sodium sulphide (Na2S) 0.6 g/L, cysteine-sodium sulphide 0.6 g/L and cysteine-sodium sulphide 0.72 g/L. The concentration of the metal solution was decreased down to 25 % of the standard value. Fermentation tests were also carried out with and without tungsten or selenium. RESULTS: The results demonstrated that under optimized conditions, namely yeast extract (YE) concentration set at 1 g/L, pure cysteine as the reducing agent and trace metal concentration reduced to 75 % of the standard value, reasonable solvent production was achieved in less than 150 h. Under these operating conditions, the production levels were found to be 1.39 g/L of ethanol and 0.27 g/L of butanol. Furthermore, the study revealed that selenium was not necessary for C. carboxidivorans fermentation, whereas the presence of tungsten played a crucial role in both cell growth and solvent production. CONCLUSIONS: The optimization of the medium composition in CO fermentation by Clostridium carboxidivorans is crucial for cost-effective solvent production. Tuning the yeast extract (YE) concentration, using pure cysteine as the reducing agent and reducing trace metal concentration contribute to reasonable solvent production within a relatively short fermentation period. Tungsten is essential for cell growth and solvent production, while selenium is not required.


Subject(s)
Bioreactors , Clostridium , Culture Media , Fermentation , Clostridium/metabolism , Clostridium/growth & development , Culture Media/chemistry , Bioreactors/microbiology , Carbon Monoxide/metabolism , Ethanol/metabolism , Selenium/metabolism , Butanols/metabolism , Tungsten/metabolism
19.
Environ Sci Pollut Res Int ; 31(22): 32200-32211, 2024 May.
Article in English | MEDLINE | ID: mdl-38644427

ABSTRACT

F-doped V2O5-WO3/TiO2 catalyst has been confirmed to have excellent denitration activity at low temperatures. Since the V2O5-WO3/TiO2 catalyst is a structure-sensitive catalyst, the loading order of V2O5 and WO3 may affect its denitration performance. In this paper, a series of F-doped V2O5-WO3/TiO2 catalysts with different V2O5 and WO3 loading orders were synthesized to investigate the effect of denitration performance at low temperatures. It was found that the loading orders led to significant gaps in denitration performance in the range of 120-240 °C. The results indicated loading WO3 first better utilized the oxygen vacancies on the TiF carrier promoting the generation of reduced vanadium species. In addition, loading WO3 first facilitated the dispersion of V2O5 thus enhanced the NH3 adsorption capacity of VWTiF. In situ DRIFT verified the rapid reaction between NO2, nitrate, and nitrite species and adsorbed NH3 over the VWTiF, confirming that the NH3 selective catalytic reduction (NH3-SCR) reaction over VWTiF at 240 °C proceeded by the Langmuir-Hinshelwood (L-H) mechanism. This research established the constitutive relationship between the loading order of V2O5 and WO3 and the denitration performance of the F-doped VWTi catalyst providing insights into the catalyst design process.


Subject(s)
Titanium , Tungsten , Vanadium , Tungsten/chemistry , Catalysis , Titanium/chemistry , Vanadium/chemistry , Oxides/chemistry , Vanadium Compounds/chemistry , Adsorption
20.
PeerJ ; 12: e17200, 2024.
Article in English | MEDLINE | ID: mdl-38577416

ABSTRACT

Background: Dayu County, a major tungsten producer in China, experiences severe heavy metal pollution. This study evaluated the pollution status, the accumulation characteristics in paddy rice, and the potential ecological risks of heavy metals in agricutural soils near tungsten mining areas of Dayu County. Furthermore, the impacts of soil properties on the accumulation of heavy metals in soil were explored. Methods: The geo-accumulation index (Igeo), the contamination factor (CF), and the pollution load index (PLI) were used to evaluate the pollution status of metals (As, Cd, Cu, Cr, Pb, Mo, W, and Zn) in soils. The ecological risk factor (RI) was used to assess the potential ecological risks of heavy metals in soil. The health risks and accumulation of heavy metals in paddy rice were evaluated using the health risk index and the translocation factor (TF), respectively. Pearson's correlation coefficient was used to discuss the influence of soil factors on heavy metal contents in soil. Results: The concentrations of metals exceeded the respective average background values for soils (As: 10.4, Cd: 0.10, Cu: 20.8, Cr: 48.0, Pb: 32.1, Mo: 0.30, W: 4.93, Zn: 69.0, mg/kg). The levels of As, Cd, Mo, and tungsten(W) exceeded the risk screening values for Chinese agricultural soil contamination and the Dutch standard. The mean concentrations of the eight tested heavy metals followed the order FJ-S > QL > FJ-N > HL > CJ-E > CJ-W, with a significant distribution throughout the Zhangjiang River basin. Heavy metals, especially Cd, were enriched in paddy rice. The Igeo and CF assessment indicated that the soil was moderately to heavily polluted by Mo, W and Cd, and the PLI assessment indicated the the sites of FJ-S and QL were extremely severely polluted due to the contribution of Cd, Mo and W. The RI results indicated that Cd posed the highest risk near tungsten mining areas. The non-carcinogenic and total carcinogenic risks were above the threshold values (non-carcinogenic risk by HQ > 1, carcinogenic risks by CR > 1 × 10-4 a-1) for As and Cd. Correlation analysis indicated that K2O, Na2O, and CaO are main factors affecting the accumulation and migration of heavy metals in soils and plants. Our findings reveal significant contamination of soils and crops with heavy metals, especially Cd, Mo, and W, near mining areas, highlighting serious health risks. This emphasizes the need for immediate remedial actions and the implementation of stringent environmental policies to safeguard health and the environment.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Soil , Tungsten/analysis , Cadmium/analysis , Lead/analysis , Environmental Monitoring , Risk Assessment , Soil Pollutants/analysis , Metals, Heavy/analysis , Mining , China
SELECTION OF CITATIONS
SEARCH DETAIL