Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 391
Filter
1.
J Agric Food Chem ; 72(27): 15284-15292, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38918953

ABSTRACT

UDP-glucose is a key metabolite in carbohydrate metabolism and plays a vital role in glycosyl transfer reactions. Its significance spans across the food and agricultural industries. This study focuses on UDP-glucose synthesis via multienzyme catalysis using dextrin, incorporating UTP production and ATP regeneration modules to reduce costs. To address thermal stability limitations of the key UDP-glucose pyrophosphorylase (UGP), a deep learning-based protein sequence design approach and ancestral sequence reconstruction are employed to engineer a thermally stable UGP variant. The engineered UGP variant is significantly 500-fold more thermally stable at 60 °C and has a half-life of 49.8 h compared to the wild-type enzyme. MD simulations and umbrella sampling calculations provide insights into the mechanism behind the enhanced thermal stability. Experimental validation demonstrates that the engineered UGP variant can produce 52.6 mM UDP-glucose within 6 h in an in vitro cascade reaction. This study offers practical insights for efficient UDP-glucose synthesis methods.


Subject(s)
Biocatalysis , Protein Engineering , UTP-Glucose-1-Phosphate Uridylyltransferase , Uridine Diphosphate Glucose , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/chemistry , Uridine Diphosphate Glucose/metabolism , Uridine Diphosphate Glucose/chemistry , Enzyme Stability , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Kinetics , Escherichia coli/genetics , Escherichia coli/metabolism
2.
J Microbiol Biotechnol ; 34(5): 1154-1163, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38563097

ABSTRACT

Glucosylation is a well-known approach to improve the solubility, pharmacological, and biological properties of flavonoids, making flavonoid glucosides a target for large-scale biosynthesis. However, the low yield of products coupled with the requirement of expensive UDP-sugars limits the application of enzymatic systems for large-scale. C. glutamicum is a Gram-positive and generally regarded as safe (GRAS) bacteria frequently employed for the large-scale production of amino acids and bio-fuels. Due to the versatility of its cell factory system and its non-endotoxin producing properties, it has become an attractive system for the industrial-scale biosynthesis of alternate products. Here, we explored the cell factory of C. glutamicum for efficient glucosylation of flavonoids using apigenin as a model flavonoid, with the heterologous expression of a promiscuous glycosyltransferase, YdhE from Bacillus licheniformis and the endogenous overexpression of C. glutamicum genes galU1 encoding UDP-glucose pyrophosphorylase and pgm encoding phosphoglucomutase involved in the synthesis of UDP-glucose to create a C. glutamicum cell factory system capable of efficiently glucosylation apigenin with a high yield of glucosides production. Consequently, the production of various apigenin glucosides was controlled under different temperatures yielding almost 4.2 mM of APG1(apigenin-4'-O-ß-glucoside) at 25°C, and 0.6 mM of APG2 (apigenin-7-O-ß-glucoside), 1.7 mM of APG3 (apigenin-4',7-O-ß-diglucoside) and 2.1 mM of APG4 (apigenin-4',5-O-ß-diglucoside) after 40 h of incubation with the supplementation of 5 mM of apigenin and 37°C. The cost-effective developed system could be used to modify a wide range of plant secondary metabolites with increased pharmacokinetic activities on a large scale without the use of expensive UDP-sugars.


Subject(s)
Apigenin , Corynebacterium glutamicum , Glucosides , Metabolic Engineering , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Apigenin/metabolism , Metabolic Engineering/methods , Glucosides/metabolism , Glucosides/biosynthesis , Glycosylation , Bacillus licheniformis/metabolism , Bacillus licheniformis/genetics , Bacillus licheniformis/enzymology , Uridine Diphosphate Glucose/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Glycosyltransferases/metabolism , Glycosyltransferases/genetics
3.
Int J Biol Macromol ; 253(Pt 2): 126778, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37683745

ABSTRACT

A ß-1,3-glucan synthase gene (gls) was cloned and overexpressed in Ganoderma lingzhi. The content of intracellular polysaccharides (IPS) in G. lingzhi overexpressing gls was 22.36 mg/100 mg dry weight (DW), 19 % higher than those in the wild-type (WT) strain. Overexpression of gls did not affect the expression of the phosphoglucomutase gene and the UDP-glucose pyrophosphorylase gene (ugp) in the polysaccharide biosynthesis. The gls and ugp were then simultaneously overexpressed in G. lingzhi for the first time. The combined overexpression of these two genes increased the IPS content and exopolysaccharides (EPS) production to a greater extent than the overexpression of gls independently. The maximum IPS content of the overexpressed strain was 24.61 mg/100 mg, and the maximum EPS production was 1.55 g/L, 1.31- and 1.50-fold higher than that in the WT strain, respectively. Moreover, the major EPS fractions from the overexpression strain contained more glucose (86.7 % and 72.5 %) than those from the WT strain (78.2 % and 62.9 %). Furthermore, the major fraction G+U-0.1 from the overexpression strain exhibited stronger antioxidant and anti-senescence activities than the WT-0.1 fraction from the WT strain. These findings will aid in the hyperproduction and application of Ganoderma polysaccharides and facilitate our understanding of mushroom polysaccharide biosynthesis.


Subject(s)
Ganoderma , Reishi , beta-Glucans , Ganoderma/genetics , Reishi/genetics , beta-Glucans/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Glucose/metabolism , Uridine Diphosphate/metabolism , Polysaccharides/metabolism
4.
Commun Biol ; 6(1): 750, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468748

ABSTRACT

UDP-glucose pyrophosphorylase (UGPase) is a key enzyme for polysaccharide synthesis, and its role in plants and bacteria is well established; however, its functions in unicellular microalgae remain ill-defined. Here, we perform bioinformatics, subcellular localization as well as in vitro and in vivo analyses to elucidate the functions of two UGPs (UGP1 and UGP2) in the model microalga Phaeodactylum tricornutum. Despite differences in amino acid sequence, substrate specificity, and subcellular localization between UGP1 and UGP2, both enzymes can efficiently increase the production of chrysolaminarin (Chrl) or lipids by regulating carbon flux distribution without impairing growth and photosynthesis in transgenic strains. Productivity evaluation indicate that UGP1 play a bigger role in regulating Chrl and lipid production than UGP2. In addition, UGP1 enhance antioxidant capacity, whereas UGP2 is involved in sulfoquinovosyldiacylglycerol (SQDG) synthesis in P. tricornutum. Taken together, the present results suggest that ideal microalgal strains can be developed for the industrial production of Chrl or lipids and lay the foundation for the development of methods to improve oxidative stress tolerance in diatoms.


Subject(s)
Antioxidants , Diatoms , Antioxidants/metabolism , Diatoms/genetics , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , Lipids , Carbon Cycle , Glucose/metabolism , Uridine Diphosphate/metabolism
5.
Glycobiology ; 33(8): 651-660, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37283491

ABSTRACT

Lysosomal accumulation of the glycosphingolipid globotriaosylceramide Gb3 is linked to the deficient activity of the α-galactosidase A in the Anderson-Fabry disease and an elevated level of deacylated Gb3 is a hallmark of this condition. Localization of Gb3 in the plasma membrane is critical for studying how the membrane organization and its dynamics are affected in this genetic disorder. Gb3 analogs containing a terminal 6-azido-functionalized galactose in its head group globotriose (αGal1, 4ßGal1, and 4Glc) are attractive chemical reporters for bioimaging, as the azido-group may act as a chemical tag for bio-orthogonal click chemistry. We report here the production of azido-Gb3 analogs employing mutants of galactokinase, UTP-glucose-1-phosphate uridylyltransferase, and α-1,4-galactosyltransferase LgtC, which participate in the synthesis of the sugar motif globotriose. Variants of enzymes galactokinase/UTP-glucose-1-phosphate uridylyltransferase generate UDP-6-azido-6-deoxy-d-galactose, which is the galactosyl-donor used by LgtC for transferring the terminal galactose moiety to lactosyl-acceptors. Residues at the galactose-binding site of the 3 enzymes were modified to facilitate the accommodation of azido-functionalized substrates and variants outperforming the wild-type enzymes were characterized. Synthesis of 6-azido-6-deoxy-d-galactose-1-phosphate, UDP-6-azido-6-deoxy-d-galactose, and azido-Gb3 analogs by variants GalK-E37S, GalU-D133V, and LgtC-Q187S, respectively, is 3-6-fold that of their wild-type counterparts. Coupled reactions with these variants permit the production of the pricy, unnatural galactosyl-donor UDP-6-azido-6-deoxy-d-galactose with ~90% conversion yields, and products azido-globotriose and lyso-AzGb3 with substrate conversion of up to 70%. AzGb3 analogs could serve as precursors for the synthesis of other tagged glycosphingolipids of the globo-series.


Subject(s)
Galactokinase , Galactose , Galactose/metabolism , Galactokinase/genetics , Galactokinase/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , Binding Sites , Mutation , Uridine Diphosphate
6.
Int J Mol Sci ; 24(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37240260

ABSTRACT

UDP-glucose (UDPG) pyrophosphorylase (UGPase) catalyzes a reversible reaction, producing UDPG, which serves as an essential precursor for hundreds of glycosyltransferases in all organisms. In this study, activities of purified UGPases from sugarcane and barley were found to be reversibly redox modulated in vitro through oxidation by hydrogen peroxide or oxidized glutathione (GSSG) and through reduction by dithiothreitol or glutathione. Generally, while oxidative treatment decreased UGPase activity, a subsequent reduction restored the activity. The oxidized enzyme had increased Km values with substrates, especially pyrophosphate. The increased Km values were also observed, regardless of redox status, for UGPase cysteine mutants (Cys102Ser and Cys99Ser for sugarcane and barley UGPases, respectively). However, activities and substrate affinities (Kms) of sugarcane Cys102Ser mutant, but not barley Cys99Ser, were still prone to redox modulation. The data suggest that plant UGPase is subject to redox control primarily via changes in the redox status of a single cysteine. Other cysteines may also, to some extent, contribute to UGPase redox status, as seen for sugarcane enzymes. The results are discussed with respect to earlier reported details of redox modulation of eukaryotic UGPases and regarding the structure/function properties of these proteins.


Subject(s)
Cysteine , Uridine Diphosphate Glucose , Amino Acid Sequence , Uridine Diphosphate Glucose/metabolism , Cysteine/metabolism , Plants/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , Glucose , Oxidation-Reduction
7.
Microbiol Spectr ; 10(5): e0207222, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36129287

ABSTRACT

The emergence and spread of antibiotic resistance pose serious environmental and health challenges. Attention has been drawn to phage therapy as an alternative approach to combat antibiotic resistance with immense potential. However, one of the obstacles to phage therapy is phage resistance, and it can be acquired through genetic mutations, followed by consequences of phenotypic variations. Therefore, understanding the mechanisms underlying phage-host interactions will provide us with greater detail on how to optimize phage therapy. In this study, three lytic phages (phipa2, phipa4, and phipa10) were isolated to investigate phage resistance and the potential fitness trade-offs in Pseudomonas aeruginosa. Specifically, in phage-resistant mutants phipa2-R and phipa4-R, mutations in conferring resistance occurred in genes pilT and pilB, both essential for type IV pili (T4P) biosynthesis. In the phage-resistant mutant phipa10-R, a large chromosomal deletion of ~294 kb, including the hmgA (homogentisate 1,2-dioxygenase) and galU (UTP-glucose-1-phosphate uridylyltransferase) genes, was observed and conferred phage phipa10 resistance. Further, we show examples of associated trade-offs in these phage-resistant mutations, e.g., impaired motility, reduced biofilm formation, and increased antibiotic susceptibility. Collectively, our study sheds light on resistance-mediated genetic mutations and their pleiotropic phenotypes, further emphasizing the impressive complexity and diversity of phage-host interactions and the challenges they pose when controlling bacterial diseases in this important pathogen. IMPORTANCE Battling phage resistance is one of the main challenges faced by phage therapy. To overcome this challenge, detailed information about the mechanisms of phage-host interactions is required to understand the bacterial evolutionary processes. In this study, we identified mutations in key steps of type IV pili (T4P) and O-antigen biosynthesis leading to phage resistance and provided new evidence on how phage predation contributed toward host phenotypes and fitness variations. Together, our results add further fundamental knowledge on phage-host interactions and how they regulate different aspects of Pseudomonas cell behaviors.


Subject(s)
Bacteriophages , HMGA Proteins , Pseudomonas aeruginosa/genetics , Bacteriophages/physiology , UTP-Glucose-1-Phosphate Uridylyltransferase , Homogentisate 1,2-Dioxygenase , O Antigens , Bacteria , Anti-Bacterial Agents/pharmacology
8.
Appl Microbiol Biotechnol ; 106(7): 2481-2491, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35344091

ABSTRACT

Herein, two genes (LBA0625 and LBA1719) encoding UGPases (UDP-glucose pyrophosphorylase) in Lactobacillus acidophilus (L. acidophilus) were successfully transformed into Escherichia coli BL21 (DE3) to construct recombinant overexpressing strains (E-0625, E-1719) to investigate the biological characteristics of UGPase-0625 and UGPase-1719. The active sites, polysaccharide yield, and anti-freeze-drying stress of L. acidophilus ATCC4356 were also detected. UGPase-0625 and UGPase-1719 belong to the nucleotidyltransferase of stable hydrophilic proteins; contain 300 and 294 amino acids, respectively; and have 20 conserved active sites by prediction. Αlpha-helixes and random coils were the main secondary structures, which constituted the main skeleton of UGPases. The optimal mixture for the high catalytic activity of the two UGPases included 0.5 mM UDP-Glu (uridine diphosphate glucose) and Mg2+ at 37 °C, pH 10.0. By comparing the UGPase activities of the mutant strains with the original recombinant strains, A10, L130, and L263 were determined as the active sites of UGPase-0625 (P < 0.01) and A11, L130, and L263 were determined as the active sites of UGPase-1719 (P < 0.01). In addition, UGPase overexpression could increase the production of polysaccharides and the survival rates of recombinant bacteria after freeze-drying. This is the first study to determine the enzymatic properties, active sites, and structural simulation of UGPases from L. acidophilus, providing in-depth understanding of the biological characteristics of UGPases in lactic acid bacteria.Key points• We detected the biological characteristics of UGPases encoded by LBA0625 and LBA1719.• We identified UGPase-0625 and UGPase-1719 active sites.• UGPase overexpression elevates polysaccharide levels and post-freeze-drying survival.


Subject(s)
Lactobacillus acidophilus , UTP-Glucose-1-Phosphate Uridylyltransferase , Catalytic Domain , Lactobacillus acidophilus/genetics , Lactobacillus acidophilus/metabolism , Protein Structure, Secondary , UTP-Glucose-1-Phosphate Uridylyltransferase/chemistry , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , Uridine Diphosphate Glucose/metabolism
9.
Plant J ; 109(6): 1416-1426, 2022 03.
Article in English | MEDLINE | ID: mdl-34913539

ABSTRACT

Galactose toxicity (Gal-Tox) is a widespread phenomenon ranging from Escherichia coli to mammals and plants. In plants, the predominant pathway for the conversion of galactose into UDP-galactose (UDP-Gal) and UDP-glucose is catalyzed by the enzymes galactokinase, UDP-sugar pyrophosphorylase (USP) and UDP-galactose 4-epimerase. Galactose is a major component of cell wall polymers, glycolipids and glycoproteins; therefore, it becomes surprising that exogenous addition of galactose leads to drastic root phenotypes including cessation of primary root growth and induction of lateral root formation. Currently, little is known about galactose-mediated toxicity in plants. In this study, we investigated the role of galactose-containing metabolites like galactose-1-phosphate (Gal-1P) and UDP-Gal in Gal-Tox. Recently published data from mouse models suggest that a reduction of the Gal-1P level via an mRNA-based therapy helps to overcome Gal-Tox. To test this hypothesis in plants, we created Arabidopsis thaliana lines overexpressing USP from Pisum sativum. USP enzyme assays confirmed a threefold higher enzyme activity in the overexpression lines leading to a significant reduction of the Gal-1P level in roots. Interestingly, the overexpression lines are phenotypically more sensitive to the exogenous addition of galactose (0.5 mmol L-1 Gal). Nucleotide sugar analysis via high-performance liquid chromatography-mass spectrometry revealed highly elevated UDP-Gal levels in roots of seedlings grown on 1.5 mmol L-1 galactose versus 1.5 mmol L-1 sucrose. Analysis of plant cell wall glycans by comprehensive microarray polymer profiling showed a high abundance of antibody binding recognizing arabinogalactanproteins and extensins under Gal-feeding conditions, indicating that glycoproteins are a major target for elevated UDP-Gal levels in plants.


Subject(s)
Arabidopsis/enzymology , Galactose , Sugars , UDPglucose 4-Epimerase , UTP-Glucose-1-Phosphate Uridylyltransferase , Galactose/toxicity , UDPglucose 4-Epimerase/genetics , UDPglucose 4-Epimerase/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , Uridine Diphosphate
10.
BMC Vet Res ; 17(1): 289, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34461896

ABSTRACT

BACKGROUND: UTP-glucose-1-phosphoryl transferase (UGPase) catalyzes the synthesis of UDP-glucose, which is essential for generating the glycogen needed for the synthesis of bacterial lipopolysaccharide (LPS) and capsular polysaccharide, which play important roles in bacterial virulence. However, the molecular function of UGPase in Brucella is still unknown. RESULTS: In this study, the ubiquitination modification of host immune-related protein in cells infected with UGPase-deleted or wild-type Brucella was analyzed using ubiquitination proteomics technology. The ubiquitination modification level and type of NF-κB Essential Modulator (NEMO or Ikbkg), a molecule necessary for NF-κB signal activation, was evaluated using Coimmunoprecipitation, Western blot, and dual-Luciferase Assay. We found 80 ubiquitin proteins were upregulated and 203 ubiquitin proteins were downregulated in cells infected with B. melitensis 16 M compared with those of B. melitensis UGPase-deleted strain (16 M-UGPase-). Moreover, the ubiquitin-modified proteins were mostly enriched in the categories of regulation of kinase/NF-κB signaling and response to a bacterium, suggesting Brucella UGPase inhibits ubiquitin modification of related proteins in the host NF-κB signaling pathway. Further analysis showed that the ubiquitination levels of NEMO K63 (K63-Ub) and Met1 (Met1-Ub) were significantly increased in the 16 M-UGPase--infected cells compared with that of the 16 M-infected cells, further confirming that the ubiquitination levels of NF-κB signaling-related proteins were regulated by the bacterial UGPase. Besides, the expression level of IκBα was decreased, but the level of p-P65 was significantly increased in the 16 M-UGPase--infected cells compared with that of the 16 M- and mock-infected cells, demonstrating that B. melitensis UGPase can significantly inhibit the degradation of IκBα and the phosphorylation of p65, and thus suppressing the NF-κB pathway. CONCLUSIONS: The results of this study showed that Brucella melitensis UGPase inhibits the activation of NF-κB by modulating the ubiquitination of NEMO, which will provide a new scientific basis for the study of immune mechanisms induced by Brucella.


Subject(s)
Brucella melitensis/metabolism , I-kappa B Kinase/metabolism , NF-kappa B/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Ubiquitination , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Brucella melitensis/genetics , Brucellosis/metabolism , Brucellosis/microbiology , Gene Expression Regulation , Mice , RAW 264.7 Cells , Signal Transduction , Ubiquitin/genetics , Ubiquitin/metabolism
11.
Int J Med Microbiol ; 311(6): 151525, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34340061

ABSTRACT

Recently, multiple bifunctional RNAs have been discovered, which can both be translated into proteins and play regulatory roles. hns encodes the global gene silencing factor H-NS, which is widespread in Gram-negative bacteria. This study reported that hns mRNA of Salmonella enterica serovar Typhi (S. Typhi) was a bifunctional RNA that could act as an antisense RNA downregulating the expression of galU, the coding gene of uridine triphosphate-glucose-1-phosphate uridylyltransferase, and attenuating bacterial motility. galU, which is located at the opposite strand of hns, was identified to have a long 3'-untranslated region that overlapped with hns and could be processed to produce short RNA fragments. The overexpression of hns mRNA inhibited the expression of galU. The deletion of galU attenuated the motility of S. Typhi, while the complementation of galU nearly restored the phenotype. Overexpressing hns mRNA in the wild-type strain of S. Typhi inhibited the motility and the expression of flagellar genes, while overexpressing hns mRNA in the galU-deletion mutant did not influence bacterial motility. In conclusion, hns mRNA has been identified to be a new bifunctional RNA that attenuates the motility of S. Typhi by downregulating the expression of galU.


Subject(s)
Salmonella typhi , UTP-Glucose-1-Phosphate Uridylyltransferase , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , RNA, Messenger/genetics , Salmonella typhi/genetics
12.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article in English | MEDLINE | ID: mdl-34330832

ABSTRACT

UDP-glucose pyrophosphorylase 2 (UGP2), the enzyme that synthesizes uridine diphosphate (UDP)-glucose, rests at the convergence of multiple metabolic pathways, however, the role of UGP2 in tumor maintenance and cancer metabolism remains unclear. Here, we identify an important role for UGP2 in the maintenance of pancreatic ductal adenocarcinoma (PDAC) growth in both in vitro and in vivo tumor models. We found that transcription of UGP2 is directly regulated by the Yes-associated protein 1 (YAP)-TEA domain transcription factor (TEAD) complex, identifying UGP2 as a bona fide YAP target gene. Loss of UGP2 leads to decreased intracellular glycogen levels and defects in N-glycosylation targets that are important for the survival of PDACs, including the epidermal growth factor receptor (EGFR). These critical roles of UGP2 in cancer maintenance, metabolism, and protein glycosylation may offer insights into therapeutic options for otherwise intractable PDACs.


Subject(s)
Carcinoma, Pancreatic Ductal/enzymology , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Neoplastic/physiology , Glycogen/biosynthesis , Pancreatic Neoplasms/enzymology , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Gene Knockdown Techniques , Glycosylation , Humans , Mice , Mice, Nude , Neoplasms, Experimental , Pancreatic Neoplasms/pathology , TEA Domain Transcription Factors/genetics , TEA Domain Transcription Factors/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism
13.
J Parasitol ; 107(3): 514-518, 2021 05 01.
Article in English | MEDLINE | ID: mdl-34157111

ABSTRACT

The parasitic protist Trichomonas vaginalis is the causative agent of trichomoniasis, a highly prevalent sexually transmitted infection. The organism is known to accumulate substantial deposits of the polysaccharide glycogen, which is believed to serve as a store of carbon and energy that can be tapped during periods of nutrient limitation. Such nutrient limitation is likely to occur when T. vaginalis is transmitted between hosts, implying that glycogen may play an important role in the lifecycle of the parasite. Both T. vaginalis glycogen synthase and glycogen phosphorylase, key enzymes of glycogen synthesis and degradation, respectively, have been cloned and characterized, and neither enzyme is subject to the post-translational controls found in other, well-characterized eukaryotic systems. Thus, it is unclear how glycogen metabolism is regulated in this organism. Here we use a glucose limitation/re-feeding protocol to show that the activities of key enzymes of glycogen synthesis do not increase during re-feeding when glycogen synthesis is stimulated. Rather, a simple model appears to operate with glycogen storage being driven by the extracellular glucose concentration.


Subject(s)
Glucose/metabolism , Glycogen/metabolism , Trichomonas vaginalis/metabolism , Animals , Glucose-6-Phosphate/metabolism , Glycogen Synthase/metabolism , Humans , Trichomonas Infections/parasitology , Trichomonas Infections/transmission , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism
14.
mBio ; 12(3): e0037521, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34044588

ABSTRACT

Glycosomes are peroxisome-related organelles of trypanosomatid parasites containing metabolic pathways, such as glycolysis and biosynthesis of sugar nucleotides, usually present in the cytosol of other eukaryotes. UDP-glucose pyrophosphorylase (UGP), the enzyme responsible for the synthesis of the sugar nucleotide UDP-glucose, is localized in the cytosol and glycosomes of the bloodstream and procyclic trypanosomes, despite the absence of any known peroxisome-targeting signal (PTS1 and PTS2). The questions that we address here are (i) is the unusual glycosomal biosynthetic pathway of sugar nucleotides functional and (ii) how is the PTS-free UGP imported into glycosomes? We showed that UGP is imported into glycosomes by piggybacking on the glycosomal PTS1-containing phosphoenolpyruvate carboxykinase (PEPCK) and identified the domains involved in the UGP/PEPCK interaction. Proximity ligation assays revealed that this interaction occurs in 3 to 10% of glycosomes, suggesting that these correspond to organelles competent for protein import. We also showed that UGP is essential for the growth of trypanosomes and that both the glycosomal and cytosolic metabolic pathways involving UGP are functional, since the lethality of the knockdown UGP mutant cell line (RNAiUGP, where RNAi indicates RNA interference) was rescued by expressing a recoded UGP (rUGP) in the organelle (RNAiUGP/EXPrUGP-GPDH, where GPDH is glycerol-3-phosphate dehydrogenase). Our conclusion was supported by targeted metabolomic analyses (ion chromatography-high-resolution mass spectrometry [IC-HRMS]) showing that UDP-glucose is no longer detectable in the RNAiUGP mutant, while it is still produced in cells expressing UGP exclusively in the cytosol (PEPCK null mutant) or glycosomes (RNAiUGP/EXPrUGP-GPDH). Trypanosomatids are the only known organisms to have selected functional peroxisomal (glycosomal) sugar nucleotide biosynthetic pathways in addition to the canonical cytosolic ones. IMPORTANCE Unusual compartmentalization of metabolic pathways within organelles is one of the most enigmatic features of trypanosomatids. These unicellular eukaryotes are the only organisms that sequestered glycolysis inside peroxisomes (glycosomes), although the selective advantage of this compartmentalization is still not clear. Trypanosomatids are also unique for the glycosomal localization of enzymes of the sugar nucleotide biosynthetic pathways, which are also present in the cytosol. Here, we showed that the cytosolic and glycosomal pathways are functional. As in all other eukaryotes, the cytosolic pathways feed glycosylation reactions; however, the role of the duplicated glycosomal pathways is currently unknown. We also showed that one of these enzymes (UGP) is imported into glycosomes by piggybacking on another glycosomal enzyme (PEPCK); they are not functionally related. The UGP/PEPCK association is unique since all piggybacking examples reported to date involve functionally related interacting partners, which broadens the possible combinations of carrier-cargo proteins being imported as hetero-oligomers.


Subject(s)
Microbodies/metabolism , Nucleotides/metabolism , Sugars/metabolism , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , Cytosol/metabolism , Metabolic Networks and Pathways , Nucleotides/biosynthesis , Protein Transport , Trypanosoma brucei brucei/genetics , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics
15.
J Biol Chem ; 296: 100384, 2021.
Article in English | MEDLINE | ID: mdl-33556370

ABSTRACT

UTP-glucose-1-phosphate uridylyltransferases are enzymes that produce UDP-glucose from UTP and glucose-1-phosphate. In Bacillus subtilis 168, UDP-glucose is required for the decoration of wall teichoic acid (WTA) with glucose residues and the formation of glucolipids. The B. subtilis UGPase GtaB is essential for UDP-glucose production under standard aerobic growth conditions, and gtaB mutants display severe growth and morphological defects. However, bioinformatics predictions indicate that two other UTP-glucose-1-phosphate uridylyltransferases are present in B. subtilis. Here, we investigated the function of one of them named YngB. The crystal structure of YngB revealed that the protein has the typical fold and all necessary active site features of a functional UGPase. Furthermore, UGPase activity could be demonstrated in vitro using UTP and glucose-1-phosphate as substrates. Expression of YngB from a synthetic promoter in a B. subtilis gtaB mutant resulted in the reintroduction of glucose residues on WTA and production of glycolipids, demonstrating that the enzyme can function as UGPase in vivo. When WT and mutant B. subtilis strains were grown under anaerobic conditions, YngB-dependent glycolipid production and glucose decorations on WTA could be detected, revealing that YngB is expressed from its native promoter under anaerobic condition. Based on these findings, along with the structure of the operon containing yngB and the transcription factor thought to be required for its expression, we propose that besides WTA, potentially other cell wall components might be decorated with glucose residues during oxygen-limited growth condition.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , Glycolipids/metabolism , Teichoic Acids/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , Anaerobiosis , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cell Wall/metabolism , Crystallography, X-Ray/methods , Glycosylation , Promoter Regions, Genetic , Teichoic Acids/chemistry , UTP-Glucose-1-Phosphate Uridylyltransferase/chemistry , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics
16.
Appl Environ Microbiol ; 87(7)2021 03 11.
Article in English | MEDLINE | ID: mdl-33483312

ABSTRACT

Enterococcal plasmid-encoded bacteriolysin Bac41 is a selective antimicrobial system that is considered to provide a competitive advantage to Enterococcus faecalis cells that carry the Bac41-coding plasmid. The Bac41 effector consists of the secreted proteins BacL1 and BacA, which attack the cell wall of the target E. faecalis cell to induce bacteriolysis. Here, we demonstrated that galU, which encodes UTP-glucose-1-phosphate uridylyltransferase, is involved in susceptibility to the Bac41 system in E. faecalis Spontaneous mutants that developed resistance to the antimicrobial effects of BacL1 and BacA were revealed to carry a truncation deletion of the C-terminal amino acid (aa) region 288 to 298 of the translated GalU protein. This truncation resulted in the depletion of UDP-glucose, leading to a failure to utilize galactose and produce the enterococcal polysaccharide antigen (EPA), which is expressed abundantly on the cell surface of E. faecalis This cell surface composition defect that resulted from galU or EPA-specific genes caused an abnormal cell morphology, with impaired polarity during cell division and alterations of the limited localization of BacL1 Interestingly, these mutants had reduced susceptibility to beta-lactams besides Bac41, despite their increased susceptibility to other bacteriostatic antimicrobial agents and chemical detergents. These data suggest that a complex mechanism of action underlies lytic killing, as exogenous bacteriolysis induced by lytic bacteriocins or beta-lactams requires an intact cell physiology in E. faecalisIMPORTANCE Cell wall-associated polysaccharides of bacteria are involved in various physiological characteristics. Recent studies demonstrated that the cell wall-associated polysaccharide of Enterococcus faecalis is required for susceptibility to bactericidal antibiotic agents. Here, we demonstrated that a galU mutation resulted in resistance to the enterococcal lytic bacteriocin Bac41. The galU homologue is reported to be essential for the biosynthesis of species-specific cell wall-associated polysaccharides in other Firmicutes In E. faecalis, the galU mutant lost the E. faecalis-specific cell wall-associated polysaccharide EPA (enterococcal polysaccharide antigen). The mutant also displayed reduced susceptibility to antibacterial agents and an abnormal cell morphology. We demonstrated here that galU was essential for EPA biosynthesis in E. faecalis, and EPA production might underlie susceptibility to lytic bacteriocin and antibiotic agents by undefined mechanisms.


Subject(s)
Bacterial Proteins/genetics , Bacteriocins/metabolism , Enterococcus faecalis/genetics , Polysaccharides/chemistry , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Bacterial Proteins/metabolism , Bacteriolysis , Cell Wall/metabolism , Enterococcus faecalis/enzymology , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism
17.
Biochim Biophys Acta Gen Subj ; 1865(1): 129727, 2021 01.
Article in English | MEDLINE | ID: mdl-32890704

ABSTRACT

BACKGOUND: Studying enzymes that determine glucose-1P fate in carbohydrate metabolism is important to better understand microorganisms as biotechnological tools. One example ripe for discovery is the UDP-glucose pyrophosphorylase enzyme from Rhodococcus spp. In the R. jostii genome, this gene is duplicated, whereas R. fascians contains only one copy. METHODS: We report the molecular cloning of galU genes from R. jostii and R. fascians to produce recombinant proteins RjoGalU1, RjoGalU2, and RfaGalU. Substrate saturation curves were conducted, kinetic parameters were obtained and the catalytic efficiency (kcat/Km) was used to analyze enzyme promiscuity. We also investigated the response of R. jostii GlmU pyrophosphorylase activity with different sugar-1Ps, which may compete for substrates with RjoGalU2. RESULTS: All enzymes were active as pyrophosphorylases and exhibited substrate promiscuity toward sugar-1Ps. Remarkably, RjoGalU2 exhibited one order of magnitude higher activity with glucosamine-1P than glucose-1P, the canonical substrate. Glucosamine-1P activity was also significant in RfaGalU. The efficient use of the phospho-amino-sugar suggests the feasibility of the reaction to occur in vivo. Also, RjoGalU2 and RfaGalU represent enzymatic tools for the production of (amino)glucosyl precursors for the putative synthesis of novel molecules. CONCLUSIONS: Results support the hypothesis that partitioning of glucosamine-1P includes an uncharacterized metabolic node in Rhodococcus spp., which could be important for producing diverse alternatives for carbohydrate metabolism in biotechnological applications. GENERAL SIGNIFICANCE: Results presented here provide a model to study evolutionary enzyme promiscuity, which could be used as a tool to expand an organism's metabolic repertoire by incorporating non-canonical substrates into novel metabolic pathways.


Subject(s)
Bacterial Proteins/genetics , Glucosamine/metabolism , Rhodococcus/genetics , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Bacterial Proteins/metabolism , Gene Duplication , Genes, Bacterial , Metabolic Networks and Pathways , Rhodococcus/enzymology , Rhodococcus/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism
18.
Int J Biol Macromol ; 164: 3098-3104, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32827613

ABSTRACT

UDP-glucose pyrophosphorylase (UGPase) is an important pyrophosphatase that reversibly catalyzes the synthesis of UDP-glucose during glucose metabolism. We previously found that the deletion of UGPase may affect structure, growth, the virulence of Brucella, and the activation of cellular NF-κB. However, the exact mechanism of activation of NF-κB regulated by Brucella UGPase is still unclear. Here, we found for the first time that UGPase can regulate the expression of virB proteins (virB3, virB4, virB5, virB6, virB8, virB9, virB10, and virB11) of type IV secretion system (T4SS) as well as effectors (vceC, btpA, btpB, ricA, bspB, bspC, and bspF) of Brucella by promoting the expression of ribosomal S12 protein (rpsL), BMEI1825, and quinone of 2,4,5-trihydroxyphenylalanine (topA) proteins, and further inhibits the activation of cellular NF-κB and affects the virulence of Brucella. Our findings provide new insights into the mechanism used by Brucella to escape the immune recognition, which is expected to be of great value in the designing of Brucella vaccines and the screening of drug targets.


Subject(s)
Brucella melitensis/pathogenicity , Brucellosis/metabolism , NF-kappa B/metabolism , Type IV Secretion Systems/metabolism , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Brucella melitensis/genetics , Brucella melitensis/metabolism , Brucellosis/microbiology , Gene Deletion , HEK293 Cells , Humans , Mice , Models, Biological , Proteomics , RAW 264.7 Cells , Signal Transduction , Virulence Factors/metabolism
19.
Dis Markers ; 2020: 3231273, 2020.
Article in English | MEDLINE | ID: mdl-32733617

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignant tumour associated with a high mortality rate and poor prognosis worldwide. Uridine diphosphate-glucose pyrophosphorylase 2 (UGP2), a key enzyme in glycogen biosynthesis, has been reported to be associated with the occurrence and development of various cancer types. However, its diagnostic value and prognostic value in HCC remain unclear. The present study observed that UGP2 expression was significantly downregulated at both the mRNA and protein levels in HCC tissues. Receiver operating characteristic (ROC) curve analysis revealed that UGP2 may be an indicator for the diagnosis of HCC. In addition, Kaplan-Meier and Cox regression multivariate analyses indicated that UGP2 is an independent prognostic factor of overall survival (OS) in patients with HCC. Furthermore, gene set enrichment analysis (GSEA) suggested that gene sets negatively correlated with the survival of HCC patients were enriched in the group with low UGP2 expression levels. More importantly, a significant correlation was identified between low UGP2 expression and fatty acid metabolism. In summary, the present study demonstrates that UGP2 may contribute to the progression of HCC, indicating a potential therapeutic target for HCC patients.


Subject(s)
Carcinoma, Hepatocellular/diagnosis , Down-Regulation , Liver Neoplasms/diagnosis , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , Adolescent , Adult , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Middle Aged , Neoplasm Staging , Prognosis , Tissue Array Analysis , Young Adult
20.
Int J Biol Macromol ; 161: 1161-1170, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32561281

ABSTRACT

To elucidate potential roles of UDP-glucose pyrophosphorylase (UGP) in mycelial growth and polysaccharide synthesis of Grifola frondosa, a putative 2036-bp UDP-glucose pyrophosphorylase gene gfugp encoding a 53.17-kDa protein was cloned and re-annotated. Two dual promoter RNA silencing vectors of pAN7-iUGP-P-dual and pAN7-iUGP-C-dual were constructed to down-regulate gfugp expression by targeting its promoter or conserved functional sequences, respectively. Results showed that silence of gfugp promoter sequence had a higher down-regulating efficiency with slower mycelial growth and polysaccharide production than those of conserved sequence. The monosaccharide compositions/percentages of mycelial and exo-polysaccharides significantly changed with the increase of galactose and arabinose contents possibly due to block of UDP-glucose supply by gfugp silence and alteration of sugar metabolism via up-regulation of UDP-glucose-4-epimerase (gfuge) and UDP-xylose-4-epimerase (gfuxe) transcription. Our findings would provide a reference to know the biosynthesis pathway of mushroom polysaccharides and improve their production by metabolic regulation.


Subject(s)
Grifola/physiology , Mycelium/growth & development , Mycelium/genetics , Polysaccharides/biosynthesis , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Amino Acid Sequence , Biosynthetic Pathways , Cloning, Molecular , Gene Expression Regulation, Fungal , Monosaccharides/chemistry , RNA Interference , Sequence Analysis , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL