Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.226
Filter
1.
Sci Rep ; 14(1): 8516, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38609491

ABSTRACT

Serum creatinine levels are insensitive to real-time changes in kidney function or injury. There is a growing interest in assessing kidney injury by measuring biomarkers in body fluid. From our previous studies, we identified and reported three urinary biomarkers namely Uromodulin (UMOD), Osteopontin (OPN), and Interleukin-9 (IL-9) to be associated with kidney health. The availability of a rapid point-of-care test for these urinary biomarkers will potentially accelerate its applicability and accessibility. In this study, we aimed to develop novel lateral flow device (LFD) for UMOD, OPN and IL-9. We tested paired antibodies using Enzyme Linked Immunosorbent Assay wherein we observed functionality only for UMOD and OPN and not for IL-9. A conjugation buffer pH of 7.8 and 8.5 was found suitable at a detection antibody concentration of 15 µg/mL for LFD development. The developed LFDs were found to quantitatively measure UMOD standard (LLOD of 80,000 pg/mL) and OPN standard (LLOD of 8600 pg/mL) respectively. The LFD was also able to measure human urinary UMOD and OPN with a percent CV of 12.12 and 5.23 respectively.


Subject(s)
Interleukin-9 , Urinary Tract , Humans , Kidney , Antibodies , Biomarkers , Uromodulin
2.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G583-G590, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38502914

ABSTRACT

Hepatorenal syndrome (HRS) is associated with a dismal prognosis in patients with cirrhosis, and therapeutic options are limited. Biomarkers to identify patients with poor response to therapy are urgently needed. This study aimed to evaluate the predictive value of serum levels of uromodulin (sUMOD) in patients with cirrhosis and HRS treated with terlipressin and albumin (T/A). In total, 156 patients [81 patients with HRS treated with T/A, 42 patients with cirrhosis without kidney injury, and 33 patients with cirrhosis with prerenal acute kidney injury (AKI)] were included. sUMOD levels were analyzed by ELISA. Patients with HRS were prospectively followed for the composite endpoint of hemodialysis-/liver transplantation-free survival (HD/LTx-free survival). Of the 81 patients with HRS, 40 had HRS type 1 and 41 type 2. In the cohort of patients with HRS treated with T/A, median sUMOD level was 100 ng/mL (IQR 64; 144). sUMOD differed significantly between patients with HRS compared with patients without AKI (P = 0.001) but not between patients with HRS and prerenal AKI (P = 0.9). In multivariable analyses, sUMOD levels in the lowest quartile were independently associated with a lower rate of complete response to T/A (OR 0.042, P = 0.008) and a higher risk for reaching the composite endpoint of HD/LTX-free survival (HR 2.706, P = 0.013) in patients with HRS type 2 treated with T/A. In contrast, sUMOD was not significantly associated with these outcomes in patients with HRS type 1. sUMOD may be a valuable biomarker for identifying patients with HRS type 2 treated with T/A to predict response and prognosis.NEW & NOTEWORTHY Biomarkers identifying patients with hepatorenal syndrome (HRS) and poor response to therapy are urgently needed. In this study, lower serum uromodulin (sUMOD) levels were associated with poorer response to therapy with terlipressin and albumin and consequently with poorer prognosis in patients with HRS type 2. In patients with HRS type 1, there was no association between sUMOD and poorer prognosis.


Subject(s)
Acute Kidney Injury , Hepatorenal Syndrome , Humans , Hepatorenal Syndrome/therapy , Hepatorenal Syndrome/drug therapy , Terlipressin/therapeutic use , Uromodulin , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Liver Cirrhosis/drug therapy , Prognosis , Biomarkers , Acute Kidney Injury/diagnosis , Acute Kidney Injury/therapy , Albumins
3.
Physiol Genomics ; 56(5): 409-416, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38369967

ABSTRACT

The outcome for patients with sepsis-associated acute kidney injury in the intensive care unit (ICU) remains poor. Low serum uromodulin (sUMOD) protein levels have been proposed as a causal mediator of this effect. We investigated the effect of different levels of sUMOD on the risk of sepsis and severe pneumonia and outcomes in these conditions. A two-sample Mendelian randomization (MR) study was performed. Single-nucleotide polymorphisms (SNPs) associated with increased levels of sUMOD were identified and used as instrumental variables for association with outcomes. Data from different cohorts were combined based on disease severity and meta-analyzed. Five SNPs associated with increased sUMOD levels were identified and tested in six datasets from two biobanks. There was no protective effect of increased levels of sUMOD on the risk of sepsis [two cohorts, odds ratio (OR) 0.99 (95% confidence interval 0.95-1.03), P = 0.698, and OR 0.95 (0.91-1.00), P = 0.060, respectively], risk of sepsis requiring ICU admission [OR 1.04 (0.93-1.16), P = 0.467], ICU mortality in sepsis [OR 1.00 (0.74-1.37), P = 0.987], risk of pneumonia requiring ICU admission [OR 1.05 (0.98-1.14), P = 0.181], or ICU mortality in pneumonia [OR 1.17 (0.98-1.39), P = 0.079]. Meta-analysis of hospital-admitted and ICU-admitted patients separately yielded similar results [OR 0.98 (0.95-1.01), P = 0.23, and OR 1.05 (0.99-1.12), P = 0.86, respectively]. Among patients with sepsis and severe pneumonia, there was no protective effect of different levels of sUMOD. Results were consistent regardless of geographic origins and not modified by disease severity. NEW & NOTEWORTHY The presence of acute kidney injury in severe infections increases the likelihood of poor outcome severalfold. A decrease in serum uromodulin (sUMOD), synthetized in the kidney, has been proposed as a mediator of this effect. Using the Mendelian randomization technique, we tested the hypothesis that increased sUMOD is protective in severe infections. Analyses, however, showed no evidence of a protective effect of higher levels of sUMOD in sepsis or severe pneumonia.


Subject(s)
Acute Kidney Injury , Pneumonia , Sepsis , Humans , Acute Kidney Injury/genetics , Mendelian Randomization Analysis , Pneumonia/complications , Pneumonia/genetics , Sepsis/complications , Sepsis/genetics , Uromodulin/genetics
4.
Pathol Int ; 74(4): 187-196, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38289139

ABSTRACT

Nephrogenic adenoma (NA) is an epithelial lesion that usually occurs in the mucosa of the urinary tract. Rare cases of deep infiltrative or perinephric lesions have also been reported. Recently, NA with characteristic fibromyxoid stroma (fibromyxoid NA) has been proposed as a distinct variant. Although shedding of distal renal tubular cells due to urinary tract rupture has been postulated as the cause of NA in general, the mechanism underlying extraurinary presentation of NA and fibromyxoid stromal change in fibromyxoid NA remains unknown. In this study, we performed mass spectrometry (MS) analysis in a case of perinephric fibromyxoid NA of an 82-year-old man who underwent right nephroureterectomy for distal ureteral cancer. The patient had no prior history of urinary tract injury or radiation. Periodic acid-Schiff staining-positive eosinophilic structureless deposits in the stroma of fibromyxoid NA were microdissected and subjected to liquid chromatography/MS. The analysis revealed the presence of a substantial amount of uromodulin (Tamm-Horsfall protein). The presence of urinary content in the stroma of perinephric fibromyxoid NA suggests that urinary tract rupture and engraftment of renal tubular epithelial cells directly cause the lesion.


Subject(s)
Adenoma , Male , Humans , Aged, 80 and over , Uromodulin , Adenoma/pathology , Mass Spectrometry
5.
Nephrol Dial Transplant ; 39(7): 1073-1087, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38211973

ABSTRACT

Uromodulin is a kidney-specific glycoprotein which is exclusively produced by the epithelial cells lining the thick ascending limb and early distal convoluted tubule. It is currently recognized as a multifaceted player in kidney physiology and disease, with discrete roles for intracellular, urinary, interstitial and serum uromodulin. Among these, uromodulin modulates renal sodium handling through the regulation of tubular sodium transporters that reabsorb sodium and are targeted by diuretics, such as the loop diuretic-sensitive Na+-K+-2Cl- cotransporter type 2 (NKCC2) and the thiazide-sensitive Na+/Cl- cotransporter (NCC). Given these roles, the contribution of uromodulin to sodium-sensitive hypertension has been proposed. However, recent studies in humans suggest a more complex interaction between dietary sodium intake, uromodulin and blood pressure. This review presents an updated overview of the uromodulin's biology and its various roles, and focuses on the interaction between uromodulin and sodium-sensitive hypertension.


Subject(s)
Uromodulin , Uromodulin/metabolism , Humans , Animals , Hypertension/metabolism , Hypertension/etiology , Kidney/metabolism
6.
J Nephrol ; 37(3): 597-610, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38236469

ABSTRACT

BACKGROUND: Pregnancy involves major adaptations in renal haemodynamics, tubular, and endocrine functions. Hypertensive disorders of pregnancy are a leading cause of maternal mortality and morbidity. Uromodulin is a nephron-derived protein that is associated with hypertension and kidney diseases. Here we study the role of urinary uromodulin excretion in hypertensive pregnancy. METHODS: Urinary uromodulin was measured by ELISA in 146 pregnant women with treated chronic hypertension (n = 118) and controls (n = 28). We studied non-pregnant and pregnant Wistar Kyoto and Stroke Prone Spontaneously Hypertensive rats (n = 8/strain), among which a group of pregnant Stroke-Prone Spontaneously Hypertensive rats was treated with either nifedipine (n = 7) or propranolol (n = 8). RESULTS: In pregnant women, diagnosis of chronic hypertension, increased maternal body mass index, Black maternal ethnicity and elevated systolic blood pressure at the first antenatal visit were significantly associated with a lower urinary uromodulin-to-creatinine ratio. In rodents, pre-pregnancy urinary uromodulin excretion was twofold lower in Stroke-Prone Spontaneously Hypertensive rats than in Wistar Kyoto rats. During pregnancy, the urinary uromodulin excretion rate gradually decreased in Wistar Kyoto rats (a twofold decrease), whereas a 1.5-fold increase was observed in Stroke-Prone Spontaneously Hypertensive rats compared to pre-pregnancy levels. Changes in uromodulin were attributed by kidney injury in pregnant rats. Neither antihypertensive changed urinary uromodulin excretion rate in pregnant Stroke-Prone Spontaneously Hypertensive rats. CONCLUSIONS: In summary, we demonstrate pregnancy-associated differences in urinary uromodulin: creatinine ratio and uromodulin excretion rate between chronic hypertensive and normotensive pregnancies. Further research is needed to fully understand uromodulin physiology in human pregnancy and establish uromodulin's potential as a biomarker for renal adaptation and renal function in pregnancy.


Subject(s)
Biomarkers , Hypertension , Uromodulin , Adult , Animals , Female , Humans , Pregnancy , Rats , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/pharmacology , Biomarkers/urine , Blood Pressure , Case-Control Studies , Chronic Disease , Creatinine/urine , Disease Models, Animal , Hypertension/urine , Hypertension/physiopathology , Hypertension/drug therapy , Hypertension, Pregnancy-Induced/urine , Hypertension, Pregnancy-Induced/physiopathology , Rats, Inbred SHR , Rats, Inbred WKY , Uromodulin/urine
7.
Intern Med ; 63(1): 17-23, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-36642527

ABSTRACT

Uromodulin, also known as the Tamm-Horsfall protein, is predominantly expressed in epithelial cells of the kidney. It is secreted mainly in the urine, although small amounts are also found in serum. Uromodulin plays an important role in maintaining renal homeostasis, particularly in salt/water transport mechanisms and is associated with salt-sensitive hypertension. It also regulates urinary tract infections, kidney stones, and the immune response in the kidneys or extrarenal organs. Uromodulin has been shown to be associated with the renal function, age, nephron volume, and metabolic abnormalities and has been proposed as a novel biomarker for the tubular function or injury. These findings suggest that uromodulin is a key molecule underlying the mechanisms or therapeutic approaches of chronic kidney disease, particularly nephrosclerosis and diabetic nephropathy, which are causes of end-stage renal disease. This review focuses on the current understanding of the role of uromodulin from a biological, physiological, and pathological standpoint.


Subject(s)
Kidney Calculi , Renal Insufficiency, Chronic , Humans , Uromodulin/metabolism , Kidney/metabolism , Renal Insufficiency, Chronic/etiology , Homeostasis
8.
Int Urol Nephrol ; 56(1): 249-261, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37322316

ABSTRACT

BACKGROUND: UMOD is exclusively produced by renal epithelial cells. Recent genome-wide association studies (GWAS) suggested that common variants in UMOD gene are closely connected with the risk of CKD. However, a comprehensive and objective report on the current status of UMOD research is lacking. Therefore, we aim to conduct a bibliometric analysis to quantify and identify the status quo and trending issues of UMOD research in the past. METHODS: We collected data from the Web of Science Core Collection database and used the Online Analysis Platform of Literature Metrology, the Online Analysis Platform of Literature Metrology and Microsoft Excel 2019 to perform bibliometricanalysis and visualization. RESULTS: Based on the data from the WoSCC database from 1985 to 2022, a total of 353 UMOD articles were published in 193 academic journals by 2346 authors from 50 different countries/regions and 396 institutions. The United States published the most papers. Professor Devuyst O from University of Zurich not only published the greatest number of UMOD-related papers but also is among the top 10 co-cited authors. KIDNEY INTERNATIONAL published the most necroptosis studies, and it was also the most cited journal. High-frequency keywords mainly included 'chronic kidney disease', 'Tamm Horsfall protein' and 'mutation'. CONCLUSIONS: The number of UMOD-related articles has steadily increased over the past decades Current UMOD studies focused on Biological relevance of the UMOD to kidney function and potential applications in the risk of CKD mechanisms, these might provide ideas for further research in the UMOD field.


Subject(s)
Genome-Wide Association Study , Renal Insufficiency, Chronic , Humans , United States , Kidney , Mutation , Renal Insufficiency, Chronic/genetics , Bibliometrics , Uromodulin
10.
Am J Kidney Dis ; 83(1): 71-78, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37690632

ABSTRACT

RATIONALE & OBJECTIVE: Uromodulin (UMOD) is the most abundant protein found in urine and has emerged as a promising biomarker of tubule health. Circulating UMOD is also detectable, but at lower levels. We evaluated whether serum UMOD levels were associated with the risks of incident kidney failure with replacement therapy (KFRT) and mortality. STUDY DESIGN: Prospective cohort. SETTING & PARTICIPANTS: Participants in AASK (the African American Study of Kidney Disease and Hypertension) with available stored serum samples from the 0-, 12-, and 24-month visits for biomarker measurement. PREDICTORS: Baseline log-transformed UMOD and change in UMOD over 2 years. OUTCOMES: KFRT and mortality. ANALYTICAL APPROACH: Cox proportional hazards and mixed-effects models. RESULTS: Among 500 participants with baseline serum UMOD levels (mean age, 54y; 37% female), 161 KFRT events occurred during a median of 8.5 years. After adjusting for baseline demographic factors, clinical factors, glomerular filtration rate, log-transformed urine protein-creatinine ratio, and randomized treatment groups, a 50% lower baseline UMOD level was independently associated with a 35% higher risk of KFRT (adjusted HR, 1.35; 95% CI, 1.07-1.70). For annual UMOD change, each 1-standard deviation lower change was associated with a 67% higher risk of KFRT (adjusted HR, 1.67; 95% CI, 1.41-1.99). Baseline UMOD and UMOD change were not associated with mortality. UMOD levels declined more steeply for metoprolol versus ramipril (P<0.001) as well as for intensive versus standard blood pressure goals (P = 0.002). LIMITATIONS: Small sample size and limited generalizability. CONCLUSIONS: Lower UMOD levels at baseline and steeper declines in UMOD over time were associated with a higher risk of subsequent KFRT in a cohort of African American adults with chronic kidney disease and hypertension. PLAIN-LANGUAGE SUMMARY: Prior studies of uromodulin (UMOD), the most abundant protein in urine, and kidney disease have focused primarily on urinary UMOD levels. The present study evaluated associations of serum UMOD levels with the risks of kidney failure with replacement therapy (KFRT) and mortality in a cohort of African American adults with hypertension and chronic kidney disease. It found that participants with lower levels of UMOD at baseline were more likely to experience KFRT even after accounting for baseline kidney measures. Similarly, participants who experienced steeper annual declines in UMOD also had a heightened risk of kidney failure. Neither baseline nor annual change in UMOD was associated with mortality. Serum UMOD is a promising biomarker of kidney health.


Subject(s)
Hypertension , Renal Insufficiency, Chronic , Renal Insufficiency , Adult , Humans , Female , Middle Aged , Male , Uromodulin , Prospective Studies , Black or African American , Hypertension/drug therapy , Hypertension/epidemiology , Hypertension/complications , Renal Insufficiency/complications , Renal Insufficiency, Chronic/complications , Glomerular Filtration Rate/physiology , Biomarkers
11.
Sensors (Basel) ; 23(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139542

ABSTRACT

We demonstrate the development of a label-free, impedance-based biosensor by using a passivation layer of 50-nm tantalum pentoxide (Ta2O5) on interdigitated electrodes (IDE). This layer was fabricated by atomic layer deposition (ALD) and has a high dielectric constant (high-κ), which improves the capacitive property of the IDE. We validate the biosensor's performance by measuring uromodulin, a urine biomarker for kidney tubular damage, from artificial urine samples. The passivation layer is functionalized with uromodulin antibodies for selective binding. The passivated IDE enables the non-faradaic impedance measurement of uromodulin concentrations with a measurement range from 0.5 ng/mL to 8 ng/mL and with a relative change in impedance of 15 % per ng/mL at a frequency of 150 Hz (log scale). This work presents a concept for point-of-care biosensing applications for disease biomarkers.


Subject(s)
Biosensing Techniques , Kidney Diseases , Humans , Uromodulin , Electric Impedance , Biomarkers , Kidney , Kidney Diseases/diagnosis , Electrodes
12.
G Ital Nefrol ; 40(5)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-38010247

ABSTRACT

Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a low-prevalence pathology mainly associated with pathogenic variants of the UMOD gene. It is characterized by the progressive deterioration of renal function, associated with hyperuricemia and accompanied by a family history of gout or hyperuricemia. Often, clinical variability and a lack of molecular testing results in diagnostic failure to determine the ADTKD-UMOD association. Case presentation: We describe the case of a 14-year-old male who presented to the nephrology service with hyperuricemia, renal ultrasonographic changes, and progression to chronic kidney disease in 4 years. He had a family history of hyperuricemia. A probable genetic disease with an autosomal dominant inheritance pattern was considered, confirmed by the presence of a probably pathogenic variant of the UMOD gene, not previously reported in the literature. Conclusion: The investigation of this case led to the identification of a new variant in the UMOD gene, broadening the spectrum of known variants for ADTKD-UMOD. In addition, in this case, a comprehensive anamnesis, that takes into account family history, was the key point to carry out genetic tests that confirmed the diagnosis suspicion. Directed Genetic tests are currently an essential diagnostic tool and should be performed as long as they are available and there is an indication to perform them.


Subject(s)
Gout , Hyperuricemia , Polycystic Kidney Diseases , Male , Humans , Adolescent , Uromodulin , Gout/genetics , Genetic Testing/methods , Polycystic Kidney Diseases/genetics , Mutation
13.
EMBO Mol Med ; 15(12): e18242, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37885358

ABSTRACT

Missense mutations in the uromodulin (UMOD) gene cause autosomal dominant tubulointerstitial kidney disease (ADTKD), one of the most common monogenic kidney diseases. The unknown impact of the allelic and gene dosage effects and fate of mutant uromodulin leaves open the gap between postulated gain-of-function mutations, end-organ damage and disease progression in ADTKD. Based on two prevalent missense UMOD mutations with divergent disease progression, we generated UmodC171Y and UmodR186S knock-in mice that showed strong allelic and gene dosage effects on uromodulin aggregates and activation of ER stress and unfolded protein and immune responses, leading to variable kidney damage. Deletion of the wild-type Umod allele in heterozygous UmodR186S mice increased the formation of uromodulin aggregates and ER stress. Studies in kidney tubular cells confirmed differences in uromodulin aggregates, with activation of mutation-specific quality control and clearance mechanisms. Enhancement of autophagy by starvation and mTORC1 inhibition decreased uromodulin aggregates. These studies substantiate the role of toxic aggregates as driving progression of ADTKD-UMOD, relevant for therapeutic strategies to improve clearance of mutant uromodulin.


Subject(s)
Kidney Diseases , Kidney , Animals , Mice , Alleles , Disease Progression , Kidney/metabolism , Kidney Diseases/genetics , Mutation , Uromodulin/genetics , Uromodulin/metabolism
14.
Sci Rep ; 13(1): 17815, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857738

ABSTRACT

Tamm-Horsfall protein (THP) is a highly N-glycosylated protein from epithelial cells of the ascending limb of Henle loop. It is secreted into the urine as part of the innate immune response against uropathogenic pathogens. As women are more likely to suffer from urinary tract infections, biomedical studies were conducted to investigate sex-differences in THP excretion, as well as differences in the THP N-glycosylation pattern. A total of 238 volunteers (92 men, 146 women, 69 with hormonal contraceptives) participated in this study, providing urine samples. Women showed a clear tendency to have higher THP concentration and excretion rates than men (p < 0.16). Regular intake of hormonal contraceptives had no significant influence on urinary THP concentration compared to no regular intake. The individual N-glycosylation pattern of THP in urine samples from randomly selected individuals (10 female, 10 male) was investigated after enzymatic release and MS analysis of the oligosaccharides. Female subjects tended to have an increased proportion of oligomannose type N-glycans and non-fucosylated glycans, whereas men had an increased proportion of fucosylated complex-type glycans. The higher level of oligomannose-type glycans in THP from women might be explained by a self-defence mechanism to overcome the higher infections pressure by the female anatomical properties.


Subject(s)
Loop of Henle , Polysaccharides , Humans , Male , Female , Uromodulin/metabolism , Glycosylation , Loop of Henle/metabolism , Polysaccharides/metabolism , Contraceptive Agents
15.
Kidney360 ; 4(9): e1201-e1202, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37768810
16.
Clin J Am Soc Nephrol ; 18(8): 985-987, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37418253

Subject(s)
Water , Humans , Uromodulin
20.
Clin J Am Soc Nephrol ; 18(8): 1059-1067, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37256909

ABSTRACT

BACKGROUND: Uromodulin is a protein made only by the kidney and released in urine, circulating in polymerizing and nonpolymerizing forms. This protein's multiple functions include inhibition of stone formation in the urine. The physiological determinants of uromodulin production are incompletely understood. METHODS: We investigated changes in uromodulin levels and key factors governing its production and release in urine and serum. We performed an experiment to determine whether water loading, a common intervention to prevent stone formation, will alter the rate of uromodulin production. During a 2-day period, 17 stone forming participants and 14 control participants were subjected to water loading (day 1) and normal fluid intake (day 2). Uromodulin levels were measured on timed hourly collections in urine and plasma during the period of the study. RESULTS: Water loading increased urinary uromodulin secretion (33±4 versus 10±4 µ g/min at baseline, P < 0.0001) in stone formers and control participants. Despite high urine volumes, most participants maintained relatively stable urinary uromodulin concentrations. Native Western blots for polymerizing and nonpolymerizing uromodulin suggest that polymerizing uromodulin was the predominant form at higher urinary flow volumes. Urine flow rates and sodium excretion were significant correlates of urinary uromodulin production. Water loading did not affect serum uromodulin levels, which were also not associated with urinary uromodulin. CONCLUSIONS: Water loading increases the secretion of polymerizing urinary uromodulin. This increased secretion reduces the variability of urinary uromodulin concentrations despite high urine volumes. Serum uromodulin levels were not affected by this treatment.


Subject(s)
Calcium , Kidney Calculi , Humans , Uromodulin , Calcium/urine , Kidney Calculi/urine , Water , Kidney/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...