Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 568
1.
Microbiologyopen ; 13(3): e1411, 2024 Jun.
Article En | MEDLINE | ID: mdl-38706434

Traditional bacteriocin screening methods often face limitations due to diffusion-related challenges in agar matrices, which can prevent the peptides from reaching their target organism. Turbidimetric techniques offer a solution to these issues, eliminating diffusion-related problems and providing an initial quantification of bacteriocin efficacy in producer organisms. This study involved screening the cell-free supernatant (CFS) from eight uncharacterized asymptomatic bacteriuria (ABU) isolates and Escherichia coli 83972 for antimicrobial activity against clinical uropathogenic E. coli (UPEC) strains using turbidimetric growth methods. ABU isolates exhibiting activity against five or more UPEC strains were further characterized (PUTS 37, PUTS 58, PUTS 59, S-07-4, and SK-106-1). The inhibition of the CFS by proteinase K suggested that the antimicrobial activity was proteinaceous in nature, potentially bacteriocins. The activity of E. coli PUTS 58 and SK-106-1 was enhanced in an artificial urine medium, with both inhibiting all eight UPECs. A putative microcin H47 operon was identified in E. coli SK-106-1, along with a previously identified microcin V and colicin E7 in E. coli PUTS 37 and PUTS 58, respectively. These findings indicate that ABU bacteriocin-producers could serve as viable prophylactics and therapeutics in the face of increasing antibiotic resistance among uropathogens.


Bacteriuria , Escherichia coli Infections , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/genetics , Bacteriuria/microbiology , Humans , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Bacteriocins/pharmacology , Bacteriocins/genetics , Nephelometry and Turbidimetry , Biological Assay/methods , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Urinary Tract Infections/microbiology
2.
PeerJ ; 12: e17336, 2024.
Article En | MEDLINE | ID: mdl-38784397

Background: Urinary tract infections (UTIs) are very common worldwide. According to their symptomatology, these infections are classified as pyelonephritis, cystitis, or asymptomatic bacteriuria (AB). Approximately 75-95% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which is an extraintestinal bacterium that possesses virulence factors for bacterial adherence and invasion in the urinary tract. In addition, UPEC possesses type 6 secretion systems (T6SS) as virulence mechanisms that can participate in bacterial competition and in bacterial pathogenicity. UPEC UMN026 carries three genes, namely, ECUMN_0231, ECUMN_0232, and ECUMN_0233, which encode three uncharacterized proteins related to the T6SS that are conserved in strains from phylogroups B2 and D and have been proposed as biomarkers of UTIs. Aim: To analyze the frequency of the ECUMN_0231, ECUMN_0232, ECUMN_0233, and vgrG genes in UTI isolates, as well as their expression in Luria Bertani (LB) medium and urine; to determine whether these genes are related to UTI symptoms or bacterial competence and to identify functional domains on the putative proteins. Methods: The frequency of the ECUMN and vgrG genes in 99 clinical isolates from UPEC was determined by endpoint PCR. The relationship between gene presence and UTI symptomatology was determined using the chi2 test, with p < 0.05 considered to indicate statistical significance. The expression of the three ECUMN genes and vgrG was analyzed by RT-PCR. The antibacterial activity of strain UMN026 was determined by bacterial competence assays. The identification of functional domains and the docking were performed using bioinformatic tools. Results: The ECUMN genes are conserved in 33.3% of clinical isolates from patients with symptomatic and asymptomatic UTIs and have no relationship with UTI symptomatology. Of the ECUMN+ isolates, only five (15.15%, 5/33) had the three ECUMN and vgrG genes. These genes were expressed in LB broth and urine in UPEC UMN026 but not in all the clinical isolates. Strain UMN026 had antibacterial activity against UPEC clinical isolate 4014 (ECUMN-) and E. faecalis but not against isolate 4012 (ECUMN+). Bioinformatics analysis suggested that the ECUMN genes encode a chaperone/effector/immunity system. Conclusions: The ECUMN genes are conserved in clinical isolates from symptomatic and asymptomatic patients and are not related to UTI symptoms. However, these genes encode a putative chaperone/effector/immunity system that seems to be involved in the antibacterial activity of strain UMN026.


Escherichia coli Infections , Escherichia coli Proteins , Molecular Chaperones , Urinary Tract Infections , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/immunology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/pathogenicity , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/immunology , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/immunology , Escherichia coli Proteins/metabolism , Female , Virulence Factors/genetics , Virulence Factors/immunology , Male , Middle Aged , Adult
3.
Sci Rep ; 14(1): 11848, 2024 05 24.
Article En | MEDLINE | ID: mdl-38782931

Despite extensive characterisation of uropathogenic Escherichia coli (UPEC) causing urinary tract infections (UTIs), the genetic background of non-urinary extraintestinal pathogenic E. coli (ExPEC) in companion animals remains inadequately understood. In this study, we characterised virulence traits of 104 E. coli isolated from canine pyometra (n = 61) and prostatic abscesses (PAs) (n = 38), and bloodstream infections (BSIs) in dogs (n = 2), and cats (n = 3). A stronger association with UPEC of pyometra strains in comparison to PA strains was revealed. Notably, 44 isolates exhibited resistance to third-generation cephalosporins and/or fluoroquinolones, 15 were extended-spectrum ß-lactamase-producers. Twelve multidrug-resistant (MDR) strains, isolated from pyometra (n = 4), PAs (n = 5), and BSIs (n = 3), along with 7 previously characterised UPEC strains from dogs and cats, were sequenced. Genomic characteristics revealed that MDR E. coli associated with UTIs, pyometra, and BSIs belonged to international high-risk E. coli clones, including sequence type (ST) 38, ST131, ST617, ST648, and ST1193. However, PA strains belonged to distinct lineages, including ST12, ST44, ST457, ST744, and ST13037. The coreSNPs, cgMLST, and pan-genome illustrated intra-clonal variations within the same ST from different sources. The high-risk ST131 and ST1193 (phylogroup B2) contained high numbers of ExPEC virulence genes on pathogenicity islands, predominating in pyometra and UTI. Hybrid MDR/virulence IncF multi-replicon plasmids, containing aerobactin genes, were commonly found in non-B2 phylogroups from all sources. These findings offer genomic insights into non-urinary ExPEC, highlighting its potential for invasive infections in pets beyond UTIs, particularly with regards to high-risk global clones.


Abscess , Dog Diseases , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Pyometra , Urinary Tract Infections , Dogs , Animals , Urinary Tract Infections/microbiology , Urinary Tract Infections/veterinary , Drug Resistance, Multiple, Bacterial/genetics , Male , Dog Diseases/microbiology , Cats , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Pyometra/microbiology , Pyometra/veterinary , Pyometra/genetics , Abscess/microbiology , Abscess/veterinary , Female , Cat Diseases/microbiology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/pathogenicity , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Prostatic Diseases/microbiology , Prostatic Diseases/veterinary , Prostatic Diseases/genetics , Virulence/genetics , Virulence Factors/genetics
4.
BMC Microbiol ; 24(1): 190, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816687

BACKGROUND: Urinary tract infections (UTIs) are common bacterial infections, primarily caused by uropathogenic Escherichia coli (UPEC), leading to significant health issues and economic burden. Although antibiotics have been effective in treating UPEC infections, the rise of antibiotic-resistant strains hinders their efficacy. Hence, identifying novel bacterial targets for new antimicrobial approaches is crucial. Bacterial factors required for maintaining the full virulence of UPEC are the potential target. MepM, an endopeptidase in E. coli, is involved in the biogenesis of peptidoglycan, a major structure of bacterial envelope. Given that the bacterial envelope confronts the hostile host environment during infections, MepM's function could be crucial for UPEC's virulence. This study aims to explore the role of MepM in UPEC pathogenesis. RESULTS: MepM deficiency significantly impacted UPEC's survival in urine and within macrophages. Moreover, the deficiency hindered the bacillary-to-filamentous shape switch which is known for aiding UPEC in evading phagocytosis during infections. Additionally, UPEC motility was downregulated due to MepM deficiency. As a result, the mepM mutant displayed notably reduced fitness in causing UTIs in the mouse model compared to wild-type UPEC. CONCLUSIONS: This study provides the first evidence of the vital role of peptidoglycan endopeptidase MepM in UPEC's full virulence for causing UTIs. MepM's contribution to UPEC pathogenesis may stem from its critical role in maintaining the ability to resist urine- and immune cell-mediated killing, facilitating the morphological switch, and sustaining motility. Thus, MepM is a promising candidate target for novel antimicrobial strategies.


Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/pathogenicity , Uropathogenic Escherichia coli/enzymology , Uropathogenic Escherichia coli/drug effects , Animals , Mice , Escherichia coli Infections/microbiology , Virulence , Endopeptidases/genetics , Endopeptidases/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Female , Peptidoglycan/metabolism , Macrophages/microbiology , Macrophages/immunology , Humans , Disease Models, Animal
5.
Infect Genet Evol ; 121: 105600, 2024 Jul.
Article En | MEDLINE | ID: mdl-38692501

Urinary tract infections (UTI) caused by uropathogenic Escherichia coli (UPEC) pose a global health concern. Resistance mechanisms, including genetic mutations in antimicrobial target genes, efflux pumps, and drug deactivating enzymes, hinder clinical treatment. These resistance factors often spread through mobile genetic elements. Molecular techniques like whole genome sequencing (WGS), multilocus sequence typing (MLST), and phylotyping help decode bacterial genomes and categorise resistance genes. In this study, we analysed 57 UPEC isolates from different UTI patients following EUCAST guidelines. A selection of 17 representative strains underwent WGS, phylotyping, MLST, and comparative analysis to connect laboratory susceptibility data with predictive genomics based on key resistance genes and chromosomal mutations in antimicrobial targets. Trimethoprim resistance consistently correlated with dfr genes, with six different alleles detected among the isolates. These dfr genes often coexisted with class 1 integrons, with the most common gene cassette combining dfr and aadA. Furthermore, 52.9% of isolates harboured the blaTem-1 gene, rendering resistance to ampicillin and amoxicillin. Ciprofloxacin-resistant strains exhibited mutations in GyrA, GyrB and ParC, plasmid-mediated quinolone resistance genes (qnrb10), and aac(6')-Ib-cr5. Nitrofurantoin resistance in one isolate stemmed from a four amino acid deletion in NfsB. These findings illustrate the varied strategies employed by UPEC to resist antibiotics and the correlation between clinical susceptibility testing and molecular determinants. As molecular testing gains prominence in clinical applications, understanding key resistance determinants becomes crucial for accurate susceptibility testing and guiding effective antimicrobial therapy.


Anti-Bacterial Agents , Escherichia coli Infections , Microbial Sensitivity Tests , Urinary Tract Infections , Uropathogenic Escherichia coli , Whole Genome Sequencing , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/drug effects , Humans , Whole Genome Sequencing/methods , Escherichia coli Infections/microbiology , Anti-Bacterial Agents/pharmacology , Urinary Tract Infections/microbiology , Ireland , Genome, Bacterial , Drug Resistance, Bacterial/genetics , Phylogeny , Phenotype , Multilocus Sequence Typing , Female , Male
6.
Proc Natl Acad Sci U S A ; 121(16): e2310693121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38607934

Urinary tract infections (UTI) account for a substantial financial burden globally. Over 75% of UTIs are caused by uropathogenic Escherichia coli (UPEC), which have demonstrated an extraordinarily rapid growth rate in vivo. This rapid growth rate appears paradoxical given that urine and the human urinary tract are relatively nutrient-restricted. Thus, we lack a fundamental understanding of how uropathogens propel growth in the host to fuel pathogenesis. Here, we used large in silico, in vivo, and in vitro screens to better understand the role of UPEC transport mechanisms and their contributions to uropathogenesis. In silico analysis of annotated transport systems indicated that the ATP-binding cassette (ABC) family of transporters was most conserved among uropathogenic bacterial species, suggesting their importance. Consistent with in silico predictions, we determined that the ABC family contributed significantly to fitness and virulence in the urinary tract: these were overrepresented as fitness factors in vivo (37.2%), liquid media (52.3%), and organ agar (66.2%). We characterized 12 transport systems that were most frequently defective in screening experiments by generating in-frame deletions. These mutant constructs were tested in urovirulence phenotypic assays and produced differences in motility and growth rate. However, deletion of multiple transport systems was required to achieve substantial fitness defects in the cochallenge murine model. This is likely due to genetic compensation among transport systems, highlighting the centrality of ABC transporters in these organisms. Therefore, these nutrient uptake systems play a concerted, critical role in pathogenesis and are broadly applicable candidate targets for therapeutic intervention.


ATP-Binding Cassette Transporters , Uropathogenic Escherichia coli , Humans , Animals , Mice , ATP-Binding Cassette Transporters/genetics , Virulence Factors/genetics , Uropathogenic Escherichia coli/genetics , Membrane Transport Proteins/genetics , Virulence
7.
Mol Biol Rep ; 51(1): 509, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622237

BACKGROUND: The main causes of hospital- and community-acquired urinary tract infections (UTIs) are a group of Escherichia coli (E. coli) strains with multiple virulence factors known as uropathogenic E. coli. METHODS AND RESULTS: One hundred E. coli isolates from the urine specimens of hospital- and community-acquired UTI patients were characterized based on their virulence factors and genetic relatedness using PCR and RAPD‒PCR, respectively. Among all, the traT (71%), sitA (64%), ompT (54%), malX (49%), ibeA (44%), tsh (39%), hlyD (18%) and cnf1 (12%) genes had the highest to lowest frequencies, respectively. There was no significant difference between the frequency of tested virulence genes in E. coli isolates from inpatients and outpatients. The frequency of the hlyD gene was significantly greater in E. coli isolates from patients hospitalized in gynecology, dermatology and intensive care unit (ICU) wards than in those from other wards. Eight virulence gene patterns were common among the isolates of inpatients in different wards of the same hospital, of which five patterns belonged to the isolates of inpatients in the same ward. More E. coli isolates with similar virulence gene patterns and greater genetic similarity were found in female patients than in male patients. The analysis of the RAPD‒PCR dendrograms revealed more genetic similarities among the E. coli isolates from inpatients than among those from outpatients. CONCLUSION: Our findings indicate the presence of a wide variety of virulence factors in E. coli isolates and the possibility of spreading the same clones in different wards of the hospital.


Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Male , Female , Escherichia coli Infections/drug therapy , Virulence/genetics , Random Amplified Polymorphic DNA Technique , Urinary Tract Infections/drug therapy , Hospitals , Molecular Typing , Virulence Factors/genetics , Uropathogenic Escherichia coli/genetics , Anti-Bacterial Agents/therapeutic use
8.
J Agric Food Chem ; 72(18): 10328-10338, 2024 May 08.
Article En | MEDLINE | ID: mdl-38651941

This work seeks to generate new knowledge about the mechanisms underlying the protective effects of cranberry against urinary tract infections (UTI). Using Caco-2 cells grown in Transwell inserts as an intestinal barrier model, we found that a cranberry-derived digestive fluid (containing 135 ± 5 mg of phenolic compounds/L) increased transepithelial electrical resistance with respect to control (ΔTEER = 54.5 Ω cm2) and decreased FITC-dextran paracellular transport by about 30%, which was related to the upregulation of the gene expression of tight junction (TJ) proteins (i.e., occludin, zonula occludens-1 [ZO-1], and claudin-2) (∼3-4-fold change with respect to control for claudin-2 and ∼2-3-fold for occludin and ZO-1). Similar protective effects, albeit to a lesser extent, were observed when Caco-2 cells were previously infected with uropathogenic Escherichia coli (UPEC). In a urinary barrier model comprising T24 cells grown in Transwell inserts and either noninfected or UPEC-infected, treatments with the cranberry-derived phenolic metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and phenylacetic acid (PAA) (250 µM) also promoted favorable changes in barrier integrity and permeability. In this line, incubation of noninfected T24 cells with these metabolites induced positive regulatory effects on claudin-2 and ZO-1 expression (∼3.5- and ∼2-fold change with respect to control for DOPAC and ∼1.5- and >2-fold change with respect to control for PAA, respectively). Overall, these results suggest that the protective action of cranberry polyphenols against UTI might involve molecular mechanisms related to the integrity and functionality of the urothelium and intestinal epithelium.


Plant Extracts , Polyphenols , Urinary Tract Infections , Vaccinium macrocarpon , Vaccinium macrocarpon/chemistry , Humans , Urinary Tract Infections/prevention & control , Urinary Tract Infections/microbiology , Polyphenols/pharmacology , Polyphenols/chemistry , Polyphenols/metabolism , Caco-2 Cells , Plant Extracts/pharmacology , Plant Extracts/chemistry , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/genetics , Occludin/genetics , Occludin/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Tight Junctions/metabolism , Tight Junctions/drug effects , Fruit/chemistry , Intestines/drug effects , Escherichia coli Infections/prevention & control , Escherichia coli Infections/microbiology
9.
Microbiol Spectr ; 12(6): e0413923, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38651881

Escherichia coli is a diverse pathogen, causing a range of disease in humans, from self-limiting diarrhea to urinary tract infections (UTIs). Uropathogenic E. coli (UPEC) is the most frequently observed uropathogen in UTIs, a common disease in high-income countries, incurring billions of dollars yearly in treatment costs. Although E. coli is easily grown and identified in the clinical laboratory, genotyping the pathogen is more complicated, yet critical for reducing the incidence of disease. These goals can be achieved through whole-genome sequencing of E. coli isolates, but this approach is relatively slow and typically requires culturing the pathogen in the laboratory. To genotype E. coli rapidly and inexpensively directly from clinical samples, including but not limited to urine, we developed and validated a multiplex amplicon sequencing assay, called ColiSeq. The assay consists of targets designed for E. coli species confirmation, high resolution genotyping, and mixture deconvolution. To demonstrate its utility, we screened the ColiSeq assay against 230 clinical urine samples collected from a hospital system in Flagstaff, Arizona, USA. A limit of detection analysis demonstrated the ability of ColiSeq to identify E. coli at a concentration of ~2 genomic equivalent (GEs)/mL and to generate high-resolution genotyping at a concentration of 1 × 105 GEs/mL. The results of this study suggest that ColiSeq could be a valuable method to understand the source of UPEC strains and guide infection mitigation efforts. As sequence-based diagnostics become accepted in the clinical laboratory, workflows such as ColiSeq will provide actionable information to improve patient outcomes.IMPORTANCEUrinary tract infections (UTIs), caused primarily by Escherichia coli, create an enormous health care burden in the United States and other high-income countries. The early detection of E. coli from clinical samples, including urine, is important to target therapy and prevent further patient complications. Additionally, understanding the source of E. coli exposure will help with future mitigation efforts. In this study, we developed, tested, and validated an amplicon sequencing assay focused on direct detection of E. coli from urine. The resulting sequence data were demonstrated to provide strain level resolution of the pathogen, not only confirming the presence of E. coli, which can focus treatment efforts, but also providing data needed for source attribution and contact tracing. This assay will generate inexpensive, rapid, and reproducible data that can be deployed by public health agencies to track, diagnose, and potentially mitigate future UTIs caused by E. coli.


Escherichia coli Infections , Escherichia coli , Urinary Tract Infections , Humans , Escherichia coli Infections/microbiology , Escherichia coli Infections/diagnosis , Urinary Tract Infections/microbiology , Urinary Tract Infections/diagnosis , Escherichia coli/genetics , Escherichia coli/isolation & purification , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/isolation & purification , Uropathogenic Escherichia coli/classification , Genotype , Whole Genome Sequencing/methods , Genotyping Techniques/methods , Multiplex Polymerase Chain Reaction/methods
10.
J Antibiot (Tokyo) ; 77(5): 324-330, 2024 May.
Article En | MEDLINE | ID: mdl-38438498

The multidrug-resistant clone identified as Escherichia coli sequence type 131 (E. coli ST131) has spread world-wide. This study sought to ascertain the frequency and biofilm formation of E. coli ST131 isolated from children with various malignancies. A total of 60 uropathogenic E. coli (UPEC) isolates from children without cancer and 30 UPEC isolates from children with cancer were assessed in this study. The microdilution method was used to investigate the sensitivity of bacteria to antibiotics. The microtiter plate (MTP) approach was used to phenotypically assess biofilm formation. The lasR, pelA, and lecA biofilm-encoding genes were detected by PCR in biofilm-producing isolates of E. coli. Thirty-seven out of 90 E. coli isolates were found to be ST131 (41.1%), with 17 (56.7%) from cancer-affected children and 20 (33.3%) from children without cancer, respectively (P-value = 0.036). The frequency of antimicrobial resistance was higher in ST131 strains were compared to non-ST131 strains and when they were isolated from healthy children vs. those who had cancer. In contrast to non-ST131 isolates, ST131 isolates were more biofilm-producers. There was a significant difference between the percentage of biofilm producers between the 22 (100%) ST131-O16 isolates and the 13 (86.7%) ST131-O25b isolates (P-value = 0.04). Children with cancer are more likely than children without cancer to develop biofilm forming E. coli ST131, the latter having a higher profile of antibiotic resistance. Interestingly, E. coli ST131 isolates from non-cancer patients had higher levels of overall antibiotic resistance and while more E. coli ST131isolates from cancer patients formed biofilms.


Anti-Bacterial Agents , Biofilms , Escherichia coli Infections , Microbial Sensitivity Tests , Neoplasms , Uropathogenic Escherichia coli , Biofilms/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Neoplasms/microbiology , Child , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Female , Drug Resistance, Multiple, Bacterial/genetics , Child, Preschool , Male , Urinary Tract Infections/microbiology , Infant
11.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38486355

AIMS: The main objective of this study was to modify a recently reported multi-purpose artificial urine (MP-AU) for culture and gene expression studies of uropathogenic Escherichia coli (UPEC) strains. METHODS AND RESULTS: We used liquid chromatography mass spectrometry (LC-MS) to identify and adjust the metabolic profile of MP-AU closer to that of pooled human urine (PHU). Modification in this way facilitated growth of UPEC strains with growth rates similar to those obtained in PHU. Transcriptomic analysis of UPEC strains cultured in enhanced artificial urine (enhanced AU) and PHU showed that the gene expression profiles are similar, with <7% of genes differentially expressed between the two conditions. CONCLUSIONS: Enhancing an MP-AU with metabolites identified in PHU allows the enhanced AU to be used as a substitute for the culture and in vitro gene expression studies of UPEC strains.


Escherichia coli Infections , Escherichia coli Proteins , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Uropathogenic Escherichia coli/genetics , Gene Expression Profiling , Gene Expression , Escherichia coli Proteins/genetics , Virulence Factors/genetics
12.
Mol Biol Rep ; 51(1): 327, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38393446

BACKGROUND: In the present study, we examine the prevalence of phylogenetic groups, O-serogroups, adhesin genes, antimicrobial resistance, the level of gene expression associated with biofilm formation, and the presence of extended-spectrum beta-lactamase (ESBL) in UPEC strains isolated from both pediatric and adult patients. METHODS: In this cross-sectional study, 156 UPEC isolates were collected from UTI patients. ESBL-producing isolates were detected using the double-disc synergy (DDS) method, and biofilm formation was assessed through a microplate assay. The presence of O-serogroups, adhesion factors and resistance genes, including ESBLs and PMQR genes, was detected by PCR, and isolates were categorized into phylogenetic groups using multiplex PCR. Additionally, the quantitative real-time PCR method was also used to determine the expression level of genes related to biofilm. RESULTS: During the study period, 50.6% (79/156) of the samples were obtained from children, and 49.4% (77/156) were from adults. The highest rate of resistance was to NA (91.7%), while FM (10.9%) had the lowest rate of antibiotic resistance. In addition, 67.9% (106/156) of UPEC isolates were ESBL producers. Most of UPEC isolates belonged to phylogenetic group B2 (37.1%). This study revealed that blaCTX-M and qnrS are widely distributed among UPEC isolates. The mean expression levels of fimA genes were significantly higher in non-biofilm producers than in biofilm producers (p < 0.01). CONCLUSIONS: The high antibiotic resistance rates in this study highlight the significance of local resistance monitoring and investigating underlying mechanisms. Our findings indicate the dominance of phylogroup B2 and group D as the prevailing phylogenetic groups. Consequently, it is imperative to investigate the epidemiological aspects and characterize UPEC isolates across diverse regions and time frames.


Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Adult , Humans , Child , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Phylogeny , Uropathogenic Escherichia coli/genetics , Escherichia coli Infections/genetics , Escherichia coli Infections/drug therapy , Cross-Sectional Studies , Drug Resistance, Bacterial/genetics , Hydrolases/genetics , Biofilms , Urinary Tract Infections/drug therapy
13.
Braz J Microbiol ; 55(2): 1091-1097, 2024 Jun.
Article En | MEDLINE | ID: mdl-38367167

The identification of genes associated with resistance has the potential to facilitate the development of novel diagnostic tests and treatment methods. The objective of this study was to examine the antibiotic resistance and Fosfomycin resistance genes in uropathogenic Escherichia coli (UPEC) in patients in Baghdad, Iraq. After analyzing 250 urine samples using various identification methods, including the examination of morphological characteristics, biochemical tests, and genetic detection, it was determined that E. coli was the most common bacteria present, accounting for 63.6% of the samples. Antibiotic susceptibility testing showed a significant prevalence of resistance to various antibiotics, with 99.3% of E. coli isolates exhibiting multiple drug resistance (MDR). Fosfomycin showed antibacterial properties against UPEC. The minimum inhibitory concentration (MIC) ranged from 512 to 1024 µg/mL, while the minimum bactericidal concentration (MBC) was 2048 µg/mL. In the time-kill assay, fosfomycin was effective against fosfomycin-resistant isolates within 8-12 h. The genetic determinants associated with fosfomycin resistance were examined through the utilization of polymerase chain reaction (PCR). The findings indicated that the genes murA, glpT, and cyaA were detected in all the isolates when genomic DNA was used as a template. However, all the tests yielded negative results when plasmid was used as a template. The genes fosA3 and fosA4 were detected in 8.6% and 5% of the isolates when genomic DNA was used as a template. When plasmid was used as a template, the genes fosA3 and fosA4 were found in 5.7% and 2.9% of the isolates, respectively. In conclusion, there is an increasing problem with antibiotic resistance in UPEC, with elevated rates of resistance to several antibiotics. The study also offers novel insights into the genetic foundation of fosfomycin resistance in UPEC.


Anti-Bacterial Agents , Escherichia coli Infections , Fosfomycin , Microbial Sensitivity Tests , Urinary Tract Infections , Uropathogenic Escherichia coli , Fosfomycin/pharmacology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/isolation & purification , Humans , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Urinary Tract Infections/microbiology , Drug Resistance, Bacterial/genetics , Iraq , Female , Male , Adult , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Young Adult , Middle Aged , Adolescent , Drug Resistance, Multiple, Bacterial/genetics
14.
mBio ; 15(3): e0338823, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38353545

Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, with ~400 million cases across the globe each year. Uropathogenic Escherichia coli (UPEC) is the major cause of UTI and increasingly associated with antibiotic resistance. This scenario has been worsened by the emergence and spread of pandemic UPEC sequence type 131 (ST131), a multidrug-resistant clone associated with extraordinarily high rates of infection. Here, we employed transposon-directed insertion site sequencing in combination with metabolomic profiling to identify genes and biochemical pathways required for growth and survival of the UPEC ST131 reference strain EC958 in human urine (HU). We identified 24 genes required for growth in HU, which mapped to diverse pathways involving small peptide, amino acid and nucleotide metabolism, the stringent response pathway, and lipopolysaccharide biosynthesis. We also discovered a role for UPEC resistance to fluoride during growth in HU, most likely associated with fluoridation of drinking water. Complementary nuclear magnetic resonance (NMR)-based metabolomics identified changes in a range of HU metabolites following UPEC growth, the most pronounced being L-lactate, which was utilized as a carbon source via the L-lactate dehydrogenase LldD. Using a mouse UTI model with mixed competitive infection experiments, we demonstrated a role for nucleotide metabolism and the stringent response in UPEC colonization of the mouse bladder. Together, our application of two omics technologies combined with different infection-relevant settings has uncovered new factors required for UPEC growth in HU, thus enhancing our understanding of this pivotal step in the UPEC infection pathway. IMPORTANCE: Uropathogenic Escherichia coli (UPEC) cause ~80% of all urinary tract infections (UTIs), with increasing rates of antibiotic resistance presenting an urgent threat to effective treatment. To cause infection, UPEC must grow efficiently in human urine (HU), necessitating a need to understand mechanisms that promote its adaptation and survival in this nutrient-limited environment. Here, we used a combination of functional genomic and metabolomic techniques and identified roles for the metabolism of small peptides, amino acids, nucleotides, and L-lactate, as well as the stringent response pathway, lipopolysaccharide biosynthesis, and fluoride resistance, for UPEC growth in HU. We further demonstrated that pathways involving nucleotide metabolism and the stringent response are required for UPEC colonization of the mouse bladder. The UPEC genes and metabolic pathways identified in this study represent targets for the development of innovative therapeutics to prevent UPEC growth during human UTI, an urgent need given the rapidly rising rates of global antibiotic resistance.


Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Escherichia coli/genetics , Fluorides/metabolism , Lipopolysaccharides/metabolism , Urinary Tract Infections/microbiology , Escherichia coli Infections/microbiology , Genomics , Nucleotides/metabolism , Lactates/metabolism , Uropathogenic Escherichia coli/genetics
15.
Clin Lab ; 70(2)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38345976

BACKGROUND: The adhesion genes are responsible for biofilm production which leads to chronic diseases like urinary tract infections (UTIs). Uropathogenic Escherichia coli (UPEC) is the most predominant pathogen involved in UTIs. This study aims to evaluate the relationship between adhesion genes and bacterial biofilm that form by UPEC. METHODS: Fifty clinical isolates of E. coli from patients infected with UTIs were identified and antimicrobial resistance was tested by MIC assay. A polymerase chain reaction (PCR), a quick and sensitive assay to identify the adhesions operon (Afa, papG, flu, and fimH), was developed using eight primers and used for amplification. E. coli K-12 strain and E. coli J96 were used as a negative and a positive control for detection of adhesion genes. RESULTS: The study reported 70% of isolates produce strong biofilm. Adhesion genes showed as follow Afa (64% n = 33), papG (42% n = 23), flu (94% n = 52), fimH (86% n = 45). CONCLUSIONS: The resistance to non-Beta lactam antibiotic was significantly correlated with the availability of genes that encode for adhesion. These genes were highly correlated to biofilm formation in E. coli clinical isolates.


Escherichia coli Infections , Escherichia coli Proteins , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Biofilms , Urinary Tract Infections/drug therapy , Escherichia coli Proteins/genetics , Escherichia coli Infections/drug therapy , Uropathogenic Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
16.
Mol Biol Rep ; 51(1): 143, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38236338

BACKGROUND: It has been interesting to compare the levels of antimicrobial resistance and the virulence characteristics of uropathogenic Escherichia coli (UPEC) strains of certain phylogenetic groups. The purpose of this study was to identify the frequency of phylogenetic groups, adhesin genes, antibiotic sensitivity patterns, and extended spectrum-lactamases (ESBLs) genes in hospital-acquired UPEC. METHODS: After UPEC isolation, the disc diffusion method was used to assess its susceptibility to antibiotics. Combination disc testing confirmed the existence of ESBL producers. Polymerase chain reaction (PCR) was used to detect genes for adhesin and ESBLs. RESULTS: One hundred and twenty-eight E. coli were isolated which had the highest resistance to tetracycline (96%) followed by cefoxitin (93%), cefepime (92%), ceftazidime (79%), aztreonam (77%) and sulfamethoxazole -trimethoprim (75%). About 57% of isolates were phenotypically ESBLs positive and they were confirmed by PCR. B2 phylogroup (41%) was the most frequent in E. coli isolates then group D (30%), group A (18%), and lastly group B1 (11%). ESBLs genes were more significantly prevalent in phylogroups B2 and D than other phylogroups (P < 0.001). Regarding adhesin genes, both fim H and afa were more significantly associated with group B2 than other groups (P < 0.009, < 0.032), respectively. In ESBL-positive isolates, both genes were more significantly detected compared to negative ones (P < 0.001). CONCLUSION: Phylogroups B2 and D of UPEC are important reservoirs of antimicrobial resistance and adhesion genes. Detection of ESBL-producing E. coli is important for appropriate treatment as well as for effective infection control in hospitals.


Uropathogenic Escherichia coli , Phylogeny , Uropathogenic Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Hospitals , Trimethoprim, Sulfamethoxazole Drug Combination , beta-Lactamases/genetics
17.
Curr Microbiol ; 81(2): 56, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38193903

Uropathogenic Escherichia coli (UPEC) is the predominant pathogen in Urinary Tract Infection (UTI) in pregnant and non-pregnant women. Limited studies were initiated to explore UPEC from pregnant women with respect to imipenem resistance, pathogenicity, and their clonal lineage. In this study, imipenem resistance, phylogenetic background, virulence-associated genes, and clonal characteristics in UPECs isolated from pregnant and non-pregnant cohorts were investigated. E. coli was identified biochemically from urine culture-positive samples from pregnant and non-pregnant women. Carbapenem (meropenem, ertapenem, imipenem) susceptibility was determined by Kirby-Bauer disk diffusion test. The pathogenic determinants were identified by PCR. MEGA 11 was used to interpret clonal lineages from MLST. GraphPad Prism 8.0 and SPSS 26.0 were used for statistical interpretation. Results indicated highest resistance against imipenem compared to meropenem and ertapenem in UPECs isolated from pregnant (UPECp; 63.89%) and non-pregnant (UPECnp; 87.88%) women. Although phylogroup E was predominant in both imipenem-resistant isolates, acquisition of virulence factors was higher among UPECnp than UPECp. Akin to this observation, the presence of PAI III536 and PAI IV536 was statistically significant (p < 0.05) in the former. MLST analysis revealed similar clonal lineages between UPECnp and UPECp, which showed an overall occurrence of ST405 followed by ST101, ST410, ST131, and ST1195 in UPECnp and ST167 in UPECp, respectively, with frequent occurrence of CC131, CC405. Therefore, imipenem-resistant UPECp although discrete with respect to their virulence determinants when compared to UPECnp shared similar STs and CCs, which implied common evolutionary history. Thus, empiric treatment must be restricted in UTIs to especially protect maternal and fetal health.


Imipenem , Uropathogenic Escherichia coli , Pregnancy , Humans , Female , Male , Imipenem/pharmacology , Virulence/genetics , Uropathogenic Escherichia coli/genetics , Ertapenem/pharmacology , Meropenem , Multilocus Sequence Typing , Phylogeny , Pregnant Women , Virulence Factors/genetics
18.
mBio ; 15(2): e0255423, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38270443

Millions suffer from urinary tract infections (UTIs) worldwide every year with women accounting for the majority of cases. Uropathogenic Escherichia coli (UPEC) causes most of these primary infections and leads to 25% becoming recurrent or chronic. To repel invading pathogens, the urinary tract mounts a vigorous innate immune response that includes the secretion of antimicrobial peptides (AMPs), rapid recruitment of phagocytes, and exfoliation of superficial umbrella cells. Here, we investigate secretory leukocyte protease inhibitor (SLPI), an AMP with antiprotease, antimicrobial, and immunomodulatory functions, known to play protective roles at other mucosal sites, but not well characterized in UTIs. Using a preclinical model of UPEC-caused UTI, we show that urine SLPI increases in infected mice and that SLPI is localized to bladder epithelial cells. UPEC-infected SLPI-deficient (Slpi-/-) mice suffer from higher urine bacterial burdens, prolonged bladder inflammation, and elevated urine neutrophil elastase (NE) levels compared to wild-type (Slpi+/+) controls. Combined with bulk bladder RNA sequencing, our data indicate that Slpi-/- mice have a dysregulated immune and tissue repair response following UTI. We also measure SLPI in urine samples from a small group of female subjects 18-49 years old and find that SLPI tends to be higher in the presence of a uropathogen, except in patients with a history of recent or recurrent UTI, suggesting a dysregulation of SLPI expression in these women. Taken together, our findings show SLPI promotes clearance of UPEC in mice and provides preliminary evidence that SLPI is likewise regulated in response to uropathogen exposure in women.IMPORTANCEAnnually, millions of people suffer from urinary tract infections (UTIs) and more than $3 billion are spent on work absences and treatment of these patients. While the early response to UTI is known to be important in combating urinary pathogens, knowledge of host factors that help curb infection is still limited. Here, we use a preclinical model of UTI to study secretory leukocyte protease inhibitor (SLPI), an antimicrobial protein, to determine how it protects the bladder against infection. We find that SLPI is increased during UTI, accelerates the clearance of bacteriuria, and upregulates genes and pathways needed to fight an infection while preventing prolonged bladder inflammation. In a small clinical study, we show SLPI is readily detectable in human urine and is associated with the presence of a uropathogen in patients without a previous history of UTI, suggesting SLPI may play an important role in protecting from bacterial cystitis.


Anti-Infective Agents , Cystitis , Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Adolescent , Adult , Animals , Female , Humans , Mice , Middle Aged , Young Adult , Escherichia coli Infections/microbiology , Secretory Leukocyte Peptidase Inhibitor/genetics , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/genetics
19.
mBio ; 15(2): e0317023, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38206009

Urinary tract infections (UTIs) in men are uncommon yet carry an increased risk for severe pyelonephritis and other complications. In models of Escherichia coli UTI, C3H/HeN mice develop high-titer pyelonephritis (most with renal abscesses) in a testosterone-dependent manner, but the mechanisms underlying this phenotype are unknown. Here, using female mouse models, we show that androgen exposure impairs neutrophil maturation in the upper and lower urinary tract, compounded by a reduction of neutrophil function within the infected kidney, enabling persistent high-titer infection and promoting abscess formation. Following intravesical inoculation with uropathogenic E. coli (UPEC), kidneys of androgen-exposed C3H mice showed delayed local pro-inflammatory cytokine responses while robustly recruiting neutrophils. These were enriched for an end-organ-specific population of aged but immature neutrophils (CD49d+, CD101-). Compared to their mature counterparts, these aged immature kidney neutrophils exhibited reduced function in vitro, including impaired degranulation and diminished phagocytic activity, while splenic, bone marrow, and bladder neutrophils did not display these alterations. Furthermore, aged immature neutrophils manifested little phagocytic activity within intratubular UPEC communities in vivo. Experiments with B6 conditional androgen receptor (AR)-deficient mice indicated rescue of the maturation defect when AR was deleted in myeloid cells. We conclude that the recognized enhancement of UTI severity by androgens is attributable, at least in part, to local impairment of neutrophil maturation in the urinary tract (largely via cell-intrinsic AR signaling) and a kidney-specific reduction in neutrophil antimicrobial capacity.IMPORTANCEAlthough urinary tract infections (UTIs) predominantly occur in women, male UTIs carry an increased risk of morbidity and mortality. Pyelonephritis in androgen-exposed mice features robust neutrophil recruitment and abscess formation, while bacterial load remains consistently high. Here, we demonstrate that during UTI, neutrophils infiltrating the urinary tract of androgen-exposed mice exhibit reduced maturation, and those that have infiltrated the kidney have reduced phagocytic and degranulation functions, limiting their ability to effectively control infection. This work helps to elucidate mechanisms by which androgens enhance UTI susceptibility and severity, illuminating why male patients may be predisposed to severe outcomes of pyelonephritis.


Escherichia coli Infections , Pyelonephritis , Urinary Tract Infections , Uropathogenic Escherichia coli , Female , Humans , Male , Animals , Mice , Aged , Androgens , Neutrophils/pathology , Escherichia coli , Abscess/pathology , Escherichia coli Infections/microbiology , Mice, Inbred C3H , Kidney/microbiology , Urinary Tract Infections/microbiology , Pyelonephritis/microbiology , Uropathogenic Escherichia coli/genetics
20.
mBio ; 15(2): e0027723, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38236035

Siderophores are secreted ferric ion chelators used to obtain iron in nutrient-limited environmental niches, including human hosts. While all Escherichia coli express the enterobactin (Ent) siderophore system, isolates from patients with urinary tract infections additionally express the genetically distinct yersiniabactin (Ybt) siderophore system. To determine whether the Ent and Ybt systems are functionally redundant for iron uptake, we compared the growth of different isogenic siderophore biosynthetic mutants in the presence of transferrin, a human iron-binding protein. We observed that Ybt expression does not compensate for deficient Ent expression following low-density inoculation. Using transcriptional and product analysis, we found this non-redundancy to be attributable to a density-dependent transcriptional stimulation cycle in which Ybt functions as an autoinducer. These results distinguish the Ybt system as a combined quorum-sensing and siderophore system. These functions may reflect Ybt as a public good within bacterial communities or as an adaptation to confined, subcellular compartments in infected hosts. This combined functionality may contribute to the extraintestinal pathogenic potential of E. coli and related Enterobacterales.IMPORTANCEPatients with urinary tract infections are often infected with Escherichia coli strains carrying adaptations that increase their pathogenic potential. One of these adaptations is the accumulation of multiple siderophore systems, which scavenge iron for nutritional use. While iron uptake is important for bacterial growth, the increased metabolic costs of siderophore production could diminish bacterial fitness during infections. In a siderophore-dependent growth condition, we show that the virulence-associated yersiniabactin siderophore system in uropathogenic E. coli is not redundant with the ubiquitous E. coli enterobactin system. This arises not from differences in iron-scavenging activity but because yersiniabactin is preferentially expressed during bacterial crowding, leaving bacteria dependent upon enterobactin for growth at low cell density. Notably, this regulatory mode arises because yersiniabactin stimulates its own expression, acting as an autoinducer in a previously unappreciated quorum-sensing system. This unexpected result connects quorum-sensing with pathogenic potential in E. coli and related Enterobacterales.


Phenols , Thiazoles , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Siderophores/metabolism , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , Enterobactin/metabolism , Iron/metabolism , Urinary Tract Infections/microbiology
...