Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.771
1.
Reprod Domest Anim ; 59(6): e14630, 2024 Jun.
Article En | MEDLINE | ID: mdl-38847348

This study evaluated whether the treatment of pseudopregnancy in bitches with vitamin B6 modulates uterine expression of receptors for progesterone (PR), oestrogen (ERα), androgen (AR), thyroid hormone (TRα) and the kisspeptin/Kiss1r system. Eighteen pseudopregnant bitches were treated for 20 days in groups receiving placebo (n = 6); cabergoline (5 µg/kg/day; n = 6); or vitamin B6 (50 mg/kg/day; n = 6). Blood was collected on the 1st day of drug administration and 120 h later to measure serum prolactin (PRL). After treatment, they were ovariohysterectomized and uterine fragments were collected for histomorphometry and immunohistochemical evaluation of PR, ERα, AR, TRα, Kiss1 and Kiss1r. After 120 h of cabergoline or vitamin B6 treatment, PRL levels were reduced in the bitches, confirming the antiprolactinemic effect of these drugs. Furthermore, regardless of treatment, the animals exhibited uterine histomorphometry consistent with dioestrus. The PR showed strong immunostaining in all regions and an increase in scores was observed for this receptor in animals treated with vitamin B6 in deep glands. In contrast, ERα and Kiss1R receptors showed weak to no immunostaining in all uterine regions and no changes between groups. Regarding AR, most animals treated with vitamin B6 showed increased trends in the deep gland and myometrium marking scores. In contrast, in both vitamin B6 and cabergoline treatments, a reduction in TRα marking scores was observed compared to the control group. In addition, on the endometrial surface, a reduction was observed in the marked area of Kiss1 after administration of cabergoline when compared to the pseudopregnant control group. These findings shed valuable insight into the use of vitamin B6 as a drug with actions similar to cabergoline in reducing PRL and uterine modulation in bitches.


Cabergoline , Kisspeptins , Prolactin , Pseudopregnancy , Uterus , Animals , Female , Dogs , Kisspeptins/pharmacology , Kisspeptins/metabolism , Uterus/drug effects , Uterus/metabolism , Cabergoline/pharmacology , Prolactin/metabolism , Pseudopregnancy/veterinary , Pseudopregnancy/metabolism , Receptors, Progesterone/metabolism , Receptors, Androgen/metabolism , Ergolines/pharmacology
2.
PLoS One ; 19(5): e0292978, 2024.
Article En | MEDLINE | ID: mdl-38728307

Endosalpingiosis (ES) and endometriosis (EM) refer to the growth of tubal and endometrial epithelium respectively, outside of their site of origin. We hypothesize that uterine secretome factors drive ectopic growth. To test this, we developed a mouse model of ES and EM using tdTomato (tdT) transgenic fluorescent mice as donors. To block implantation factors, progesterone knockout (PKO) tdT mice were created. Fluorescent lesions were present after oviduct implantation with and without WT endometrium. Implantation was increased (p<0.05) when tdt oviductal tissue was implanted with endometrium compared to oviductal tissue alone. Implantation was reduced (p<0.0005) in animals implanted with minced tdT oviductal tissue with PKO tdT endometrium compared to WT endometrium. Finally, oviductal tissues was incubated with and without a known implantation factor, leukemia inhibitory factor (LIF) prior to and during implantation. LIF promoted lesion implantation. In conclusion, endometrial derived implantation factors, such as LIF, are necessary to initiate ectopic tissue growth. We have developed an animal model of ectopic growth of gynecologic tissues in a WT mouse which will potentially allow for development of new prevention and treatment modalities.


Endometriosis , Endometrium , Uterus , Animals , Female , Mice , Endometriosis/metabolism , Endometriosis/pathology , Endometriosis/genetics , Uterus/metabolism , Endometrium/metabolism , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/genetics , Secretome/metabolism , Mice, Transgenic , Disease Models, Animal , Fallopian Tubes/metabolism , Progesterone/metabolism , Mice, Knockout , Embryo Implantation/physiology
3.
Reprod Domest Anim ; 59(5): e14586, 2024 May.
Article En | MEDLINE | ID: mdl-38757644

The current study aimed to explore the molecular mechanism by which the cholecystokinin (CCK)-mediated CCKAR and CCKBR, as well as the molecular mechanisms of CCK-mediated insulin signalling pathway, regulate oestrogen in the granulosa cells. Also, the expression of CCK in ovaries, uterus, hypothalamus and pituitary gland was investigated in Camelus bactrianus. Ovaries, uterus, hypothalamus and pituitary gland were collected from six, three before ovulation (control) and three after ovulation, slaughtered Camelus bactrianus. Ovulation was induced by IM injection of seminal plasma before slaughtering in the ovulated group. The results showed that there were differences in the transcription and protein levels of CCK in various tissues before and after ovulation (p < .05, p < .01). After transfection with p-IRES2-EGFP-CCK, the mRNA and protein levels of CCK, CCKAR, CCKBR and ER in follicular granulosa cells were significantly upregulated (p < .05, p < .01), and the content of E2 was significantly upregulated (p < .01); On the contrary, after transfection with si-CCK, the mRNA and protein levels of CCK, CCKAR, CCKBR and ER in follicular granulosa cells were significantly downregulated (p < .05, p < .01), and the content of E2 was significantly downregulated (p < .01). Regulating CCK can affect the mRNA levels of INS, INSR, IGF and IGF-R. In summary, regulating the expression level of CCK can activate insulin-related signalling pathways by CCKR, thereby regulating the steroidogenic activity of granulosa cells.


Cholecystokinin , Granulosa Cells , Insulin , Signal Transduction , Animals , Female , Granulosa Cells/metabolism , Cholecystokinin/metabolism , Cholecystokinin/genetics , Insulin/metabolism , Ovulation , Uterus/metabolism , Ovary/metabolism , Pituitary Gland/metabolism , Hypothalamus/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics
4.
Mol Biol Rep ; 51(1): 655, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739285

BACKGROUND: There is limited data regarding the hazardous effect of gentamicin (GM) on the uterus and whether or not vinpocetine (Vinpo) ameliorates it. The present study aimed to identify the possible protective effect of Vinpo in GM-induced uterine injury in rats. METHODS: Female rats were assorted in control-group, Vinpo-group, GM-group, and Vinpo plus GM group. Serum and uterine GM concentration were measured. Uterine oxidative stress parameters besides inflammatory and apoptotic biomarkers were evaluated. Uterine histopathological examination and interlukin-1beta (IL-1ß) immune-histochemical study were detected. RESULTS: GM significantly increased uterine oxidative stress, inflammatory and apoptotic biomarkers. Histopathological picture of uterine damage and increased IL-1ß immunoexpression were detected. Vinpo significantly ameliorated the distributed GM concentration, oxidative stress, inflammatory and apoptotic biomarkers with a prompt improvement in histopathological picture and a decrease in IL-1ß immunoexpression. CONCLUSION: Vinpo protective effect against GM-induced uterine injury involves modulation of inflammasome/caspase-1/IL-1ß signaling pathway.


Caspase 1 , Gentamicins , Inflammasomes , Interleukin-1beta , Oxidative Stress , Signal Transduction , Uterus , Vinca Alkaloids , Animals , Female , Interleukin-1beta/metabolism , Vinca Alkaloids/pharmacology , Rats , Caspase 1/metabolism , Gentamicins/adverse effects , Inflammasomes/metabolism , Inflammasomes/drug effects , Uterus/drug effects , Uterus/metabolism , Uterus/pathology , Oxidative Stress/drug effects , Signal Transduction/drug effects , Apoptosis/drug effects
5.
Reprod Domest Anim ; 59(5): e14615, 2024 May.
Article En | MEDLINE | ID: mdl-38798181

Present study was designed to evaluate the role of virulence factor genes (papG, cnf1 and hylA) in the pathogenesis of canine pyometra. Antimicrobial susceptibility test and detection of virulence genes were performed Escherichia coli (E. coli) detected in uterine swab samples. Animals were divided into two groups based on the presence (VF+, n:14) or absence (VF-, n:7) of the virulence factor genes papG, cnf1 and hylA. Blood and tissue glutathione peroxidase activity, uterine histopathologic analysis and AQP3, ESR1, PGR, OXTR gene expressions were determined in both groups. Statistical analyses were performed using Stata version 15.1. All E. coli isolates were susceptible to amikacin, whereas resistant to ampicillin, amoxicillin/clavulanic acid and lincomycin. None of the isolates were susceptible to cefotaxime. E. coli isolates had at least one virulence gene. The most prevalent gene was fimH (100%), followed by fyuA (95.8%), usp (83.3%), sfa (75%), cnf1 and hlyA (70.8%) genes. Blood GPx activity was greater in VF+ animals. On the other hand, uterine tissue GPx activity was lower in VF+ group compared to the control group. Expression levels of AQP3 were upregulated more than fivefold in VF-dogs compared to the control group. In addition, AQP3 expression levels were found approximately threefold higher in VF (-) than VF (+) group (p < .05). Varying degree of inflammation noted for all animals with pyometra, but the presence of bacteria noted only in VF+ animals. In conclusion, the presence of virulence factor genes does not play a role in the histopathological degree of inflammation, the presence of bacteria was found to vary. Serum GPx activity increased in VF+ animals. While the hormone receptor expressions were similar, AQP expression was upregulated in the absence of virulence factor genes.


Aquaporin 3 , Dog Diseases , Escherichia coli , Glutathione Peroxidase , Pyometra , Uterus , Virulence Factors , Animals , Female , Virulence Factors/genetics , Virulence Factors/metabolism , Aquaporin 3/genetics , Aquaporin 3/metabolism , Dogs , Pyometra/veterinary , Pyometra/microbiology , Pyometra/pathology , Dog Diseases/microbiology , Uterus/pathology , Uterus/microbiology , Uterus/metabolism , Escherichia coli/genetics , Escherichia coli/pathogenicity , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Anti-Bacterial Agents/pharmacology , Down-Regulation , Microbial Sensitivity Tests/veterinary
6.
Environ Pollut ; 351: 124101, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38710361

Both nanoplastics (NPs) and 3-tert-butyl-4-hydroxyanisole (3-BHA) are environmental contaminants that can bio-accumulate through the food chain. However, the combined effects of which on mammalian female reproductive system remain unclear. Here, the female ICR-CD1 mice were used to evaluate the damage effects of ovaries and uterus after NPs and 3-BHA co-treatment for 35 days. Firstly, co-exposure significantly reduced the body weight and organ index of ovaries and uterus in mice. Secondly, combined effects of NPs and 3-BHA exacerbated the histopathological abnormalities to the ovaries and uterus and decreased female sex hormones such as FSH and LH while increased antioxidant activities including CAT and GSH-Px. Moreover, the apoptotic genes, inflammatory cytokines and the key reproductive development genes such as FSTL1 were significantly up-regulated under co-exposure conditions. Thirdly, through transcriptional and bioinformatics analysis, immunofluorescence and western blotting assays, together with molecular docking simulation, we determined that co-exposure up-regulated the FSTL1, TGF-ß and p-Smad1/5/9 but down-regulated the expression of BMP4. Finally, the pharmacological rescue experiments further demonstrated that co-exposure of NPs and 3-BHA mainly exacerbated the female reproductive toxicity through FSTL1-mediated BMP4/TGF-ß/SMAD signaling pathway. Taken together, our studies provided the theoretical basis of new environmental pollutants on the reproductive health in female mammals.


Mice, Inbred ICR , Ovary , Polystyrenes , Uterus , Animals , Female , Mice , Uterus/drug effects , Uterus/metabolism , Ovary/drug effects , Ovary/metabolism , Polystyrenes/toxicity , Reproduction/drug effects , Microplastics/toxicity , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Nanoparticles/toxicity , Molecular Docking Simulation , Environmental Pollutants/toxicity , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics
7.
Mol Biol Rep ; 51(1): 631, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722405

Adipokines are now well-known to regulate reproduction. Visfatin is an adipokine expressed in the hypothalamus, pituitary, ovary, uterus, and placenta of different species, and since it has been found to modulate the endocrine secretion of the hypothalamus, pituitary gland and ovary, it may be considered a novel regulator of female reproduction. Although the majority of the literature explored its role in ovarian regulation, visfatin has also been shown to regulate uterine remodeling, endometrial receptivity and embryo development, and its expression in the uterus is steroid dependent. Like other adipokines, visfatin expression and levels are deregulated in pathological conditions including polycystic ovary syndrome. Thus, the present mini-review focuses on the role of visfatin in female reproduction under both physiological and pathological conditions.


Nicotinamide Phosphoribosyltransferase , Polycystic Ovary Syndrome , Reproduction , Female , Humans , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Reproduction/physiology , Reproduction/genetics , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/physiopathology , Animals , Ovary/metabolism , Uterus/metabolism , Cytokines/metabolism , Pregnancy , Adipokines/metabolism
8.
Zhonghua Fu Chan Ke Za Zhi ; 59(5): 391-400, 2024 May 25.
Article Zh | MEDLINE | ID: mdl-38797569

Objective: To investigate the effect of rare ginsenosides (RGS) on reproductive injury induced by cyclophosphamide (CP) in female rats. Methods: Twenty-four female rats were divided into four groups [normal control (NC), RGS, CP, and CP+RGS group] with 6 rats in each group. CP group (the model group) and CP+RGS group (the treatment group) were intraperitoneally injected with CP 30 mg/kg for 5 days for modeling, and CP+RGS group was given RGS intragastric intervention. General growth status of rats in each group was observed, the organ index was calculated, and the pathological changes of ovary, uterus, liver and kidney were observed by hematoxylin-eosin staining. Serum levels of estradiol, follicle stimulating hormone (FSH), luteinizing hormone (LH), pro-inflammatory factors interleukin (IL) 6, IL-1ß, tumor necrosis factor-α were detected. The urine samples were collected after RGS treatment for metabonomics analysis. Metabolomic profiling based on ultra performance liquid chromatography (UPLC) coupled with mass spectrometry (MS) was used to analyze and determine the urine metabolites of rats in each group. Results: Compared with NC group, the ovary index of CP group [(0.054±0.015) %] was significantly decreased (P<0.05), the uterus index [(0.293±0.036) %] and estradiol level [(62.9±6.4) pmol/L] were significantly decreased (all P<0.01), serum levels of FSH, LH, IL-6 and IL-1ß [(20.4±1.0) U/L, (29.0±3.0) U/L, (185.4±28.6) ng/L, (72.9±2.0) ng/L, respectively] were significantly increased (all P<0.01). Compared with CP group, the ovary index in CP+RGS group [(0.075±0.010) %] was significantly increased (P<0.05), serum estradiol level [(122.1±16.2) pmol/L] was significantly increased (P<0.01), serum FSH, IL-1ß and IL-6 levels [(16.7±1.0) U/L, (111.8±17.4) ng/L, (60.1±2.2) ng/L, respectively] were significantly decreased (all P<0.01). Metabonomics analysis results showed that, a total of 352 metabolites were detected in urine, of which 12 were found to be potential markers associated with reproductive injury according to the screening standard. After treatment with RGS, differential metabolites were improved in the direction of NC group. Pathway enrichment suggests that the therapeutic effect of RGS was related to multiple metabolic pathways, including purine metabolism and taurine and hypotaurine metabolism. Conclusion: RGS might reduce inflammation and thus ameliorate the damage caused by CP to the reproductive system of female rats by affecting purine metabolism and other pathways.


Cyclophosphamide , Estradiol , Follicle Stimulating Hormone , Ginsenosides , Metabolomics , Ovary , Rats, Sprague-Dawley , Uterus , Animals , Female , Rats , Cyclophosphamide/adverse effects , Cyclophosphamide/toxicity , Ginsenosides/pharmacology , Follicle Stimulating Hormone/blood , Estradiol/blood , Ovary/drug effects , Ovary/pathology , Ovary/metabolism , Uterus/drug effects , Uterus/pathology , Uterus/metabolism , Luteinizing Hormone/blood , Chromatography, High Pressure Liquid , Interleukin-6/metabolism , Interleukin-6/blood , Disease Models, Animal , Interleukin-1beta/metabolism , Interleukin-1beta/blood , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Liver/metabolism , Liver/drug effects , Liver/pathology , Mass Spectrometry , Kidney/drug effects , Kidney/pathology , Kidney/metabolism
9.
BMC Biol ; 22(1): 77, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589878

BACKGROUND: Ten percent of the female population suffers from congenital abnormalities of the vagina, uterus, or oviducts, with severe consequences for reproductive and psychological health. Yet, the underlying causes of most of these malformations remain largely unknown. ADGRA3 (GPR125) is involved in WNT signaling and planar cell polarity, mechanisms vital to female reproductive tract development. Although ADGRA3 is a well-established spermatogonial stem cell marker, its role within the female urogenital system remains unclear. RESULTS: In this study, we found Adgra3 to be expressed throughout the murine female urogenital system, with higher expression pre-puberty than after sexual maturation. We generated a global Adgra3-/- mouse line and observed imperforate vagina in 44% of Adgra3-/- females, resulting in distension of the reproductive tract and infertility. Ovarian morphology, plasma estradiol, ovarian Cyp19a1, and vaginal estrogen receptor α (Esr1) expression were unaffected. However, compared to controls, a significantly lower bone mineral density was found in Adgra3-/- mice. Whereas vaginal opening in mice is an estrogen-dependent process, 17ß-estradiol treatment failed to induce vaginal canalization in Adgra3-/- mice. Furthermore, a marked reduction in vaginal and ovarian progesterone receptor expression was observed concomitant with an upregulation of apoptotic regulators Bcl2, Bid, and Bmf in adult Adgra3-/- females with a closed vagina. CONCLUSIONS: Our collective results shed new insights into the complex mechanisms by which the adhesion receptor ADGRA3 regulates distal vaginal tissue remodeling during vaginal canalization via altered sex hormone responsiveness and balance in apoptotic regulators. This highlights the potential of ADGRA3 as a target in diagnostic screening and/or therapy for obstructive vaginal malformations in humans.


Estrogens , Vagina , Humans , Animals , Mice , Female , Incidence , Vagina/abnormalities , Estrogens/metabolism , Uterus/metabolism , Estradiol/pharmacology
10.
Clin Exp Pharmacol Physiol ; 51(6): e13862, 2024 Jun.
Article En | MEDLINE | ID: mdl-38621769

Metformin, a well-established anti-diabetic drug, is also used in managing various other metabolic disorders including polycystic ovarian syndrome (PCOS). There are evidences to show that metformin improves endometrial functions in PCOS women. However, fewer studies have explored the direct effects of metformin on endometrium. Previous in vitro studies have shown that therapeutic serum concentrations of metformin enhance endometrial epithelial cell proliferation. The present study was undertaken to investigate in vivo effects of metformin on endometrial proliferation in a rat model of thin endometrium. Toward this, a rat model of thin endometrium was developed. Metformin (0.1% or 1% w/v) was administrated orally for 15 days in rats with thin endometrium. Oral metformin administration for three consecutive estrous cycles (15 days) in the thin endometrium rat model led to an increase in endometrial thickness compared to sham endometrium. Histological analysis showed a significant increase in the number of endometrial glands (P < 0.05), stromal cells (P < 0.01) and blood vessels (P < 0.01) in metformin-treated (n = 10 in each group) uterine horns compared to sham (saline-treated) uterine horns in rats. The expression of proliferating cell nuclear antigen and vascular epithelial growth factor was found to be upregulated on treatment with 1% metformin-treated group (n = 7). However, pregnancy outcomes in the rats treated with metformin remained unaltered despite the restoration of endometrial thickness. In conclusion, the study demonstrated that metformin ameliorates endometrial thickness in a rat model of thin endometrium by increasing endometrial proliferation and angiogenesis, without restoration of embryo implantation.


Metformin , Polycystic Ovary Syndrome , Humans , Pregnancy , Female , Rats , Animals , Metformin/pharmacology , Metformin/therapeutic use , Endometrium/pathology , Uterus/metabolism , Embryo Implantation , Polycystic Ovary Syndrome/drug therapy
11.
PeerJ ; 12: e16875, 2024.
Article En | MEDLINE | ID: mdl-38680889

Background: Extracellular vesicles (EVs) are membrane-bound vesicles containing various proteins, lipids, and nucleic acids. EVs are found in many body fluids, such as blood and urine. The release of EVs can facilitate intercellular communication through fusion with the plasma membrane or endocytosis into the recipient cell or through internalization of the contents. Recent studies have reported that EVs isolated from human endometrial epithelial cells (EECs) promote sperm fertilization ability. EVs from uterine flushing fluid more closely resemble the physiological condition of the uterus. However, it is unclear whether EVs derived directly from uterine flushing fluid have the same effect on sperm. This study aimed to research the effect of EVs from uterine flushing fluid on sperm. Methods: EVs were isolated from the uterine flushing fluid. The presence of EVs was confirmed by nanoparticle tracking analysis (NTA), Western blot, and transmission electron microscopy (TEM). EVs were incubated with human sperm for 2 h and 4 h. The effects of EVs on sperm were evaluated by analyzing acrosome reaction, sperm motility, and reactive oxygen species (ROS). Results: The EVs fractions isolated from the uterine fluid were observed in cup-shaped vesicles of different sizes by TEM. All isolated vesicles contained similar numbers of vesicles in the expected size range (30-200 nm) by NTA. CD9 and CD63 were detected in EVs by western blot. Comparing the motility of the two groups incubated sperm motility significantly differed at 4 h. The acrosome reactions were promoted by incubating with EVs significantly. ROS were increased in sperm incubated with EVs. Conclusion: Our results showed EVs present in the uterine fluid. Acrosome reactions and ROS levels increased in human sperm incubated with EVs. EVs from uterine fluid can promote the capacitation of human sperm. The increased capacitation after sperm interaction with EVs suggests a possible physiological effect during the transit of the uterus.


Exosomes , Reactive Oxygen Species , Sperm Capacitation , Spermatozoa , Uterus , Humans , Male , Female , Exosomes/metabolism , Sperm Capacitation/physiology , Spermatozoa/metabolism , Reactive Oxygen Species/metabolism , Uterus/metabolism , Uterus/physiology , Sperm Motility/physiology , Body Fluids/chemistry , Body Fluids/metabolism , Acrosome Reaction/physiology , Microscopy, Electron, Transmission
12.
Zhen Ci Yan Jiu ; 49(4): 367-375, 2024 Apr 25.
Article En, Zh | MEDLINE | ID: mdl-38649204

OBJECTIVES: To investigate the effect of electroacupuncture (EA) on Rho/Rho-associated coiled-coil-forming kinases (ROCK) signaling pathway of uterus tissue in rats with dysmenorrhea, so as to explore the underlying mechanism of EA treating primary dysmenorrhea (PD) and uterine smooth muscle spasm, and to observe whether there is a difference in the effect of meridian acupoints in Conception Vessel (CV) and Governer Vessel (GV). METHODS: Sixty female SD rats were randomly divided into saline, model, CV, GV, and non-acupoint groups, with 12 rats in each group. The dysmenorrhea model was established by subcutaneous injection of estradiol diphenhydrate combined with intraperitoneal injection of oxytocin (OT). EA (2 Hz) was applied to "Qihai" (CV6) and "Zhongji" (CV3) for CV group, "Mingmen" (GV4) and "Yaoshu" (GV2) for GV group, "non-acupoint 1" and "non-acupoint 3" on the left side for non-acupoint group, and manual acupuncture was applied to "Guanyuan" (CV4) for CV group, "Yaoyangguan" (GV3) for GV group, "non-acupoint 2" on the left side for non-acupoint group. The treatment was conducted for 20 min each time, once daily for 10 days. The writhing score was evaluated. The smooth myoelectric signals of rats' uterus in vivo were recorded by multi-channel physiological recorder. The uterine histopathological changes were observed by HE staining. The contents of prostaglandin F2α (PGF2α), OT and calcium ion (Ca2+) in uterine tissue of rats were detected by ELISA. The protein and mRNA expression levels of smooth muscle 22-α (SM22-α), RhoA and ROCKⅡ in uterine tissue were detected by Western blot and fluorescence quantitative PCR, respectively. RESULTS: Compared with the saline group, the writhing score of rats in the model group was increased (P<0.01), the amplitude voltage of uterine smooth muscle in vivo was elevated (P<0.01), the contents of PGF2α, OT and Ca2+, the protein and mRNA expression of SM22-α, RhoA and ROCK Ⅱ in uterine tissue were all increased (P<0.01). Compared with the model and the non-acupoint groups, the writhing scores of the CV and the GV groups were decreased (P<0.01, P<0.05), the amplitude voltage of uterine smooth muscle was decreased (P<0.01), the contents of PGF2α, OT and Ca2+ in uterine tissue were decreased (P<0.01, P<0.05), and the protein expression and mRNA expression of SM22-α, RhoA and ROCKⅡ in uterine tissue were decreased (P<0.01, P<0.05). HE staining showed extensive exfoliation of uterine intima with severe edema and increased glandular secretion in the model group, which was alleviated in the CV and GV groups. CONCLUSIONS: EA at acupoints of CV and GV can significantly reduce the writhing score, uterine smooth muscle amplitude voltage, pathological injury degree of uterus, and relieve spasm of uterine smooth muscle in dysmenorrhea rats, which may be related to its effect in regulating PGF2α and OT contents, inhibiting the Rho/ROCK signaling pathway, and reducing the SM22-α, RhoA, ROCKⅡ protein and mRNA expression, and Ca2+ content in uterine tissue.


Acupuncture Points , Dysmenorrhea , Electroacupuncture , Rats, Sprague-Dawley , Signal Transduction , Uterus , rho-Associated Kinases , Animals , Female , Dysmenorrhea/therapy , Dysmenorrhea/metabolism , Dysmenorrhea/genetics , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Rats , Humans , Uterus/metabolism , Muscle, Smooth/metabolism , Spasm/therapy , Spasm/genetics , Spasm/metabolism , Spasm/physiopathology
13.
J Endocrinol ; 261(3)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38579817

Exposure to glyphosate-based herbicides (GBH) and consumption of cafeteria (CAF) diet, which are widespread in Western society, seem to be associated with endometrial hyperplasia (EH). Here, we aimed to evaluate the effects of a subchronic low dose of GBH added to the CAF diet on the rat uterus. Female Wistar rats were fed from postnatal day (PND)21 until PND240 with chow (control) or CAF diet. Since PND140, rats also received GBH (2 mg of glyphosate/kg/day) or water through food, yielding four experimental groups: control, CAF, GBH, and CAF+GBH. On PND240, CAF and CAF+GBH animals showed an increased adiposity index. With respect to the control group, no changes in the serum levels of 17ß-estradiol and progesterone were found. However, progesterone levels were higher in the CAF+GBH group than in the CAF and GBH groups. In the uterus, both studied factors alone and in combination induced morphological and molecular changes associated with EH. Furthermore, the addition of GBH provoked an increased thickness of subepithelial stroma in rats fed with the CAF diet. As a consequence of GBH exposure, CAF+GBH rats exhibited an increased density of abnormal gland area, considered preneoplastic lesions, as well as a reduced PTEN and p27 expression, both tumor suppressor molecules that inhibit cell proliferation, with respect to control rats. These results indicate that the addition of GBH exacerbates the CAF effects on uterine lesions and that the PTEN/p27 signaling pathway seems to be involved. Further studies focusing on the interaction between unhealthy diets and environmental chemicals should be encouraged to better understand uterine pathologies.


Glycine , Glyphosate , Herbicides , Rats, Wistar , Uterus , Animals , Female , Uterus/drug effects , Uterus/pathology , Uterus/metabolism , Herbicides/toxicity , Glycine/analogs & derivatives , Rats , Endometrial Hyperplasia/chemically induced , Endometrial Hyperplasia/pathology , Endometrial Hyperplasia/metabolism , Progesterone/blood , Diet , Estradiol/blood , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics
14.
Food Funct ; 15(9): 4852-4861, 2024 May 07.
Article En | MEDLINE | ID: mdl-38573228

This study elucidates the mechanism of obesity-related adverse pregnancy outcomes and further investigates the effect of resveratrol on reproductive performance in a short- or long-term HFD-induced obese mouse model. Results show that maternal weight had a significant positive correlation with litter mortality in mice. A long-term HFD increased body weight and litter mortality with decreased expression of uterine cytochrome oxidase 4 (COX4), which was recovered by resveratrol in mice. Moreover, HFD decreased the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factors-1 (Nrf-1), and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK) and increased the expression of phosphorylated extracellular regulated protein kinases (p-ERK) in the uterus. Resveratrol, a polyphenol that can directly bind to the ERK protein, suppressed the phosphorylation of ERK, increased the expression of p-AMPK, PGC-1α and Nrf-1, and decreased litter mortality in mice.


Diet, High-Fat , Mitochondria , Pregnancy Outcome , Resveratrol , Uterus , Animals , Resveratrol/pharmacology , Female , Pregnancy , Mice , Diet, High-Fat/adverse effects , Mitochondria/drug effects , Mitochondria/metabolism , Uterus/metabolism , Uterus/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice, Inbred C57BL , Obesity/metabolism , AMP-Activated Protein Kinases/metabolism
15.
FASEB J ; 38(9): e23632, 2024 May 15.
Article En | MEDLINE | ID: mdl-38686936

The upper Müllerian duct (MD) is patterned and specified into two morphologically and functionally distinct organs, the oviduct and uterus. It is known that this regionalization process is instructed by inductive signals from the adjacent mesenchyme. However, the interaction landscape between epithelium and mesenchyme during upper MD development remains largely unknown. Here, we performed single-cell transcriptomic profiling of mouse neonatal oviducts and uteri at the initiation of MD epithelial differentiation (postnatal day 3). We identified major cell types including epithelium, mesenchyme, pericytes, mesothelium, endothelium, and immune cells in both organs with established markers. Moreover, we uncovered region-specific epithelial and mesenchymal subpopulations and then deduced region-specific ligand-receptor pairs mediating mesenchymal-epithelial interactions along the craniocaudal axis. Unexpectedly, we discovered a mesenchymal subpopulation marked by neurofilaments with specific localizations at the mesometrial pole of both the neonatal oviduct and uterus. Lastly, we analyzed and revealed organ-specific signature genes of pericytes and mesothelial cells. Taken together, our study enriches our knowledge of upper MD development, and provides a manageable list of potential genes, pathways, and region-specific cell subtypes for future functional studies.


Mullerian Ducts , Oviducts , Single-Cell Analysis , Transcriptome , Uterus , Animals , Female , Mice , Uterus/metabolism , Uterus/cytology , Mullerian Ducts/metabolism , Oviducts/metabolism , Oviducts/cytology , Gene Expression Profiling , Animals, Newborn , Cell Differentiation , Mesoderm/metabolism , Mesoderm/cytology , Epithelial Cells/metabolism , Mice, Inbred C57BL , Gene Expression Regulation, Developmental
16.
Microb Pathog ; 191: 106660, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657710

Endometritis is the inflammation of the endothelial lining of the uterine lumen and is multifactorial in etiology. Escherichia (E.) coli is a Gram-negative bacteria, generally considered as a primary causative agent for bovine endometritis. Bovine endometritis is characterized by the activation of Toll-like receptors (TLRs) by E. coli, which in turn triggers inflammation, oxidative stress, and apoptosis. The objective of this study was to investigate the gene expression of inflammatory, oxidative stress, and apoptotic markers related to endometritis in the uteri of cows. Twenty uterine tissues were collected from the abattoir. Histologically, congestion, edema, hyperemia, and hemorrhagic lesions with massive infiltration of neutrophil and cell necrosis were detected markedly (P < 0.05) in infected uterine samples. Additionally, we identify E. coli using the ybbW gene (177 base pairs; E. coli-specific gene) from infected uterine samples. Moreover, qPCR and western blot results indicated that TLR2, TLR4, proinflammatory mediators, and apoptosis-mediated genes upregulated except Bcl-2, which is antiapoptotic, and there were downregulations of oxidative stress-related genes in the infected uterine tissue. The results of our study suggested that different gene expression regimes related to the immune system reflex were activated in infected uteri. This research gives a novel understanding of active immunological response in bovine endometritis.


Apoptosis , Cattle Diseases , Endometritis , Escherichia coli Infections , Escherichia coli , Oxidative Stress , Up-Regulation , Uterus , Cattle , Animals , Female , Endometritis/veterinary , Endometritis/microbiology , Endometritis/pathology , Endometritis/metabolism , Cattle Diseases/microbiology , Cattle Diseases/metabolism , Cattle Diseases/immunology , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/immunology , Escherichia coli Infections/pathology , Uterus/pathology , Uterus/microbiology , Uterus/metabolism , Inflammation , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Inflammation Mediators/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
17.
Clin Chim Acta ; 558: 119678, 2024 May 15.
Article En | MEDLINE | ID: mdl-38641194

Recurrent implantation failure (RIF) is a significant obstacle in assisted reproductive procedures, primarily because of compromised receptivity. As such, there is a need for a dependable and accurate clinical test to evaluate endometrial receptiveness, particularly during embryo transfer. MicroRNAs (miRNAs) have diverse functions in the processes of implantation and pregnancy. Dysregulation of miRNAs results in reproductive diseases such as recurrent implantation failure (RIF). The endometrium secretes several microRNAs (miRNAs) during the implantation period, which could potentially indicate whether the endometrium is suitable for in vitro fertilization (IVF). The goal of this review is to examine endometrial miRNAs as noninvasive biomarkers that successfully predict endometrium receptivity in RIF.


Embryo Implantation , MicroRNAs , Humans , Female , MicroRNAs/genetics , Embryo Implantation/genetics , Uterus/metabolism , Body Fluids/metabolism , Body Fluids/chemistry , Endometrium/metabolism , Pregnancy , Fertilization in Vitro , Biomarkers/metabolism
18.
J Pharm Biomed Anal ; 245: 116166, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38669816

The study aimed to investigate the relieving effect of QingYan Formula (QYF) in treating perimenopausal syndrome. A combination of metabonomic analysis and in vitro pharmacodynamic experiments was employed to achieve this objective.Over a period of 12 weeks, ovariectomized (OVX) rats were orally administered QYF's 70 % ethanol extract or estradiol valerate (EV). The results demonstrate that QYF restored the estrous cycle of ovariectomized rats and exhibited significant estrogenic activity, as indicated by reversal of uterine and vagina atrophy, improvement of serum estradiol level and decrease of serum luteinizing hormone(LH) level. Additionally, QYF administration effectively reduced high bone turnover and repaired trabecular microstructure damage. Metabonomic analysis of the OVX rats treated with QYF revealed the identification of 55 different metabolites in the serum, out of which 35 may be potential biomarkers. QYF could regulate the disturbed metabolic pathways including the Biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, bile secretion, and steroid hormone biosynthesis. PI3KCA, SRC, and MAPK3 are potential therapeutic targets for QYF therapeutic effects. These findings support the efficacy of QYF in alleviating perimenopausal syndrome and regulating lipid metabolic disorders in OVX rats.


Drugs, Chinese Herbal , Metabolomics , Ovariectomy , Perimenopause , Rats, Sprague-Dawley , Animals , Female , Metabolomics/methods , Drugs, Chinese Herbal/pharmacology , Rats , Perimenopause/drug effects , Estradiol/blood , Estradiol/pharmacology , Chromatography, High Pressure Liquid/methods , Biomarkers/blood , Luteinizing Hormone/blood , Estrous Cycle/drug effects , Uterus/drug effects , Uterus/metabolism , Disease Models, Animal
19.
Reprod Biol ; 24(2): 100882, 2024 Jun.
Article En | MEDLINE | ID: mdl-38604016

This study aims to elucidate the effects of Platelet-rich plasma (PRP) in fibrosis development in intrauterine adhesion (IUA), and the associated underlying mechanisms are also explored, which are expected to be a potential therapeutic scheme for IUA. In this research, PRP was obtained and prepared from the peripheral venous blood of rats. A rat model was induced by mechanical injury. Further, PRP was directly injected into the uterus for treatment. The appearance and shape of the uterus were assessed based on the tissues harvested. The fibrosis biomarker levels were analyzed. The transforming growth factor beta 1 (TGF-ß1) and Mothers against decapentaplegic homolog 7 (Smad7) levels, the phosphorylation of Smad2 (p-Smad2), and the phosphorylation of Smad3 (p-Smad3) were analyzed, and the molecular mechanism was investigated by rescue experiments. It was found that PRP improved the appearance and shape of the uterus in IUA and increased endometrial thickness and gland numbers. The administration of PRP resulted in a decrease in the expressions of fibrosis markers including collagen I, α-SMA, and fibronectin. Furthermore, PRP increased Smad7 levels and decreased TGF-ß1 levels, p-Smad2, and p-Smad3. Meanwhile, administration of TGF-ß1 activator reversed the therapeutic effects of PRP in IUA. Collectively, the intrauterine infusion of PRP can promote endometrial damage recovery and improve endometrial fibrosis via the TGF-ß1/Smad pathway. Hence, PRP can be a potential therapeutic strategy for IUA.


Fibrosis , Platelet-Rich Plasma , Rats, Sprague-Dawley , Signal Transduction , Transforming Growth Factor beta1 , Uterine Diseases , Uterus , Animals , Female , Transforming Growth Factor beta1/metabolism , Rats , Tissue Adhesions/metabolism , Uterine Diseases/therapy , Uterine Diseases/metabolism , Signal Transduction/drug effects , Uterus/metabolism , Disease Models, Animal , Smad Proteins/metabolism , Smad2 Protein/metabolism , Smad3 Protein/metabolism
20.
Hypertens Res ; 47(6): 1627-1641, 2024 Jun.
Article En | MEDLINE | ID: mdl-38605139

Preeclampsia is classified as new-onset hypertension coupled with gross endothelial dysfunction. Placental (pro)renin receptor ((P)RR) and plasma soluble (P)RR (s(P)RR) are elevated in patients with preeclampsia. Thus, we aimed to interrogate the role (P)RR may play in the pathogenesis of preeclampsia. Human uterine microvascular endothelial cells (HUtMECs, n = 4) were cultured with either; vehicle (PBS), 25-100 nM recombinant s(P)RR, or 10 ng/ml TNF-a (positive control) for 24 h. Conditioned media and cells were assessed for endothelial dysfunction markers via qPCR, ELISA, and immunoblot. Angiogenic capacity was assessed through tube formation and adhesion assays. Additionally, pregnant rats were injected with an adenovirus overexpressing s(P)RR from mid-pregnancy (day 8.5), until term (n = 6-7 dams/treatment). Maternal and fetal tissues were assessed. HUtMECs treated with recombinant s(P)RR displayed increased expression of endothelial dysfunction makers including vascular cell adhesion molecule-1, intracellular adhesion molecule-1, and endothelin-1 mRNA expression (P = 0.003, P = 0.001, P = 0.009, respectively), along with elevated endothelin-1 protein secretion (P < 0.001) compared with controls. Recombinant s(P)RR impaired angiogenic capacity decreasing the number of branches, total branch length, and mesh area (P < 0.001, P = 0.004, and P = 0.009, respectively), while also increasing vascular adhesion (P = 0.032). +ADV rats exhibited increased systolic (P = 0.001), diastolic (P = 0.010), and mean arterial pressures (P = 0.012), compared with -ADV pregnancies. Renal arteries from +ADV-treated rats had decreased sensitivity to acetylcholine-induced relaxation (P = 0.030), compared with -ADV pregnancies. Our data show that treatment with s(P)RR caused hypertension and growth restriction in vivo and caused marked endothelial dysfunction in vitro. These findings demonstrate the significant adverse actions of s(P)RR on vascular dysfunction that is characteristic of the preeclamptic phenotype.


Endothelial Cells , Pre-Eclampsia , Receptors, Cell Surface , Pregnancy , Female , Animals , Pre-Eclampsia/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Humans , Rats , Endothelial Cells/metabolism , Rats, Sprague-Dawley , Phenotype , Cells, Cultured , Prorenin Receptor , Placenta/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Uterus/blood supply , Uterus/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism
...