Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 607
Filter
1.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2150-2161, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39044581

ABSTRACT

This study aims to develop an effective bivalent subunit vaccine that is promising to prevent both porcine deltacoronavirus (PDCoV) and porcine epidemic diarrhea virus (PEDV). The receptor-binding domains (RBDs) of PDCoV and PEDV were fused and cloned into the eukaryotic expression vector pCDNA3.1(+). The fusion protein PDCoV-RBD-PEDV-RBD (pdRBD-peRBD) was expressed by the ExpiCHOTM expression system and purified. Mice were immunized with the fusion protein at three different doses (10, 20, and 30 µg). The humoral immune response and cellular immune response induced by the fusion protein were evaluated by ELISA and flow cytometry. The neutralization titers of the serum of immunized mice against PDCoV and PEDV were determined by the microneutralization test. The results showed that high levels of IgG antibodies were induced in the three different dose groups after booster immunization, and there was no significant difference in the antibody level between different dose groups, indicating that the immunization dose of 10 µg could achieve the fine immune effect. The results of flow cytometry showed that the immunization groups demonstrated increased proportion of CD3+CD4+ T cells and decreased proportion of CD3+CD8+ T cells, which was consistent with the expectation about the humoral immune response induced by the subunit vaccine. At the same time, the levels of interleukin (IL)-2, IL-4, and interferon (IFN)-γ in the serum were determined. The results showed that the fusion protein induced both humoral immune effect and cellular immune response. The results of the neutralization test showed that the antibody induced by 10 µg fusion protein neutralized both PDCoV and PEDV in vitro, with the titers of 1:179.25 and 1:141.21, respectively. The above results suggested that the pdRBD-peRBD could induce a high level of humoral immune response at a dose of 10 µg, and the induced antibody could neutralize both PDCoV and PEDV. Therefore, the fusion protein pdRBD-peRBD is expected to be an effective subunit vaccine that can simultaneously prevent PDCoV and PEDV.


Subject(s)
Antibodies, Viral , Coronavirus Infections , Porcine epidemic diarrhea virus , Recombinant Fusion Proteins , Viral Vaccines , Animals , Porcine epidemic diarrhea virus/immunology , Porcine epidemic diarrhea virus/genetics , Mice , Swine , Viral Vaccines/immunology , Viral Vaccines/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Deltacoronavirus/immunology , Deltacoronavirus/genetics , Swine Diseases/prevention & control , Swine Diseases/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Mice, Inbred BALB C , Female , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Protein Domains , Immunogenicity, Vaccine , Immunity, Humoral
2.
Virol J ; 21(1): 160, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039549

ABSTRACT

Porcine Rotavirus (PoRV) is a significant pathogen affecting swine-rearing regions globally, presenting a substantial threat to the economic development of the livestock sector. At present, no specific pharmaceuticals are available for this disease, and treatment options remain exceedingly limited. This study seeks to design a multi-epitope peptide vaccine for PoRV employing bioinformatics approaches to robustly activate T-cell and B-cell immune responses. Two antigenic proteins, VP7 and VP8*, were selected from PoRV, and potential immunogenic T-cell and B-cell epitopes were predicted using immunoinformatic tools. These epitopes were further screened according to non-toxicity, antigenicity, non-allergenicity, and immunogenicity criteria. The selected epitopes were linked with linkers to form a novel multi-epitope vaccine construct, with the PADRE sequence (AKFVAAWTLKAAA) and RS09 peptide attached at the N-terminus of the designed peptide chain to enhance the vaccine's antigenicity. Protein-protein docking of the vaccine constructs with toll-like receptors (TLR3 and TLR4) was conducted using computational methods, with the lowest energy docking results selected as the optimal predictive model. Subsequently, molecular dynamics (MD) simulation methods were employed to assess the stability of the protein vaccine constructs and TLR3 and TLR4 receptors. The results indicated that the vaccine-TLR3 and vaccine-TLR4 docking models remained stable throughout the simulation period. Additionally, the C-IMMSIM tool was utilized to determine the immunogenic triggering capability of the vaccine protein, demonstrating that the constructed vaccine protein could induce both cell-mediated and humoral immune responses, thereby playing a role in eliciting host immune responses. In conclusion, this study successfully constructed a multi-epitope vaccine against PoRV and validated the stability and efficacy of the vaccine through computational analysis. However, as the study is purely computational, experimental evaluation is required to validate the safety and immunogenicity of the newly constructed vaccine protein.


Subject(s)
Antigens, Viral , Computational Biology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Molecular Dynamics Simulation , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Vaccines, Subunit , Animals , Swine , Rotavirus/immunology , Rotavirus/genetics , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Rotavirus Vaccines/immunology , Rotavirus Vaccines/chemistry , Rotavirus Vaccines/genetics , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Rotavirus Infections/virology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Vaccines, Subunit/chemistry , Antigens, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/chemistry , Molecular Docking Simulation , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Capsid Proteins/immunology , Capsid Proteins/genetics , Capsid Proteins/chemistry , Vaccine Development , Immunogenicity, Vaccine
3.
J Virol ; 98(7): e0062224, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38953377

ABSTRACT

African swine fever virus causes a lethal hemorrhagic disease in domestic swine and wild boar for which currently licensed commercial vaccines are only available in Vietnam. Development of subunit vaccines is complicated by the lack of information on protective antigens as well as suitable delivery systems. Our previous work showed that a pool of eight African swine fever virus genes vectored using an adenovirus prime and modified vaccinia virus boost could prevent fatal disease after challenge with a virulent genotype I isolate of the virus. Here, we identify antigens within this pool of eight that are essential for the observed protection and demonstrate that adenovirus-prime followed by adenovirus-boost can also induce protective immune responses against genotype I African swine fever virus. Immunization with a pool of adenoviruses expressing individual African swine fever virus genes partially tailored to genotype II virus did not protect against challenge with genotype II Georgia 2007/1 strain, suggesting that different antigens may be required to induce cross-protection for genetically distinct viruses. IMPORTANCE: African swine fever virus causes a lethal hemorrhagic disease in domestic pigs and has killed millions of animals across Europe and Asia since 2007. Development of safe and effective subunit vaccines against African swine fever has been problematic due to the complexity of the virus and a poor understanding of protective immunity. In a previous study, we demonstrated that a complex combination of eight different virus genes delivered using two different viral vector vaccine platforms protected domestic pigs from fatal disease. In this study, we show that three of the eight genes are required for protection and that one viral vector is sufficient, significantly reducing the complexity of the vaccine. Unfortunately, this combination did not protect against the current outbreak strain of African swine fever virus, suggesting that more work to identify immunogenic and protective viral proteins is required to develop a truly effective African swine fever vaccine.


Subject(s)
Adenoviridae , African Swine Fever Virus , African Swine Fever , Genetic Vectors , Genotype , Viral Vaccines , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/immunology , African Swine Fever/prevention & control , African Swine Fever/virology , African Swine Fever/immunology , Swine , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Genetic Vectors/genetics , Adenoviridae/genetics , Adenoviridae/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Antigens, Viral/immunology , Antigens, Viral/genetics
4.
J Med Virol ; 96(7): e29793, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023111

ABSTRACT

Various vaccine platforms were developed and deployed against the COVID-19 disease. The Fc-mediated functions of IgG antibodies are essential in the adaptive immune response elicited by vaccines. However, the long-term changes of protein subunit vaccines and their combinations with messenger RNA (mRNA) vaccines are unknown. A total of 272 serum and plasma samples were collected from individuals who received first to third doses of the protein subunit Medigen, the mRNA (BNT, Moderna), or the adenovector AstraZeneca vaccines. The IgG subclass level was measured using enzyme-linked immunosorbent assay, and Fc-N glycosylation was measured using liquid chromatography coupled to tandem mass spectrometry. Antibody-dependent-cellular-phagocytosis (ADCP) and complement deposition (ADCD) of anti-spike (S) IgG antibodies were measured by flow cytometry. IgG1 and 3 reached the highest anti-S IgG subclass level. IgG1, 2, and 4 subclass levels significantly increased in mRNA- and Medigen-vaccinated individuals. Fc-glycosylation was stable, except in female BNT vaccinees, who showed increased bisection and decreased galactosylation. Female BNT vaccinees had a higher anti-S IgG titer than that of males. ADCP declined in all groups. ADCD was significantly lower in AstraZeneca-vaccinated individuals. Each vaccine produced specific long-term changes in Fc structure and function. This finding is critical when selecting a vaccine platform or combination to achieve the desired immune response.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Vaccines, Subunit , mRNA Vaccines , Humans , Immunoglobulin G/blood , Female , Antibodies, Viral/blood , Male , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Adult , Middle Aged , COVID-19 Vaccines/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Vaccines, Subunit/administration & dosage , Glycosylation , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Aged , RNA, Messenger/genetics , Young Adult , Protein Subunit Vaccines
5.
Microb Pathog ; 193: 106759, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906494

ABSTRACT

Streptococcus suis is one of the major pathogens of pigs circulating worldwide, and the development of vaccines will help to effectively control streptococcosis in swine. In this study, we evaluated the potential of three membrane associated proteins, histidine kinase (HK), glycosyltransferase family 2 (Gtf-2) and phosphate binding protein (PsbP) of S. suis as subunit vaccines. Bioinformatics analysis shows that protein ABC is highly conserved in S. suis. To verify the protective effects of these proteins in animal models, recombinant protein HK, Gtf-2 and PsbP were used to immunize BALB/c mice separately. The results showed that these proteins immunization in mice can effectively induce strong humoral immune responses, protect mice from cytokine storms caused by S. suis infection, and have a significant protective effect against lethal doses of S. suis infection. Furthermore, antibodies with opsonic activity exist in the recombinant proteins antiserum to assist phagocytic cells in killing S. suis. Overall, these results indicated that these recombinant proteins all elicit good immune protective effect against S. suis infection and can be represent promising candidate antigens for subunit vaccines against S. suis.


Subject(s)
Antibodies, Bacterial , Bacterial Proteins , Disease Models, Animal , Mice, Inbred BALB C , Recombinant Proteins , Streptococcal Infections , Streptococcal Vaccines , Streptococcus suis , Vaccines, Subunit , Streptococcus suis/immunology , Streptococcus suis/genetics , Animals , Streptococcal Infections/prevention & control , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Mice , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Streptococcal Vaccines/immunology , Streptococcal Vaccines/administration & dosage , Streptococcal Vaccines/genetics , Serogroup , Cytokines/metabolism , Female , Membrane Proteins/immunology , Membrane Proteins/genetics , Immunity, Humoral , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/microbiology , Swine , Computational Biology
6.
Viruses ; 16(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38932122

ABSTRACT

In this study, we pioneered an alternative technology for manufacturing subunit influenza hemagglutinin (HA)-based vaccines. This innovative method involves harnessing the pupae of the Lepidoptera Trichoplusia ni (T. ni) as natural biofactories in combination with baculovirus vectors (using CrisBio® technology). We engineered recombinant baculoviruses encoding two versions of the HA protein (trimeric or monomeric) derived from a pandemic avian H7N1 virus A strain (A/chicken/Italy/5093/99). These were then used to infect T. ni pupae, resulting in the production of the desired recombinant antigens. The obtained HA proteins were purified using affinity chromatography, consistently yielding approximately 75 mg/L of insect extract. The vaccine antigen effectively immunized poultry, which were subsequently challenged with a virulent H7N1 avian influenza virus. Following infection, all vaccinated animals survived without displaying any clinical symptoms, while none of the mock-vaccinated control animals survived. The CrisBio®-derived antigens induced high titers of HA-specific antibodies in the vaccinated poultry, demonstrating hemagglutination inhibition activity against avian H7N1 and human H7N9 viruses. These results suggest that the CrisBio® technology platform has the potential to address major industry challenges associated with producing recombinant influenza subunit vaccines, such as enhancing production yields, scalability, and the speed of development, facilitating the global deployment of highly effective influenza vaccines.


Subject(s)
Antibodies, Viral , Chickens , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Influenza in Birds , Pupa , Vaccines, Subunit , Animals , Influenza Vaccines/immunology , Influenza Vaccines/genetics , Influenza Vaccines/administration & dosage , Pupa/immunology , Influenza in Birds/prevention & control , Influenza in Birds/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Influenza A Virus, H7N1 Subtype/immunology , Influenza A Virus, H7N1 Subtype/genetics , Baculoviridae/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/genetics , Humans , Vaccine Development , Moths/immunology , Pandemics/prevention & control
7.
Microb Pathog ; 192: 106685, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750774

ABSTRACT

QseC is a membrane sensor kinase that enables bacteria to perceive autoinducers -3, adrenaline, and norepinephrine to initiate downstream gene transcription. In this study, we found that the QseC protein of Glaesserella parasuis can serve as an effective antigen to activate the host's immune response. Therefore, we investigated the immunogenicity and host protective effect of this protein. ELISA and indirect immunofluorescence results showed that QseC protein can induce high titer levels of humoral immunity in mice and regularly generate specific serum antibodies. We used MTS reagents to detect lymphocyte proliferation levels and found that QseC protein can cause splenic lymphocyte proliferation with memory and specificity. Further immunological analysis of the spleen cell supernatant revealed significant upregulation of levels of IL-1ß, IL-4 and IFN-γ in the QseC + adjuvant group. In the mouse challenge experiment, it was found that QseC + adjuvant can provide effective protection. The results of this study demonstrate that QseC protein provides effective protection in a mouse model and has the potential to serve as a candidate antigen for a novel subunit vaccine for further research.


Subject(s)
Antibodies, Bacterial , Haemophilus Infections , Interferon-gamma , Interleukin-4 , Animals , Mice , Interleukin-4/metabolism , Interleukin-4/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Haemophilus Infections/immunology , Haemophilus Infections/prevention & control , Haemophilus Infections/microbiology , Interferon-gamma/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Histidine Kinase/immunology , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Immunity, Humoral , Mice, Inbred BALB C , Spleen/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Cell Proliferation , Female , Adjuvants, Immunologic , Haemophilus parasuis/immunology , Haemophilus parasuis/genetics , Cytokines/metabolism , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Disease Models, Animal , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Lymphocytes/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics
8.
Microbiol Spectr ; 12(6): e0046524, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38700327

ABSTRACT

Smallpox is a highly contagious human disease caused by the variola virus. Although the disease was eliminated in 1979 due to its highly contagious nature and historical pathogenicity, with a mortality rate of up to 30%, this virus is an important candidate for biological weapons. Currently, vaccines are the critical measures to prevent this virus infection and spread. In this study, we designed a peptide vaccine using immunoinformatics tools, which have the potential to activate human immunity against variola virus infection efficiently. The design of peptides derives from vaccine-candidate proteins showing protective potential in vaccinia WR strains. Potential non-toxic and nonallergenic T-cell and B-cell binding and cytokine-inducing epitopes were then screened through a priority prediction using special linkers to connect B-cell epitopes and T-cell epitopes, and an appropriate adjuvant was added to the vaccine construction to enhance the immunogenicity of the peptide vaccine. The 3D structure display, docking, and free energy calculation analysis indicate that the binding affinity between the vaccine peptide and Toll-like receptor 3 is high, and the vaccine receptor complex is highly stable. Notably, the vaccine we designed is obtained from the protective protein of the vaccinia and combined with preventive measures to avoid side effects. This vaccine is highly likely to produce an effective and safe immune response against the variola virus infection in the body. IMPORTANCE: In this work, we designed a vaccine with a cluster of multiple T-cell/B-cell epitopes, which should be effective in inducing systematic immune responses against variola virus infection. Besides, this work also provides a reference in vaccine design for preventing monkeypox virus infection, which is currently prevalent.


Subject(s)
Computational Biology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Smallpox Vaccine , Smallpox , Vaccines, Subunit , Variola virus , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Vaccines, Subunit/immunology , Vaccines, Subunit/chemistry , Vaccines, Subunit/genetics , Humans , Smallpox Vaccine/immunology , Variola virus/immunology , Variola virus/genetics , Smallpox/prevention & control , Smallpox/immunology , T-Lymphocytes/immunology , B-Lymphocytes/immunology , Molecular Docking Simulation , Peptides/immunology , Peptides/chemistry , Immunoinformatics
9.
Virol J ; 21(1): 67, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509569

ABSTRACT

Since 1997, highly pathogenic avian influenza viruses, such as H5N1, have been recognized as a possible pandemic hazard to men and the poultry business. The rapid rate of mutation of H5N1 viruses makes the whole process of designing vaccines extremely challenging. Here, we used an in silico approach to design a multi-epitope vaccine against H5N1 influenza A virus using hemagglutinin (HA) and neuraminidase (NA) antigens. B-cell epitopes, Cytotoxic T lymphocyte (CTL) and Helper T lymphocyte (HTL) were predicted via IEDB, NetMHC-4 and NetMHCII-2.3 respectively. Two adjuvants consisting of Human ß-defensin-3 (HßD-3) along with pan HLA DR-binding epitope (PADRE) have been chosen to induce more immune response. Linkers including KK, AAY, HEYGAEALERAG, GPGPGPG and double EAAAK were utilized to link epitopes and adjuvants. This construct encodes a protein having 350 amino acids and 38.46 kDa molecular weight. Antigenicity of ~ 1, the allergenicity of non-allergen, toxicity of negative and solubility of appropriate were confirmed through Vaxigen, AllerTOP, ToxDL and DeepSoluE, respectively. The 3D structure of H5N1 was refined and validated with a Z-Score of - 0.87 and an overall Ramachandran of 99.7%. Docking analysis showed H5N1 could interact with TLR7 (docking score of - 374.08 and by 4 hydrogen bonds) and TLR8 (docking score of - 414.39 and by 3 hydrogen bonds). Molecular dynamics simulations results showed RMSD and RMSF of 0.25 nm and 0.2 for H5N1-TLR7 as well as RMSD and RMSF of 0.45 nm and 0.4 for H5N1-TLR8 complexes, respectively. Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) confirmed stability and continuity of interaction between H5N1-TLR7 with the total binding energy of - 29.97 kJ/mol and H5N1-TLR8 with the total binding energy of - 23.9 kJ/mol. Investigating immune response simulation predicted evidence of the ability to stimulate T and B cells of the immunity system that shows the merits of this H5N1 vaccine proposed candidate for clinical trials.


Subject(s)
Influenza A Virus, H5N1 Subtype , Vaccines , Animals , Humans , Influenza A Virus, H5N1 Subtype/genetics , Epitopes, T-Lymphocyte/genetics , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Epitopes, B-Lymphocyte , Computational Biology/methods , Molecular Docking Simulation , Vaccines, Subunit/genetics
10.
Microbiol Spectr ; 12(4): e0347723, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38456681

ABSTRACT

Canine distemper virus (CDV) poses a severe threat to both domesticated and wild animals, including multiple carnivores. With the continued expansion of its host range, there is an urgent need for the development of a safer and more effective vaccine. In this study, we developed subunit vaccines based on a bacterium-like particle (BLP) delivery platform containing BLPs-F and BLPs-H, which display the CDV F and H glycoprotein antigens, respectively, using the antigen-protein anchor fusions produced by a recombinant baculovirus insect cell expression system. The combination of BLPs-F and BLPs-H (CDV-BLPs), formulated with colloidal manganese salt [Mn jelly (MnJ)] adjuvant, triggered robust CDV-specific antibody responses and a substantial increase in the number of interferon gamma (IFN-γ)-secreting CD4+ and CD8+ T cells in mice. Dogs immunized intramuscularly with this vaccine not only produced CDV-specific IgG but also displayed elevated concentrations of IFN-γ and interleukin 6 in their serum, along with an increase of the CD3+CD4+ and CD3+CD8+ T cell subsets. Consequently, this heightened immune response provided effective protection against disease development and reduced viral shedding levels following challenge with a virulent strain. These findings suggest that this BLP-based subunit vaccine has the potential to become a novel canine distemper vaccine. IMPORTANCE: Many sensitive species require a safe and effective distemper vaccine. Non-replicating vaccines are preferred. We constructed subunit particles displaying canine distemper virus (CDV) antigens based on a bacterium-like particle (BLP) delivery platform. The CDV-BLPs formulated with theMn jelly adjuvant induced robust humoral and cell-mediated immune responses to CDV in mice and dogs, thereby providing effective protection against a virulent virus challenge. This work is an important step in developing a CDV subunit vaccine.


Subject(s)
Distemper Virus, Canine , Viral Vaccines , Dogs , Animals , Mice , Distemper Virus, Canine/genetics , Viral Vaccines/genetics , CD8-Positive T-Lymphocytes , Antibodies, Viral , Recombinant Proteins , Vaccines, Subunit/genetics
11.
Microb Pathog ; 189: 106572, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354987

ABSTRACT

The JCV (John Cunningham Virus) is known to cause progressive multifocal leukoencephalopathy, a condition that results in the formation of tumors. Symptoms of this condition such as sensory defects, cognitive dysfunction, muscle weakness, homonosapobia, difficulties with coordination, and aphasia. To date, there is no specific and effective treatment to completely cure or prevent John Cunningham polyomavirus infections. Since the best way to control the disease is vaccination. In this study, the immunoinformatic tools were used to predict the high immunogenic and non-allergenic B cells, helper T cells (HTL), and cytotoxic T cells (CTL) epitopes from capsid, major capsid, and T antigen proteins of JC virus to design the highly efficient subunit vaccines. The specific immunogenic linkers were used to link together the predicted epitopes and subjected to 3D modeling by using the Robetta server. MD simulation was used to confirm that the newly constructed vaccines are stable and properly fold. Additionally, the molecular docking approach revealed that the vaccines have a strong binding affinity with human TLR-7. The codon adaptation index (CAI) and GC content values verified that the constructed vaccines would be highly expressed in E. coli pET28a (+) plasmid. The immune simulation analysis indicated that the human immune system would have a strong response to the vaccines, with a high titer of IgM and IgG antibodies being produced. In conclusion, this study will provide a pre-clinical concept to construct an effective, highly antigenic, non-allergenic, and thermostable vaccine to combat the infection of the John Cunningham virus.


Subject(s)
JC Virus , Vaccines , Humans , Epitopes/genetics , Molecular Docking Simulation , Escherichia coli , Vaccinology , Vaccines, Subunit/genetics , Epitopes, T-Lymphocyte/genetics , Computational Biology , Epitopes, B-Lymphocyte , Molecular Dynamics Simulation
12.
Biotechnol J ; 19(1): e2300187, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38178735

ABSTRACT

The ApxII toxin and the outer membrane lipoprotein (Oml) of Actinobacillus pleuropneumoniae are important vaccine antigens against porcine contagious pleuropneumonia (PCP), a prevalent infectious disease affecting the swine industry worldwide. Previous studies have reported the recombinant expression of ApxII and Oml in Escherichia coli; however, their yields were not satisfactory. Here, we aimed to enhance the production of ApxII and Oml by constructing a bicistronic expression system based on the widely used T7 promoter. To create efficient T7 bicistronic expression cassettes, 16 different fore-cistron sequences were introduced downstream of the T7 promoter. The expression of three vaccine antigens Oml1, Oml7, and ApxII in the four strongest bicistronic vectors were enhanced compared to the monocistronic control. Further optimization of the fermentation conditions in micro-well plates (MWP) led to improved production. Finally, the production yields reached unprecedented levels of 2.43 g L-1 of Oml1, 2.59 g L-1 of Oml7, and 1.21 g L-1 of ApxII, in a 5 L bioreactor. These three antigens also demonstrated well-protective immunity against A. pleuropneumoniae infection. In conclusion, this study establishes an efficient bicistronic T7 expression system that can be used to express recombinant proteins in E. coli and achieves the hyper-production of PCP vaccine proteins.


Subject(s)
Actinobacillus Infections , Pleuropneumonia, Contagious , Swine , Animals , Bacterial Proteins , Escherichia coli/genetics , Pleuropneumonia, Contagious/prevention & control , Recombinant Proteins/genetics , Actinobacillus Infections/prevention & control , Vaccines, Subunit/genetics
13.
Protein Expr Purif ; 215: 106412, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38104792

ABSTRACT

Aeromonas veronii is an emerging bacterial pathogen that causes serious systemic infections in cultured Nile tilapia (Oreochromis niloticus), leading to massive deaths. Therefore, there is an urgent need to identify effective vaccine candidates to control the spread of this emerging disease. TonB-dependent receptor (Tdr) of A. veronii, which plays a role in the virulence factor of the organism, could be useful in terms of protective antigens for vaccine development. This study aims to evaluate the potential use of Tdr protein as a novel subunit vaccine against A. veronii infection in Nile tilapia. The Tdr gene from A. veronii was cloned into the pET28b expression vector, and the recombinant protein was subsequently produced in Escherichia coli strain BL21 (DE3). Tdr was expressed as an insoluble protein and purified by affinity chromatography. Antigenicity test indicated that this protein was recognized by serum from A. veronii infected fish. When Nile tilapia were immunized with the Tdr protein, specific antibody levels increased significantly (p-value <0.05) at 7 days post-immunization (dpi), and peaked at 21 dpi compared to antibody levels at 0 dpi. Furthermore, bacterial agglutination activity was observed in the fish serum immunized with the Tdr protein, indicating that specific antibodies in the serum can detect Tdr on the bacterial cell surface. These results suggest that Tdr protein has potential as a vaccine candidate. However, challenging tests with A.veronii in Nile tilapia needs to be investigated to thoroughly evaluate its protective efficacy for future applications.


Subject(s)
Cichlids , Fish Diseases , Animals , Aeromonas veronii/genetics , Immunization , Recombinant Proteins/genetics , Vaccines, Subunit/genetics , Fish Diseases/prevention & control
14.
BMC Immunol ; 24(1): 46, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980458

ABSTRACT

Multi-epitope polypeptide vaccines, a fusion protein, often have a string-of-beads system composed of various specific peptide epitopes, potential adjuvants, and linkers. When choosing the sequence of various segments and linkers, many alternatives are available. These variables can influence the vaccine's effectiveness through their effects on physicochemical properties and polypeptide tertiary structure.The most conserved antigens were discovered using BLASTn. To forecast the proteins' subcellular distribution, PSORTb 3.0.2 was used. Vaxign was used for the preliminary screening and antigenicity assessment. Protein solubility was also predicted using the ccSOL omics. Using PRED-TMBB, it was anticipated that the protein would localize across membranes. The IEDB and BepiPred-2.0 databases were used to predict the immunogenicity of B cell epitopes. A multi-epitope construct was developed and analyzed to evaluate. Twenty epitopes from A. baumannii's outer membrane protein (omp) were included in the vaccination. TLR4 agonist explosibility was investigated. The physicochemical characteristics, secondary and tertiary structures, and B-cell epitopes of vaccine constructs were assessed. Additionally, docking and MD experiments were used to examine the relationship between TLR4 and its agonist.Thirteen antigens were discovered, and eight of the 13 chosen proteins were predicted to be surface proteins. The 34 kDa outer membrane protein, Omp38, Omp W, CarO, putative porin, OmpA, were chosen as having the right antigenicity (≥0.5). FhuE and CdiA were eliminated from further study because of their low antigenicity. The vaccine design was developed by combining the most effective 10 B-cell and 10 MHC-I/MHCII combined coverage epitopes. The molecular formula of the vaccine was determined to be C1718H2615N507O630S17. The vaccine form has a molecular weight of 40,996.70 Da and 47 negatively charged residues (Asp + Glu), whereas 28 positively charged residues (Arg + Lys). The estimated half-life was 7.2 hours (mammalian reticulocytes, in vitro), > 20 hours (yeast, in vivo) and > 10 hours (Escherichia coli, in vivo) for the vaccine. The multi-epitope vaccine insertion is carried via the expression vector pcDNA3.1 (+).The multi-epitope vaccine may stimulate humoral and cellular immune responses, according to our findings, and it may be a candidate for an A. baumannii vaccine.


Subject(s)
Acinetobacter baumannii , Vaccines, DNA , Animals , Toll-Like Receptor 4 , Epitopes, B-Lymphocyte , Peptides , Membrane Proteins , Epitopes, T-Lymphocyte , Computational Biology , Molecular Docking Simulation , Vaccines, Subunit/chemistry , Vaccines, Subunit/genetics , Mammals
15.
Braz J Microbiol ; 54(4): 3257-3264, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37792270

ABSTRACT

Salmonella Typhimurium is the most prevalent non-host specific Salmonella serovars and a major concern for both human and animal health systems worldwide contributing to significant economic loss. Type 3 secretion system (T3SS) of Salmonella plays an important role in bacterial adherence and entry into the host epithelial cells. The product of invH gene of Salmonella is an important component of the needle complex of the type 3 secretion system. Hence, the present study was undertaken to clone and express the 15 kDa InvH surface protein of Salmonella Typhimurium in an E. coli host and to evaluate its immune potency in mice. The purified recombinant InvH (r-InvH) protein provoked a significant (p < 0.01) rise in IgG in the inoculated mice. The immunized mice were completely (100%) protected against the challenge dose of 107.5 LD50, while protection against challenge with the same dose of heterologous serovars was 90%. The bacterin-vaccinated group showed homologous protection of 60% against all three serovars. Findings in this study suggest the potential of the r-InvH protein of S. Typhimurium as an effective vaccine candidate against Salmonella infections.


Subject(s)
Salmonella Food Poisoning , Salmonella Infections, Animal , Salmonella Infections , Animals , Mice , Humans , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Type III Secretion Systems/metabolism , Escherichia coli/genetics , Bacterial Proteins/metabolism , Salmonella Infections/prevention & control , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Vaccines, Subunit/genetics , Vaccines, Subunit/metabolism , Salmonella Infections, Animal/microbiology , Vaccines, Attenuated
16.
J Med Virol ; 95(10): e29160, 2023 10.
Article in English | MEDLINE | ID: mdl-37822266

ABSTRACT

Vaccination has proven effective against SARS-CoV-2 infection but vaccines were originally based on the wild type and emerging variants have led to a decrease in protective efficacy. There is an urgent need for broad-spectrum vaccine protection against emerging variants. A vaccine based on the Delta strain spike protein was created by optimization of vector, codon, and protein structure to produce a subunit immunogen (Delta-6P-S) containing six proline mutations, stable pre-fusion conformation, and with high expression in CHO-S cells. Immunogenicity and protective efficacy were evaluated in mice and golden hamsters using alum adjuvant. The Delta-6P-S recombinant protein induced strong immune responses in C57BL/6J mice and golden hamsters and sera had cross-neutralization activity and neutralized wild type and Beta, Delta, Omicron BA.1, BA.2, and BA.5 variant strains. Golden hamsters were immunized against Delta, Omicron BA.1, and BA.2 variants. Viral RNA detected from throat swabs, lungs and tracheas decreased significantly in vaccine-inoculated animals relative to alum-treated controls and no infectious viruses were detected in lungs and tracheas. Almost no pathological damage to lung tissue was found in vaccinated animals by contrast with those treated only with alum. The Delta-6P-S recombinant protein rapidly eliminated replicating virus in the upper and lower airways of golden hamsters and merits further investigation as a candidate anti-SARS-CoV-2 vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Mice , Mice, Inbred C57BL , SARS-CoV-2/genetics , COVID-19/prevention & control , Mesocricetus , Vaccines, Subunit/genetics , Recombinant Proteins/genetics , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
17.
Appl Microbiol Biotechnol ; 107(23): 7197-7211, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37741939

ABSTRACT

Tetanus toxin (TeNT) and botulinum neurotoxins (BoNTs) are neuroprotein toxins, with the latter being the most toxic known protein. They are structurally similar and contain three functional domains: an N-terminal catalytic domain (light chain), an internal heavy-chain translocation domain (HN domain), and a C-terminal heavy chain receptor binding domain (Hc domain or RBD). In this study, fusion functional domain molecules consisting of the TeNT RBD (THc) and the BoNT/A RBD (AHc) (i.e., THc-Linker-AHc and AHc-Linker-THc) were designed, prepared, and identified. The interaction of each Hc domain and the ganglioside receptor (GT1b) or the receptor synaptic vesicle glycoprotein 2 (SV2) was explored in vitro. Their immune response characteristics and protective efficacy were investigated in animal models. The recombinant THc-linker-AHc and AHc-linker-THc proteins with the binding activity had the correct size and structure, thus representing novel subunit vaccines. THc-linker-AHc and AHc-linker-THc induced high levels of specific neutralizing antibodies, and showed strong immune protective efficacy against both toxins. The high antibody titers against the two novel fusion domain molecules and against individual THc and AHc suggested that the THc and AHc domains, as antigens in the fusion functional domain molecules, do not interact with each other and retain their full key epitopes responsible for inducing neutralizing antibodies. Thus, the recombinant THc-linker-AHc and AHc-linker-THc molecules are strong and effective bivalent biotoxin vaccines, protecting against two biotoxins simultaneously. Our experimental design will be valuable to develop recombinant double-RBD fusion molecules as potent bivalent subunit vaccines against bio-toxins. KEY POINTS: • Double-RBD fusion molecules from two toxins had the correct structure and activity. • THc-linker-AHc and AHc-linker-THc efficiently protected against both biotoxins. • Such bivalent biotoxin vaccines based on the RBD are a valuable experimental design.


Subject(s)
Botulinum Toxins, Type A , Tetanus Toxin , Animals , Tetanus Toxin/genetics , Tetanus Toxin/metabolism , Botulinum Toxins, Type A/genetics , Botulinum Toxins, Type A/metabolism , Protein Binding , Antibodies, Neutralizing , Vaccines, Subunit/genetics
18.
Int J Mol Sci ; 24(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37762254

ABSTRACT

The Zika Virus (ZIKV) is an emerging arbovirus of great public health concern, particularly in the Americas after its last outbreak in 2015. There are still major challenges regarding disease control, and there is no ZIKV vaccine currently approved for human use. Among many different vaccine platforms currently under study, the recombinant envelope protein from Zika Virus (rEZIKV) constitutes an alternative option for vaccine development and has great potential for monitoring ZIKV infection and antibody response. This study describes a method to obtain a bioactive and functional rEZIKV using an E. coli expression system, with the aid of a 5-L airlift bioreactor and following an automated fast protein liquid chromatography (FPLC) protocol, capable of obtaining high yields of approximately 20 mg of recombinant protein per liter of bacterium cultures. The purified rEZIKV presented preserved antigenicity and immunogenicity. Our results show that the use of an airlift bioreactor for the production of rEZIKV is ideal for establishing protocols and further research on ZIKV vaccines bioprocess, representing a promising system for the production of a ZIKV envelope recombinant protein-based vaccine candidate.


Subject(s)
Viral Vaccines , Zika Virus Infection , Zika Virus , Humans , Zika Virus/genetics , Viral Envelope Proteins/genetics , Antibodies, Neutralizing , Escherichia coli , Antibodies, Viral , Viral Vaccines/genetics , Vaccines, Subunit/genetics , Recombinant Proteins/genetics , Bioreactors
19.
BMC Bioinformatics ; 24(1): 231, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37271819

ABSTRACT

When it was first introduced in 2000, reverse vaccinology was defined as an in silico approach that begins with the pathogen's genomic sequence. It concludes with a list of potential proteins with a possible, but not necessarily, list of peptide candidates that need to be experimentally confirmed for vaccine production. During the subsequent years, reverse vaccinology has dramatically changed: now it consists of a large number of bioinformatics tools and processes, namely subtractive proteomics, computational vaccinology, immunoinformatics, and in silico related procedures. However, the state of the art of reverse vaccinology still misses the ability to predict the efficacy of the proposed vaccine formulation. Here, we describe how to fill the gap by introducing an advanced immune system simulator that tests the efficacy of a vaccine formulation against the disease for which it has been designed. As a working example, we entirely apply this advanced reverse vaccinology approach to design and predict the efficacy of a potential vaccine formulation against influenza H5N1. Climate change and melting glaciers are critical due to reactivating frozen viruses and emerging new pandemics. H5N1 is one of the potential strains present in icy lakes that can raise a pandemic. Investigating structural antigen protein is the most profitable therapeutic pipeline to generate an effective vaccine against H5N1. In particular, we designed a multi-epitope vaccine based on predicted epitopes of hemagglutinin and neuraminidase proteins that potentially trigger B-cells, CD4, and CD8 T-cell immune responses. Antigenicity and toxicity of all predicted CTL, Helper T-lymphocytes, and B-cells epitopes were evaluated, and both antigenic and non-allergenic epitopes were selected. From the perspective of advanced reverse vaccinology, the Universal Immune System Simulator, an in silico trial computational framework, was applied to estimate vaccine efficacy using a cohort of 100 digital patients.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/prevention & control , Vaccinology/methods , Vaccine Efficacy , Epitopes, B-Lymphocyte , Proteins , Computational Biology/methods , Immune System , Epitopes, T-Lymphocyte/chemistry , Molecular Docking Simulation , Vaccines, Subunit/chemistry , Vaccines, Subunit/genetics
20.
Int J Biol Macromol ; 244: 125293, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37315677

ABSTRACT

Genotype VII Newcastle disease viruses (NDV) are still epidemic in many countries in chicken and waterfowl despite intensive vaccination with conventional live and inactivated vaccines. Here, we developed an effective mucosal subunit vaccine based on a bacterium-like particles (BLPs) delivery platform derived from Lactococcus lactis. The NDV protective antigen F or HN fused protein anchor (PA) was expressed by recombinant baculovirus and loaded on the surface of BLPs, resulting in BLPs-F and BLPs-HN, respectively. Efficient uptake of BLPs-F/HN by antigen-presenting cells activated the innate immune system depending mainly on the combination of chicken TLR2 type 1 (chTLR2t1) and chicken TLR1 type 1 (chTLR1t1) was observed. Delivered intranasally, BLPs-F, BLPs-HN, or BLPs-F/HN (a mixture containing equal amounts of BLPs-F and BLPs-HN) elicited robust local NDV-specific SIgA in the trachea as well as systemic neutralizing antibody and a mixed Th1/Th2 immune response in chickens. Notably, BLPs-F/HN provided as high as 90 % protection rate against intranasal challenge with a lethal dose of virulent genotype VII NDV NA-1 strain. These data indicate that this BLP-based subunit vaccine has the potential to be a novel mucosal vaccine against genotype VII NDV infection.


Subject(s)
Newcastle Disease , Viral Vaccines , Animals , Newcastle disease virus/genetics , Chickens , Newcastle Disease/prevention & control , Antibodies, Viral , Vaccination , Genotype , Vaccines, Subunit/genetics , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL