Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 415
Filter
1.
Elife ; 132024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269893

ABSTRACT

Tumor neoantigen peptide vaccines hold potential for boosting cancer immunotherapy, yet efficiently co-delivering peptides and adjuvants to antigen-presenting cells in vivo remains challenging. Virus-like particle (VLP), which is a kind of multiprotein structure organized as virus, can deliver therapeutic substances into cells and stimulate immune response. However, the weak targeted delivery of VLP in vivo and its susceptibility to neutralization by antibodies hinder their clinical applications. Here, we first designed a novel protein carrier using the mammalian-derived capsid protein PEG10, which can self-assemble into endogenous VLP (eVLP) with high protein loading and transfection efficiency. Then, an engineered tumor vaccine, named ePAC, was developed by packaging genetically encoded neoantigen into eVLP with further modification of CpG-ODN on its surface to serve as an adjuvant and targeting unit to dendritic cells (DCs). Significantly, ePAC can efficiently target and transport neoantigens to DCs, and promote DCs maturation to induce neoantigen-specific T cells. Moreover, in mouse orthotopic liver cancer and humanized mouse tumor models, ePAC combined with anti-TIM-3 exhibited remarkable antitumor efficacy. Overall, these results support that ePAC could be safely utilized as cancer vaccines for antitumor therapy, showing significant potential for clinical translation.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Dendritic Cells , Animals , Cancer Vaccines/immunology , Cancer Vaccines/genetics , Cancer Vaccines/administration & dosage , Mice , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Humans , Dendritic Cells/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Capsid Proteins/immunology , Capsid Proteins/genetics , Peptides/immunology , Female , Mice, Inbred C57BL , Cell Line, Tumor , Vaccination
2.
RNA Biol ; 21(1): 17-28, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39240021

ABSTRACT

Circular RNAs (circRNAs) are a class of single-stranded RNAs with a closed loop lacking 5' and 3' ends. These circRNAs are translatable and, therefore, have a potential in developing vaccine. CircRNA vaccines have been shown to be more stable, safe, easy to manufacture and scale-up production when compared to mRNA vaccines. However, these vaccines also suffer from several drawbacks such as low circularization efficiency for longer RNA precursor and usage of lipid nano particles (LNPs) in their delivery. LNPs have been shown to require large amounts of RNA due to their indirect delivery from endosome to cytosol. Besides, individual components of LNPs provide reactogenicity. Usage of virus like particles (VLPs) can improve the increased production and targeted delivery of circRNA vaccines and show no reactogenicity. Moreover, VLPs has also been used to produce vaccines against several diseases such as hepatitis C virus (HCV) etc. In this article, we will discuss about the methods used to enhance synthesis or circularization efficiency of circRNA. Moreover, we will also discuss about the significance of VLPs as the delivery vehicle for circRNA and their possible usage as the dual vaccine.


Subject(s)
RNA, Circular , Vaccines, Virus-Like Particle , RNA, Circular/genetics , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Humans , Animals , Nanoparticles/chemistry , Vaccines/administration & dosage , Lipids/chemistry
3.
Emerg Microbes Infect ; 13(1): 2406280, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39295522

ABSTRACT

Rabies, caused by the Rabies virus (RABV), is a highly fatal zoonotic disease. Existing rabies vaccines have demonstrated good immune efficacy, but the complexity of immunization procedures and high cost has impeded the elimination of RABV, particularly in the post-COVID-19 era. There is a pressing need for safer and more effective rabies vaccines that streamline vaccination protocols and reduce expense. To meet this need, we have developed a potential rabies vaccine candidate called ALVAC-RABV-VLP, utilizing CRISPR/Cas9 gene editing technology. This vaccine employs a canarypox virus vector (ALVAC) to generate RABV virus-like particles (VLPs). In mice, a single dose of ALVAC-RABV-VLP effectively activated dendritic cells (DCs), follicular helper T cells (Tfh), and the germinal centre (GC)/plasma cell axis, resulting in durable and effective humoral immune responses. The survival rate of mice challenged with lethal RABV was 100%. Similarly, in dogs and cats, a single immunization with ALVAC-RABV-VLP elicited a stronger and longer-lasting antibody response. ALVAC-RABV-VLP induced superior cellular and humoral immunity in both mice and beagles compared to the commercial inactivated rabies vaccine. In conclusion, ALVAC-RABV-VLP induced robust protective immune responses in mice, dogs and cats, offering a novel, cost-effective, efficient, and promising approach for herd prevention of rabies.


Subject(s)
Antibodies, Viral , Rabies Vaccines , Rabies virus , Rabies , Vaccines, Virus-Like Particle , Animals , Dogs , Rabies Vaccines/immunology , Rabies Vaccines/administration & dosage , Rabies Vaccines/genetics , Mice , Rabies virus/immunology , Rabies virus/genetics , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Rabies/prevention & control , Rabies/immunology , Cats , Antibodies, Viral/blood , Antibodies, Viral/immunology , Canarypox virus/immunology , Canarypox virus/genetics , Genetic Vectors/genetics , Female , Dendritic Cells/immunology , Immunity, Humoral , CRISPR-Cas Systems , Mice, Inbred BALB C
4.
Viruses ; 16(9)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39339876

ABSTRACT

The zoonotic transmission of hepatitis E virus (HEV) genotypes 3 (HEV-3) and 4 (HEV-4), and rabbit HEV (HEV-3ra) has been documented. Vaccination against HEV infection depends on the capsid (open reading frame 2, ORF2) protein, which is highly immunogenic and elicits effective virus-neutralizing antibodies. Escherichia coli (E. coli) is utilized as an effective system for producing HEV-like particles (VLPs). However, research on the production of ORF2 proteins from these HEV genotypes in E. coli to form VLPs has been modest. In this study, we constructed 21 recombinant plasmids expressing various N-terminally and C-terminally truncated HEV ORF2 proteins for HEV-3, HEV-3ra, and HEV-4 in E. coli. We successfully obtained nine HEV-3, two HEV-3ra, and ten HEV-4 ORF2 proteins, which were primarily localized in inclusion bodies. These proteins were solubilized in 4 M urea, filtered, and subjected to gel filtration. Results revealed that six HEV-3, one HEV-3ra, and two HEV-4 truncated proteins could assemble into VLPs. The purified VLPs displayed molecular weights ranging from 27.1 to 63.4 kDa and demonstrated high purity (74.7-95.3%), as assessed by bioanalyzer, with yields of 13.9-89.6 mg per 100 mL of TB medium. Immunoelectron microscopy confirmed the origin of these VLPs from HEV ORF2. Antigenicity testing indicated that these VLPs possess characteristic HEV antigenicity. Evaluation of immunogenicity in Balb/cAJcl mice revealed robust anti-HEV IgG responses, highlighting the potential of these VLPs as immunogens. These findings suggest that the generated HEV VLPs of different genotypes could serve as valuable tools for HEV research and vaccine development.


Subject(s)
Capsid Proteins , Escherichia coli , Genotype , Hepatitis E virus , Hepatitis E , Vaccines, Virus-Like Particle , Hepatitis E virus/genetics , Hepatitis E virus/immunology , Animals , Rabbits , Escherichia coli/genetics , Escherichia coli/metabolism , Capsid Proteins/genetics , Capsid Proteins/immunology , Hepatitis E/immunology , Hepatitis E/virology , Mice , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Mice, Inbred BALB C , Viral Hepatitis Vaccines/immunology , Viral Hepatitis Vaccines/genetics , Female , Hepatitis Antibodies/blood , Hepatitis Antibodies/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Humans , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Proteins
5.
Int J Biol Macromol ; 277(Pt 4): 134366, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098702

ABSTRACT

Intact capsids of foot-and-mouth disease virus (FMDV) play a vital role in eliciting a protective immune response. Any change in the physico-chemical environment of the capsids results in dissociation and poor immunogenicity. Structural bioinfomatics studies have been carried out to predict the amino acids at the interpentameric region that resulted in the identification of mutant virus-like particles(VLPs) of FMDV serotype Asia1/IND/63/1972. The insect cell expressed VLPs were evaluated for their stability by sandwich ELISA. Among 10 mutants, S93H showed maximum retention of antigenicity at different temperatures, indicating its higher thermal stability as revealed by the in-silico analysis and retained the antigenic sites of the virus demonstrated by Sandwich ELISA. The concordant results of the liquid phase blocking ELISA for estimation of antibody titre of known sera with stable mutant VLP as antigen in place of virus antigen demonstrate its diagnostic potential. The stable mutant VLP elicited a robust immune response with 85.6 % protection in guinea pigs against virus challenge. The stabilized VLP based antigen requires minimum biosafety and cold storage for production and transit besides, complying with differentiation of infected from vaccinated animals. It can effectively replace the conventional virus handling during antigen production for prophylactic and diagnostic use.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Serogroup , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease Virus/genetics , Animals , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/diagnosis , Foot-and-Mouth Disease/immunology , Guinea Pigs , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antigens, Viral/immunology , Antigens, Viral/genetics , Capsid Proteins/immunology , Capsid Proteins/genetics , Capsid Proteins/chemistry , Viral Vaccines/immunology , Viral Vaccines/genetics , Mutation
6.
Emerg Microbes Infect ; 13(1): 2389115, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39129566

ABSTRACT

Rabies is a lethal zoonotic disease that threatens human health. As the only viral surface protein, the rabies virus (RABV) glycoprotein (G) induces main neutralizing antibody (Nab) responses; however, Nab titre is closely correlated with the conformation of G. Virus-like particles (VLP) formed by the co-expression of RABV G and matrix protein (M) improve retention and antigen presentation, inducing broad, durable immune responses. RABV nucleoprotein (N) can elicit humoral and cellular immune responses. Hence, we developed a series of nucleoside-modified RABV mRNA vaccines encoding wild-type G, soluble trimeric RABV G formed by an artificial trimer motif (tG-MTQ), membrane-anchored prefusion-stabilized G (preG). Furthermore, we also developed RABV VLP mRNA vaccine co-expressing preG and M to generate VLPs, and VLP/N mRNA vaccine co-expressing preG, M, and N. The RABV mRNA vaccines induced higher humoral and cellular responses than inactivated rabies vaccine, and completely protected mice against intracerebral challenge. Additionally, the IgG and Nab titres in RABV preG, VLP and VLP/N mRNA groups were significantly higher than those in G and tG-MTQ groups. A single administration of VLP or VLP/N mRNA vaccines elicited protective Nab responses, the Nab titres were significantly higher than that in inactivated rabies vaccine group at day 7. Moreover, RABV VLP and VLP/N mRNA vaccines showed superior capacities to elicit potent germinal centre, long-lived plasma cell and memory B cell responses, which linked to high titre and durable Nab responses. In summary, our data demonstrated that RABV VLP and VLP/N mRNA vaccines could be promising candidates against rabies.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Immunity, Cellular , Immunity, Humoral , Rabies Vaccines , Rabies virus , Rabies , Vaccines, Virus-Like Particle , Animals , Rabies Vaccines/immunology , Rabies Vaccines/administration & dosage , Rabies Vaccines/genetics , Rabies/prevention & control , Rabies/immunology , Rabies virus/immunology , Rabies virus/genetics , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Female , mRNA Vaccines/immunology , Mice, Inbred BALB C , Nucleosides/immunology , Glycoproteins/immunology , Glycoproteins/genetics , Humans , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Antigens, Viral/immunology , Antigens, Viral/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/immunology
7.
Methods Mol Biol ; 2829: 185-194, 2024.
Article in English | MEDLINE | ID: mdl-38951334

ABSTRACT

Insect cell expression has been successfully used for the production of viral antigens as part of commercial vaccine development. As expression host, insect cells offer advantage over bacterial system by presenting the ability of performing post-translational modifications (PTMs) such as glycosylation and phosphorylation thus preserving the native functionality of the proteins especially for viral antigens. Insect cells have limitation in exactly mimicking some proteins which require complex glycosylation pattern. The recent advancement in insect cell engineering strategies could overcome this limitation to some extent. Moreover, cost efficiency, timelines, safety, and process adoptability make insect cells a preferred platform for production of subunit antigens for human and animal vaccines. In this chapter, we describe the method for producing the SARS-CoV2 spike ectodomain subunit antigen for human vaccine development and the virus like particle (VLP), based on capsid protein of porcine circovirus virus 2 (PCV2d) antigen for animal vaccine development using two different insect cell lines, SF9 & Hi5, respectively. This methodology demonstrates the flexibility and broad applicability of insect cell as expression host.


Subject(s)
Antigens, Viral , Baculoviridae , Spike Glycoprotein, Coronavirus , Animals , Baculoviridae/genetics , Antigens, Viral/genetics , Antigens, Viral/immunology , Sf9 Cells , Humans , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Recombinant Proteins/genetics , Cell Line , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/biosynthesis , Capsid Proteins/genetics , Capsid Proteins/immunology , Glycosylation , Insecta/genetics , Spodoptera , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology
8.
Int J Biol Macromol ; 276(Pt 2): 134027, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39033889

ABSTRACT

COVID-19, caused by the novel coronavirus SARS-CoV-2, has presented a significant challenge to global health, security, and the economy. Vaccination is considered a crucial measure in preventing virus transmission. The silkworm bioreactor has gained widespread usage in antigen presentation, monoclonal antibody preparation, and subunit vaccine development due to its safety, efficiency, convenience, and cost-effectiveness. In this study, we employed silkworm BmN cells and the silkworm MultiBac multigene co-expression system to successfully produce two prototype vaccines: a recombinant baculovirus vector vaccine (NPV) co-displaying the SARS-CoV-2 virus capsid protein and a capsid protein virus-like particle (VLP) vaccine. Following the purification of these vaccines, we immunized BALB/c mice to evaluate their immunogenicity. Our results demonstrated that both VLP and NPV prototype vaccines effectively elicited robust immune responses in mice. However, when equal inoculation doses between groups were compared, the recombinant NPV vaccine exhibited significantly higher serum antibody titers and increased expression of spleen cytokines and lymphocyte immune regulatory factors compared to the VLP group. These results suggested an increased immune efficacy of the recombinant NPV vaccine. Conversely, the VLP prototype vaccine displayed more pronounced effects on lymphocyte cell differentiation induction. This study successfully constructed two distinct morphological recombinant vaccine models and systematically elucidated their differences in humoral immune response and lymphocyte differentiation rate. Furthermore, it has fully harnessed the immense potential of silkworm bioreactors for vaccine research and development, providing valuable technical insights for studying mutated viruses like coronaviruses.


Subject(s)
Bombyx , COVID-19 Vaccines , Mice, Inbred BALB C , SARS-CoV-2 , Vaccines, Virus-Like Particle , Animals , Bombyx/immunology , Mice , COVID-19 Vaccines/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , COVID-19/prevention & control , COVID-19/immunology , Female , Cell Line , Baculoviridae/genetics , Baculoviridae/immunology , Capsid Proteins/immunology , Capsid Proteins/genetics , Cytokines/metabolism , Vaccines, Synthetic/immunology , Vaccines, Synthetic/genetics
9.
Viruses ; 16(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39066255

ABSTRACT

A wide range of virus-like particles (VLPs) is extensively employed as carriers to display various antigens for vaccine development to fight against different infections. The plant-produced truncated variant of the hepatitis E virus (HEV) coat protein is capable of forming VLPs. In this study, we demonstrated that recombinant fusion proteins comprising truncated HEV coat protein with green fluorescent protein (GFP) or four tandem copies of the extracellular domain of matrix protein 2 (M2e) of influenza A virus inserted at the Tyr485 position could be efficiently expressed in Nicotiana benthamiana plants using self-replicating vector based on the potato virus X genome. The plant-produced fusion proteins in vivo formed VLPs displaying GFP and 4M2e. Therefore, HEV coat protein can be used as a VLP carrier platform for the presentation of relatively large antigens comprising dozens to hundreds of amino acids. Furthermore, plant-produced HEV particles could be useful research tools for the development of recombinant vaccines against influenza.


Subject(s)
Antigen Presentation , Capsid Proteins , Hepatitis E virus , Nicotiana , Recombinant Fusion Proteins , Viral Matrix Proteins , Hepatitis E virus/immunology , Hepatitis E virus/genetics , Nicotiana/virology , Nicotiana/genetics , Capsid Proteins/genetics , Capsid Proteins/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Plants, Genetically Modified , Influenza A virus/immunology , Influenza A virus/genetics , Hepatitis E/immunology , Hepatitis E/prevention & control , Hepatitis E/virology , Viroporin Proteins
10.
Viruses ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38932136

ABSTRACT

Respiratory syncytial virus (RSV) is a major cause of severe respiratory tract disease worldwide, and a pediatric vaccine is not available. We generated a filamentous RSV-based virus-like particle (VLP) that presents the central conserved region of the attachment protein G. This was achieved by co-expressing the matrix protein, phosphoprotein, nucleoprotein, and a hybrid fusion protein in which the F ectodomain was replaced with the G central region (GCR). The latter is relatively conserved and contains a receptor binding site and hence is a logical vaccine target. The immunogenicity and efficacy of the resulting VLP, termed VLP-GCR, were examined in mice using intranasal application without adjuvant. VLP-GCR induced substantial anti-N antibody levels but very low anti-G antibody levels, even after three vaccinations. In contrast, a VLP presenting prefusion-stabilized fusion (preF) protein instead of GCR induced both high anti-F and anti-nucleoprotein antibody levels, suggesting that our GCR antigen was poorly immunogenic. Challenge of VLP-GCR-vaccinated mice caused increased weight loss and lung pathology, and both VLPs induced mucus in the lungs. Thus, neither VLP is suitable as a vaccine for RSV-naive individuals. However, VLP-preF enhanced the proportion of preF antibodies and could serve as a multi-antigen mucosal booster vaccine in the RSV-experienced population.


Subject(s)
Antibodies, Viral , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Vaccines, Virus-Like Particle , Animals , Female , Humans , Mice , Administration, Intranasal , Antibodies, Viral/blood , Antibodies, Viral/immunology , Lung/virology , Lung/pathology , Lung/immunology , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/genetics , Vaccination , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/administration & dosage , Viral Fusion Proteins/immunology , Viral Fusion Proteins/genetics , Weight Loss
11.
Viruses ; 16(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38932278

ABSTRACT

The envelope glycoprotein (Env) of retroviruses, such as the Feline leukemia virus (FeLV), is the main target of neutralizing humoral response, and therefore, a promising vaccine candidate, despite its reported poor immunogenicity. The incorporation of mutations that stabilize analogous proteins from other viruses in their prefusion conformation (e.g., HIV Env, SARS-CoV-2 S, or RSV F glycoproteins) has improved their capability to induce neutralizing protective immune responses. Therefore, we have stabilized the FeLV Env protein following a strategy based on the incorporation of a disulfide bond and an Ile/Pro mutation (SOSIP) previously used to generate soluble HIV Env trimers. We have characterized this SOSIP-FeLV Env in its soluble form and as a transmembrane protein present at high density on the surface of FeLV Gag-based VLPs. Furthermore, we have tested its immunogenicity in DNA-immunization assays in C57BL/6 mice. Low anti-FeLV Env responses were detected in SOSIP-FeLV soluble protein-immunized animals; however, unexpectedly no responses were detected in the animals immunized with SOSIP-FeLV Gag-based VLPs. In contrast, high humoral response against FeLV Gag was observed in the animals immunized with control Gag VLPs lacking SOSIP-FeLV Env, while this response was significantly impaired when the VLPs incorporated SOSIP-FeLV Env. Our data suggest that FeLV Env can be stabilized as a soluble protein and can be expressed in high-density VLPs. However, when formulated as a DNA vaccine, SOSIP-FeLV Env remains poorly immunogenic, a limitation that must be overcome to develop an effective FeLV vaccine.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Leukemia Virus, Feline , Mice, Inbred C57BL , Viral Envelope Proteins , Animals , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Leukemia Virus, Feline/immunology , Leukemia Virus, Feline/genetics , Gene Products, gag/immunology , Gene Products, gag/genetics , Female , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/administration & dosage , Humans , Cats , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Immunogenicity, Vaccine
12.
Front Immunol ; 15: 1425842, 2024.
Article in English | MEDLINE | ID: mdl-38915410

ABSTRACT

Vaccination against influenza virus can reduce the risk of influenza by 40% to 60%, they rely on the production of neutralizing antibodies specific to influenza hemagglutinin (HA) ignoring the neuraminidase (NA) as an important surface target. Vaccination with standardized NA concentration may offer broader and longer-lasting protection against influenza infection. In this regard, we aimed to compare the potency of a NA displayed on the surface of a VLP with a soluble NA. The baculovirus expression system (BEVS) and the novel virus-free Tnms42 insect cell line were used to express N2 NA on gag-based VLPs. To produce VLP immunogens with high levels of purity and concentration, a two-step chromatography purification process combined with ultracentrifugation was used. In a prime/boost vaccination scheme, mice vaccinated with 1 µg of the N2-VLPs were protected from mortality, while mice receiving the same dose of unadjuvanted NA in soluble form succumbed to the lethal infection. Moreover, NA inhibition assays and NA-ELISAs of pre-boost and pre-challenge sera confirm that the VLP preparation induced higher levels of NA-specific antibodies outperforming the soluble unadjuvanted NA.


Subject(s)
Antibodies, Viral , Influenza Vaccines , Neuraminidase , Orthomyxoviridae Infections , Vaccines, Virus-Like Particle , Animals , Neuraminidase/immunology , Neuraminidase/genetics , Influenza Vaccines/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/administration & dosage , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Female , Mice, Inbred BALB C , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Vaccine Efficacy , Humans , Vaccination/methods
13.
Curr Microbiol ; 81(8): 234, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904765

ABSTRACT

Viral-like particles (VLPs) represent versatile nanoscale structures mimicking the morphology and antigenic characteristics of viruses, devoid of genetic material, making them promising candidates for various biomedical applications. The integration of artificial intelligence (AI) into VLP research has catalyzed significant advancements in understanding, production, and therapeutic applications of these nanostructures. This comprehensive review explores the collaborative utilization of AI tools, computational methodologies, and state-of-the-art technologies within the VLP domain. AI's involvement in bioinformatics facilitates sequencing and structure prediction, unraveling genetic intricacies and three-dimensional configurations of VLPs. Furthermore, AI-enabled drug discovery enables virtual screening, demonstrating promise in identifying compounds to inhibit VLP activity. In VLP production, AI optimizes processes by providing strategies for culture conditions, nutrient concentrations, and growth kinetics. AI's utilization in image analysis and electron microscopy expedites VLP recognition and quantification. Moreover, network analysis of protein-protein interactions through AI tools offers an understanding of VLP interactions. The integration of multi-omics data via AI analytics provides a comprehensive view of VLP behavior. Predictive modeling utilizing machine learning algorithms aids in forecasting VLP stability, guiding optimization efforts. Literature mining facilitated by text mining algorithms assists in summarizing information from the VLP knowledge corpus. Additionally, AI's role in laboratory automation enhances experimental efficiency. Addressing data security concerns, AI ensures the protection of sensitive information in the digital era of VLP research. This review serves as a roadmap, providing insights into AI's current and future applications in VLP research, thereby guiding innovative directions in medicine and beyond.


Subject(s)
Artificial Intelligence , Computational Biology/methods , Vaccines, Virus-Like Particle/genetics
14.
Sci Rep ; 14(1): 14874, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937523

ABSTRACT

Insect cells have long been the main expression host of many virus-like particles (VLP). VLPs resemble the respective viruses but are non-infectious. They are important in vaccine development and serve as safe model systems in virus research. Commonly, baculovirus expression vector system (BEVS) is used for VLP production. Here, we present an alternative, plasmid-based system for VLP expression, which offers distinct advantages: in contrast to BEVS, it avoids contamination by baculoviral particles and proteins, can maintain cell viability over the whole process, production of alphanodaviral particles will not be induced, and optimization of expression vectors and their ratios is simple. We compared the production of noro-, rota- and entero-VLP in the plasmid-based system to the standard process in BEVS. For noro- and entero-VLPs, similar yields could be achieved, whereas production of rota-VLP requires some further optimization. Nevertheless, in all cases, particles were formed, the expression process was simplified compared to BEVS and potential for the plasmid-based system was validated. This study demonstrates that plasmid-based transfection offers a viable option for production of noro-, rota- and entero-VLPs in insect cells.


Subject(s)
Norovirus , Plasmids , Rotavirus , Animals , Plasmids/genetics , Rotavirus/genetics , Norovirus/genetics , Enterovirus/genetics , Sf9 Cells , Baculoviridae/genetics , Genetic Vectors/genetics , Transfection/methods , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/biosynthesis , Insecta , Cell Line
15.
Microbiol Spectr ; 12(8): e0095924, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38916311

ABSTRACT

The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve to give rise to variants of concern that can escape vaccine-induced immunity. As such, more effective vaccines are urgently needed. In this study, we evaluated virus-like particle (VLP) as a vaccine platform for SARS-CoV-2. The spike, envelope, and membrane proteins of the SARS-CoV-2 Wuhan strain were expressed by a single recombinant baculovirus BacMam and assembled into VLPs in cell culture. The morphology and size of the SARS-CoV-2 VLP as shown by transmission electron microscopy were similar to the authentic SARS-CoV-2 virus particle. In a mouse trial, two intramuscular immunizations of the VLP BacMam with no adjuvant elicited spike-specific binding antibodies in both sera and bronchoalveolar lavage fluids. Importantly, BacMam VLP-vaccinated mouse sera showed neutralization activity against SARS-CoV-2 spike pseudotyped lentivirus. Our results indicated that the SARS-CoV-2 VLP BacMam stimulated spike-specific immune responses with neutralization activity. IMPORTANCE: Although existing vaccines have significantly mitigated the impact of the COVID-19 pandemic, none of the vaccines can induce sterilizing immunity. The spike protein is the main component of all approved vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due primarily to its ability to induce neutralizing antibodies. The conformation of the spike protein in the vaccine formulation should be critical for the efficacy of a vaccine. By way of closely resembling the authentic virions, virus-like particles (VLPs) should render the spike protein in its natural conformation. To this end, we utilized the baculovirus vector, BacMam, to express virus-like particles consisting of the spike, membrane, and envelope proteins of SARS-CoV-2. We demonstrated the immunogenicity of our VLP vaccine with neutralizing activity. Our data warrant further evaluation of the virus-like particles as a vaccine candidate in protecting against virus challenges.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Baculoviridae , COVID-19 Vaccines , COVID-19 , Mice, Inbred BALB C , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Virus-Like Particle , Animals , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/administration & dosage , Baculoviridae/genetics , Baculoviridae/immunology , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Humans , Female , Immunogenicity, Vaccine , Coronavirus Envelope Proteins/immunology , Coronavirus Envelope Proteins/genetics , Coronavirus M Proteins
16.
Microb Pathog ; 195: 106751, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38880314

ABSTRACT

Short-beak and dwarfism syndrome (SBDS) is a new disease caused by a genetic variant of goose parvovirus in ducks that results in enormous economic losses for the waterfowl industry. Currently, there is no commercial vaccine for this disease, so it is urgent to develop a safer and more effective vaccine to prevent this disease. In this study, we optimized the production conditions to enhance the expression of the recombinant VP2 protein and identified the optimal conditions for subsequent large-scale expression. Furthermore, the protein underwent purification via nickel column affinity chromatography, followed by concentration using ultrafiltration tube. Subsequently, it was observed by transmission electron microscopy (TEM) that the NGPV recombinant VP2 protein assembled into virus-like particles (VLPs) resembling those of the original virus. Finally, the ISA 78-VG adjuvant was mixed with the NGPV-VP2 VLPs to be prepared as a subunit vaccine. Furthermore, both agar gel precipitation test (AGP) and serum neutralization test demonstrated that NGPV VLP subunit vaccine could induce the increase of NGPV antibody in breeding ducks. The ducklings were also challenged with the NGPV, and the results showed that the maternal antibody level could provide sufficient protection to the ducklings. These results indicated that the use of the NGPV VLP subunit vaccine based on the baculovirus expression system could facilitate the large-scale development of a reliable vaccine in the future.


Subject(s)
Antibodies, Viral , Baculoviridae , Capsid Proteins , Ducks , Parvoviridae Infections , Parvovirinae , Poultry Diseases , Recombinant Proteins , Viral Vaccines , Animals , Baculoviridae/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Parvoviridae Infections/veterinary , Parvoviridae Infections/immunology , Parvoviridae Infections/prevention & control , Parvoviridae Infections/virology , Ducks/virology , Poultry Diseases/virology , Poultry Diseases/prevention & control , Poultry Diseases/immunology , Viral Vaccines/immunology , Viral Vaccines/genetics , Capsid Proteins/genetics , Capsid Proteins/immunology , Parvovirinae/genetics , Parvovirinae/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Adjuvants, Immunologic
17.
Vopr Virusol ; 69(2): 175-186, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38843023

ABSTRACT

INTRODUCTION: The COVID-19 pandemic caused by SARS-CoV-2 has created serious health problems worldwide. The most effective way to prevent the occurrence of new epidemic outbreaks is vaccination. One of the modern and effective approaches to vaccine development is the use of virus-like particles (VLPs). The aim of the study is to develop a technology for production of VLP based on recombinant SARS-CoV-2 proteins (E, M, N and S) in insect cells. MATERIALS AND METHODS: Synthetic genes encoding coronavirus proteins E, M, N and S were used. VLP with various surface proteins of strains similar to the Wuhan virus, Delta, Alpha and Omicron were developed and cloned into the pFastBac plasmid. The proteins were synthesized in the baculovirus expression system and assembled into VLP in the portable Trichoplusia ni cell. The presence of insertion in the baculovirus genome was determined by PCR. ELISA and immunoblotting were used to study the antigenic activity of VLP. VLP purification was performed by ultracentrifugation using 20% sucrose. Morphology was assessed using electron microscopy and dynamic light scattering. RESULTS: VLPs consisting of recombinant SARS-CoV-2 proteins (S, M, E and N) were obtained and characterized. The specific binding of antigenic determinants in synthesized VLPs with antibodies to SARS-CoV-2 proteins has been demonstrated. The immunogenic properties of VLPs have been studied. CONCLUSION: The production and purification of recombinant VLPs consisting of full-length SARS-CoV-2 proteins with a universal set of surface antigens have been developed and optimized. Self-assembling particles that mimic the coronavirus virion induce a specific immune response against SARS-CoV-2.


Subject(s)
Baculoviridae , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Virus-Like Particle , Animals , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Humans , COVID-19/virology , COVID-19/immunology , Baculoviridae/genetics , Baculoviridae/metabolism , COVID-19 Vaccines/immunology , Antibodies, Viral/immunology , Coronavirus M Proteins/genetics , Coronavirus M Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology , Phosphoproteins
18.
Viruses ; 16(4)2024 04 17.
Article in English | MEDLINE | ID: mdl-38675963

ABSTRACT

Southern Africa Territories 2 (SAT2) foot-and-mouth disease (FMD) has crossed long-standing regional boundaries in recent years and entered the Middle East. However, the existing vaccines offer poor cross-protection against the circulating strains in the field. Therefore, there is an urgent need for an alternative design approach for vaccines in anticipation of a pandemic of SAT2 Foot-and-mouth disease virus (FMDV). The porcine parvovirus (PPV) VP2 protein can embed exogenous epitopes into the four loops on its surface, assemble into virus-like particles (VLPs), and induce antibodies and cytokines to PPV and the exogenous epitope. In this study, chimeric porcine parvovirus VP2 VLPs (chimeric PPV-SAT2-VLPs) expressing the T-and/or B-cell epitopes of the structural protein VP1 of FMDV SAT2 were produced using the recombinant pFastBac™ Dual vector of baculoviruses in Sf9 and HF cells We used the Bac-to-Bac system to construct the recombinant baculoviruses. The VP2-VLP--SAT2 chimeras displayed chimeric T-cell epitope (amino acids 21-40 of VP1) and/or the B-cell epitope (amino acids 135-174) of SAT FMDV VP1 by substitution of the corresponding regions at the N terminus (amino acids 2-23) and/or loop 2 and/or loop 4 of the PPV VP2 protein, respectively. In mice, the chimeric PPV-SAT2-VLPs induced specific antibodies against PPV and the VP1 protein of SAT2 FMDV. The VP2-VLP-SAT2 chimeras induced specific antibodies to PPV and the VP1 protein specific epitopes of FMDV SAT2. In this study, as a proof-of-concept, successfully generated chimeric PPV-VP2 VLPs expressing epitopes of the structural protein VP1 of FMDV SAT2 that has a potential to prevent FMDV SAT2 and PPV infection in pigs.


Subject(s)
Antibodies, Viral , Antigens, Viral , Capsid Proteins , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Parvovirus, Porcine , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease Virus/genetics , Mice , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/virology , Capsid Proteins/immunology , Capsid Proteins/genetics , Parvovirus, Porcine/immunology , Parvovirus, Porcine/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Vaccines/immunology , Viral Vaccines/genetics , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Swine , Immunity, Humoral , Immunity, Cellular , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Serogroup , Mice, Inbred BALB C , Female , Epitopes/immunology , Epitopes/genetics , Sf9 Cells , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood
19.
Microb Pathog ; 190: 106630, 2024 May.
Article in English | MEDLINE | ID: mdl-38556102

ABSTRACT

Porcine circovirus type 2 (PCV2) is a globally prevalent infectious pathogen affecting swine, with its capsid protein (Cap) being the sole structural protein critical for vaccine development. Prior research has demonstrated that PCV2 Cap proteins produced in Escherichia coli (E. coli) can form virus-like particles (VLPs) in vitro, and nuclear localization signal peptides (NLS) play a pivotal role in stabilizing PCV2 VLPs. Recently, PCV2d has emerged as an important strain within the PCV2 epidemic. In this study, we systematically optimized the PCV2d Cap protein and successfully produced intact PCV2d VLPs containing NLS using E. coli. The recombinant PCV2d Cap protein was purified through affinity chromatography, yielding 7.5 mg of recombinant protein per 100 ml of bacterial culture. We augmented the conventional buffer system with various substances such as arginine, ß-mercaptoethanol, glycerol, polyethylene glycol, and glutathione to promote VLP assembly. The recombinant PCV2d Cap self-assembled into VLPs approximately 20 nm in diameter, featuring uniform distribution and exceptional stability in the optimized buffer. We developed the vaccine and immunized pigs and mice, evaluating the immunogenicity of the PCV2d VLPs vaccine by measuring PCV2-IgG, IL-4, TNF-α, and IFN-γ levels, comparing them to commercial vaccines utilizing truncated PCV2 Cap antigens. The HE staining and immunohistochemical tests confirmed that the PCV2 VLPs vaccine offered robust protection. The results revealed that animals vaccinated with the PCV2d VLPs vaccine exhibited high levels of PCV2 antibodies, with TNF-α and IFN-γ levels rapidly increasing at 14 days post-immunization, which were higher than those observed in commercially available vaccines, particularly in the mouse trial. This could be due to the fact that full-length Cap proteins can assemble into more stable PCV2d VLPs in the assembling buffer. In conclusion, our produced PCV2d VLPs vaccine elicited stronger immune responses in pigs and mice compared to commercial vaccines. The PCV2d VLPs from this study serve as an excellent candidate vaccine antigen, providing insights for PCV2d vaccine research.


Subject(s)
Antibodies, Viral , Capsid Proteins , Circovirus , Escherichia coli , Recombinant Proteins , Vaccines, Virus-Like Particle , Animals , Circovirus/immunology , Circovirus/genetics , Swine , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/genetics , Capsid Proteins/immunology , Capsid Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Circoviridae Infections/prevention & control , Circoviridae Infections/immunology , Swine Diseases/prevention & control , Viral Vaccines/immunology , Viral Vaccines/genetics , Vaccine Development , Antigens, Viral/immunology , Antigens, Viral/genetics , Immunoglobulin G/blood , Cost-Benefit Analysis , Female , Interferon-gamma/metabolism , Immunogenicity, Vaccine
20.
J Control Release ; 368: 275-289, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382812

ABSTRACT

Virus like particles (VLPs) have been well recognized as one of the most important vaccine platforms due to their structural similarity to natural viruses to induce effective humoral and cellular immune responses. Nevertheless, lack of viral nucleic acids in VLPs usually leads the vaccine candidates less efficient in provoking innate immune against viral infection. Here, we constructed a biomimetic dual antigen hybrid influenza nanovaccines THM-HA@Mn with robust immunogenicity via in situ synthesizing a stimulator of interferon genes (STING) agonist Mn3O4 inside the cavity of a recombinant Hepatitis B core antigen VLP (HBc VLP) having fused SpyTag and influenza M2e antigen peptides (Tag-HBc-M2e, THM for short), followed by conjugating a recombinant hemagglutinin (rHA) antigen on the surface of the nanoparticles through SpyTag/SpyCatcher ligating. Such inside Mn3O4 immunostimulator-outside rHA antigen design, together with the chimeric M2e antigen on the HBc skeleton, enabled the synthesized hybrid nanovaccines THM-HA@Mn to well imitate the spatial distribution of M2e/HA antigens and immunostimulant in natural influenza virus. In vitro cellular experiments indicated that compared with the THM-HA antigen without Mn3O4 and a mixture vaccine consisting of THM-HA + MnOx, the THM-HA@Mn hybrid nanovaccines showed the highest efficacies in dendritic cells uptake and in promoting BMDC maturation, as well as inducing expression of TNF-α and type I interferon IFN-ß. The THM-HA@Mn also displayed the most sustained antigen release at the injection site, the highest efficacies in promoting the DC maturation in lymph nodes and germinal center B cells activation in the spleen of the immunized mice. The co-delivery of immunostimulant and antigens enabled the THM-HA@Mn nanovaccines to induce the highest systemic antigen-specific antibody responses and cellular immunogenicity in mice. Together with the excellent colloid dispersion stability, low cytotoxicity, as well as good biosafety, the synthetic hybrid nanovaccines presented in this study offers a promising strategy to design VLP-based vaccine with robust natural and adaptive immunogenicity against emerging viral pathogens.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Vaccines, Virus-Like Particle , Animals , Mice , Humans , Influenza, Human/prevention & control , Vaccines, Virus-Like Particle/genetics , Immunity, Cellular , Adjuvants, Immunologic , Mice, Inbred BALB C , Antibodies, Viral , Orthomyxoviridae Infections/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL