Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Nutrients ; 16(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125278

ABSTRACT

(1) Background: We examined the effect of the acute administration of olive oil (EVOO), linseed oil (GLO), soybean oil (SO), and palm oil (PO) on gastric motility and appetite in rats. (2) Methods: We assessed food intake, gastric retention (GR), and gene expression in all groups. (3) Results: Both EVOO and GLO were found to enhance the rate of stomach retention, leading to a decrease in hunger. On the other hand, the reduction in food intake caused by SO was accompanied by delayed effects on stomach retention. PO caused an alteration in the mRNA expression of NPY, POMC, and CART. Although PO increased stomach retention after 180 min, it did not affect food intake. It was subsequently verified that the absence of an autonomic reaction did not nullify the influence of EVOO in reducing food consumption. Moreover, in the absence of parasympathetic responses, animals that received PO exhibited a significant decrease in food consumption, probably mediated by lower NPY expression. (4) Conclusions: This study discovered that different oils induce various effects on parameters related to food consumption. Specifically, EVOO reduces food consumption primarily through its impact on the gastrointestinal tract, making it a recommended adjunct for weight loss. Conversely, the intake of PO limits food consumption in the absence of an autonomic reaction, but it is not advised due to its contribution to the development of cardiometabolic disorders.


Subject(s)
Appetite Regulation , Hypothalamus , Neuropeptide Y , Olive Oil , Palm Oil , Soybean Oil , Vagus Nerve , Animals , Vagus Nerve/drug effects , Vagus Nerve/physiology , Hypothalamus/metabolism , Hypothalamus/drug effects , Male , Olive Oil/pharmacology , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Palm Oil/pharmacology , Appetite Regulation/drug effects , Soybean Oil/administration & dosage , Soybean Oil/pharmacology , Rats, Wistar , Linseed Oil/pharmacology , Rats , Eating/drug effects , Plant Oils/pharmacology , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Gastrointestinal Motility/drug effects , Gene Expression Regulation/drug effects , RNA, Messenger/metabolism , RNA, Messenger/genetics
2.
Sci Rep ; 11(1): 17141, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34433865

ABSTRACT

We investigated hemodynamic, cardiac morphofunctional, and cardiovascular autonomic adaptations in spontaneously hypertensive rats (SHRs) after aerobic physical training associated with chronic cholinergic stimulation. Fifty-four SHRs were divided into two groups: trained and untrained. Each group was further subdivided into three smaller groups: vehicle, treated with pyridostigmine bromide at 5 mg/kg/day, and treated with pyridostigmine bromide at 15 mg/kg/day. The following protocols were assessed: echocardiography, autonomic double pharmacological blockade, heart rate variability (HRV), blood pressure variability (BPV), and baroreflex sensitivity (BRS). Physical training and pyridostigmine bromide reduced BP and HR and increased vagal participation in cardiac autonomic tonic balance. The associated responses were then potentialized. Treatment with pyridostigmine bromide increased HRV oscillation of both low frequency (LF: 0.2-0.75 Hz) and high frequency (HF: 0.75-3 Hz). However, the association with physical training attenuated HF oscillations. Additionally, treatment with pyridostigmine bromide also increased LF oscillations of BPV. Both treatment groups promoted morphofunctional adaptations, and associated increased ejection volume, ejection fraction, cardiac output, and cardiac index. In conclusion, the association of pyridostigmine bromide and physical training promoted greater benefits in hemodynamic parameters and increased vagal influence on cardiac autonomic tonic balance. Nonetheless, treatment with pyridostigmine bromide alone seems to negatively affect BPV and the association of treatment negatively influences HRV.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Heart/drug effects , Hypertension/therapy , Physical Conditioning, Animal/methods , Pyridostigmine Bromide/pharmacology , Vagus Nerve/drug effects , Animals , Blood Pressure , Cardiac Output , Cholinesterase Inhibitors/administration & dosage , Cholinesterase Inhibitors/therapeutic use , Heart/physiopathology , Hypertension/drug therapy , Pyridostigmine Bromide/administration & dosage , Pyridostigmine Bromide/therapeutic use , Rats , Rats, Inbred SHR , Vagus Nerve/physiopathology
3.
Front Endocrinol (Lausanne) ; 12: 660793, 2021.
Article in English | MEDLINE | ID: mdl-34149616

ABSTRACT

Metformin is an antidiabetic drug used for the treatment of diabetes and metabolic diseases. Imbalance in the autonomic nervous system (ANS) is associated with metabolic diseases. This study aimed to test whether metformin could improve ANS function in obese rats. Obesity was induced by neonatal treatment with monosodium L-glutamate (MSG). During 21-100 days of age, MSG-rats were treated with metformin 250 mg/kg body weight/day or saline solution. Rats were euthanized to evaluate biometric and biochemical parameters. ANS electrical activity was recorded and analyzed. Metformin normalized the hypervagal response in MSG-rats. Glucose-stimulated insulin secretion in isolated pancreatic islets increased in MSG-rats, while the cholinergic response decreased. Metformin treatment normalized the cholinergic response, which involved mostly the M3 muscarinic acetylcholine receptor (M3 mAChR) in pancreatic beta-cells. Protein expression of M3 mAChRs increased in MSG-obesity rats, while metformin treatment decreased the protein expression by 25%. In conclusion, chronic metformin treatment was effective in normalizing ANS activity and alleviating obesity in MSG-rats.


Subject(s)
Autonomic Nervous System/drug effects , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Obesity/drug therapy , Acetylcholine/pharmacology , Animals , Glucose/pharmacology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Male , Neostigmine/pharmacology , Obesity/chemically induced , Obesity/metabolism , Obesity/physiopathology , Rats, Wistar , Receptor, Muscarinic M3/metabolism , Sodium Glutamate , Vagus Nerve/drug effects , Vagus Nerve/physiology
4.
Life Sci ; 267: 118972, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33383052

ABSTRACT

Cisplatin treatment induces an autonomic dysfunction and gastrointestinal and cardiovascular disorders. Physical exercise as well as pyridostigmine treatment induces improves in the autonomic nervous system. In the current study, we investigated the effect of physical exercise and pyridostigmine treatment on gastrointestinal and cardiovascular changes in cisplatin-treated rats. Rats were divided into groups: Saline (S), Cisplatin (Cis), Exercise (Ex), Cisplatin+Exercise (Cis+Ex), Pyridostigmine (Pyr), and Cisplatin+Pyridostigmine (Cis+Pyr). We induced gastrointestinal dysmotility by administering 3 mg kg-1 of cisplatin once week for 5 weeks. The Ex was swimming (1 h per day/5 days per week for 5 weeks with 5% b.w.). GE was evaluated through the colorimetric method of fractional red phenol recovery 10 min after feeding. Pyr groups received 1.5 mg kg-1, p.o. or concomitant Cis treatment. Moreover, gastric contraction in vitro and hemodynamic parameters such as MAP, HR, and evoked baroreflex sensitivity were assessed, as well as sympathetic and parasympathetic tone and intrinsic heart rate (IHR). Cis decrease GE vs. saline (p<0.05). Cis+Ex or Cis+Pyr prevented (p<0.05) decrease in GE vs. Cis rats. Cis decreased (p<0.05) gastric responsiveness in vitro vs. saline. Cis+Ex or Cis+Pyr prevented this phenomenon. Cis treatment increase MAP and decrease in HR (p<0.05) vs saline. Cis+Ex or Cis+Pyr attenuated (p<0.05) both alterations. Cis increased sympathetic tone and decreased vagal tone and IHR (p<0.05) vs. the saline. Cis+Ex or Cis+Pyr prevented those effects vs. the Cis group. In conclusion, physical exercise and pyridostigmine treatment improves autonomic dysfunction and prevented GE delay and changes in hemodynamic parameters, baroreflex sensitivity, and cardiac autonomic control in cisplatin-treated rats.


Subject(s)
Baroreflex/drug effects , Physical Conditioning, Animal/physiology , Pyridostigmine Bromide/pharmacology , Animals , Autonomic Nervous System/physiopathology , Baroreflex/physiology , Blood Pressure/drug effects , Blood Pressure/physiology , Cardiovascular System/physiopathology , Cisplatin/adverse effects , Cisplatin/pharmacology , Gastric Emptying/drug effects , Gastric Emptying/physiology , Heart/drug effects , Heart Rate/drug effects , Male , Myocardial Infarction/physiopathology , Rats , Rats, Wistar , Vagus Nerve/drug effects
5.
Eur J Pharmacol ; 849: 154-159, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30716310

ABSTRACT

Previously, we showed that the synthetic nitroderivative trans-4-methyl-ß-nitrostyrene (T4MeN) induced vasorelaxant effects in rat isolated aortic rings. Here, we investigated the mechanisms underlying the cardiovascular effects of T4MeN in normotensive rats. In pentobarbital-anesthetized rats, intravenous (i.v.) injection of T4MeN (0.03-0.5 mg/kg) induced a rapid (onset time of 1-2 s) and dose-dependent bradycardia and hypotension. These cardiovascular responses to T4MeN were abolished by bilateral cervical vagotomy or selective blockade of neural conduction of vagal C-fiber afferents by perineural treatment of both cervical vagus nerves with capsaicin. Hypotension and bradycardia were also recorded when T4MeN was directly injected in the right, but not into the left ventricle. Furthermore, they were significantly reduced by i.v. pretreatment with capsazepine but remained unaltered by ondansetron or suramin. In conscious rats, the dose-dependent hypotension and bradycardia evoked by T4MeN were abolished by i.v. methylatropine pretreatment. In conclusion, bradycardiac and depressor responses induced by T4MeN has a vago-vagal reflex origin resulting from the vagal pulmonary afferents stimulation. The transduction mechanism seems to involve the activation of vanilloid TRPV1, but not purinergic (P2X) or 5-HT3 receptors located on vagal pulmonary sensory nerves.


Subject(s)
Bradycardia/chemically induced , Lung/innervation , Nerve Fibers, Unmyelinated/drug effects , Reflex/drug effects , Styrenes/pharmacology , TRPV Cation Channels/metabolism , Vagus Nerve/drug effects , Animals , Bradycardia/metabolism , Bradycardia/physiopathology , Male , Nerve Fibers, Unmyelinated/metabolism , Nerve Fibers, Unmyelinated/physiology , Rats , Rats, Wistar
6.
Clinics (Sao Paulo) ; 73: e226, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29791601

ABSTRACT

OBJECTIVES: Misuse of anabolic androgenic steroids in athletes is a strategy used to enhance strength and skeletal muscle hypertrophy. However, its abuse leads to an imbalance in muscle sympathetic nerve activity, increased vascular resistance, and increased blood pressure. However, the mechanisms underlying these alterations are still unknown. Therefore, we tested whether anabolic androgenic steroids could impair resting baroreflex sensitivity and cardiac sympathovagal control. In addition, we evaluate pulse wave velocity to ascertain the arterial stiffness of large vessels. METHODS: Fourteen male anabolic androgenic steroid users and 12 nonusers were studied. Heart rate, blood pressure, and respiratory rate were recorded. Baroreflex sensitivity was estimated by the sequence method, and cardiac autonomic control by analysis of the R-R interval. Pulse wave velocity was measured using a noninvasive automatic device. RESULTS: Mean spontaneous baroreflex sensitivity, baroreflex sensitivity to activation of the baroreceptors, and baroreflex sensitivity to deactivation of the baroreceptors were significantly lower in users than in nonusers. In the spectral analysis of heart rate variability, high frequency activity was lower, while low frequency activity was higher in users than in nonusers. Moreover, the sympathovagal balance was higher in users. Users showed higher pulse wave velocity than nonusers showing arterial stiffness of large vessels. Single linear regression analysis showed significant correlations between mean blood pressure and baroreflex sensitivity and pulse wave velocity. CONCLUSIONS: Our results provide evidence for lower baroreflex sensitivity and sympathovagal imbalance in anabolic androgenic steroid users. Moreover, anabolic androgenic steroid users showed arterial stiffness. Together, these alterations might be the mechanisms triggering the increased blood pressure in this population.


Subject(s)
Anabolic Agents/adverse effects , Androgens/adverse effects , Autonomic Nervous System/drug effects , Baroreflex/drug effects , Cardiovascular System/drug effects , Vagus Nerve/drug effects , Adult , Autonomic Nervous System/physiology , Baroreflex/physiology , Blood Pressure/drug effects , Cardiovascular Physiological Phenomena/drug effects , Cross-Sectional Studies , Heart Rate/drug effects , Humans , Male , Muscle Strength/drug effects , Muscle Stretching Exercises , Pulse Wave Analysis , Respiratory Rate/drug effects , Risk Factors , Statistics, Nonparametric , Vagus Nerve/physiology , Vascular Stiffness/drug effects
7.
Clinics ; Clinics;73: e226, 2018. tab
Article in English | LILACS | ID: biblio-890749

ABSTRACT

OBJECTIVES: Misuse of anabolic androgenic steroids in athletes is a strategy used to enhance strength and skeletal muscle hypertrophy. However, its abuse leads to an imbalance in muscle sympathetic nerve activity, increased vascular resistance, and increased blood pressure. However, the mechanisms underlying these alterations are still unknown. Therefore, we tested whether anabolic androgenic steroids could impair resting baroreflex sensitivity and cardiac sympathovagal control. In addition, we evaluate pulse wave velocity to ascertain the arterial stiffness of large vessels. METHODS: Fourteen male anabolic androgenic steroid users and 12 nonusers were studied. Heart rate, blood pressure, and respiratory rate were recorded. Baroreflex sensitivity was estimated by the sequence method, and cardiac autonomic control by analysis of the R-R interval. Pulse wave velocity was measured using a noninvasive automatic device. RESULTS: Mean spontaneous baroreflex sensitivity, baroreflex sensitivity to activation of the baroreceptors, and baroreflex sensitivity to deactivation of the baroreceptors were significantly lower in users than in nonusers. In the spectral analysis of heart rate variability, high frequency activity was lower, while low frequency activity was higher in users than in nonusers. Moreover, the sympathovagal balance was higher in users. Users showed higher pulse wave velocity than nonusers showing arterial stiffness of large vessels. Single linear regression analysis showed significant correlations between mean blood pressure and baroreflex sensitivity and pulse wave velocity. CONCLUSIONS: Our results provide evidence for lower baroreflex sensitivity and sympathovagal imbalance in anabolic androgenic steroid users. Moreover, anabolic androgenic steroid users showed arterial stiffness. Together, these alterations might be the mechanisms triggering the increased blood pressure in this population.


Subject(s)
Humans , Male , Adult , Autonomic Nervous System/drug effects , Vagus Nerve/drug effects , Cardiovascular System/drug effects , Baroreflex/drug effects , Anabolic Agents/adverse effects , Androgens/adverse effects , Autonomic Nervous System/physiology , Blood Pressure/drug effects , Cardiovascular Physiological Phenomena/drug effects , Cross-Sectional Studies , Risk Factors , Baroreflex/physiology , Vascular Stiffness/drug effects , Pulse Wave Analysis
8.
Environ Res ; 159: 186-201, 2017 11.
Article in English | MEDLINE | ID: mdl-28803148

ABSTRACT

Mexico City (MC) young residents are exposed to high levels of fine particulate matter (PM2.5), have high frontal concentrations of combustion-derived nanoparticles (CDNPs), accumulation of hyperphosphorylated aggregated α-synuclein (α-Syn) and early Parkinson's disease (PD). Swallowed CDNPs have easy access to epithelium and submucosa, damaging gastrointestinal (GI) barrier integrity and accessing the enteric nervous system (ENS). This study is focused on the ENS, vagus nerves and GI barrier in young MC v clean air controls. Electron microscopy of epithelial, endothelial and neural cells and immunoreactivity of stomach and vagus to phosphorylated ɑ-synuclein Ser129 and Hyperphosphorylated-Tau (Htau) were evaluated and CDNPs measured in ENS. CDNPs were abundant in erythrocytes, unmyelinated submucosal, perivascular and intramuscular nerve fibers, ganglionic neurons and vagus nerves and associated with organelle pathology. ɑSyn and Htau were present in 25/27 MC gastric,15/26 vagus and 18/27 gastric and 2/26 vagus samples respectively. We strongly suggest CDNPs are penetrating and damaging the GI barrier and reaching preganglionic parasympathetic fibers and the vagus nerve. This work highlights the potential role of CDNPs in the neuroenteric hyperphosphorylated ɑ-Syn and tau pathology as seen in Parkinson and Alzheimer's diseases. Highly oxidative, ubiquitous CDNPs constitute a biologically plausible path into Parkinson's and Alzheimer's pathogenesis.


Subject(s)
Air Pollutants/toxicity , Intestine, Small/drug effects , Nanoparticles/toxicity , Vagus Nerve/drug effects , Vehicle Emissions/toxicity , Adolescent , Adult , Animals , Biomarkers/analysis , Child , Cities , Dogs , Female , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/ultrastructure , Intestine, Small/pathology , Intestine, Small/ultrastructure , Male , Mexico , Microscopy, Electron, Transmission , Phosphorylation , RNA, Messenger/analysis , Tight Junctions/drug effects , Tight Junctions/pathology , Tight Junctions/ultrastructure , Vagus Nerve/metabolism , Vagus Nerve/ultrastructure , Young Adult , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , tau Proteins/genetics , tau Proteins/metabolism
9.
Endocrine ; 56(2): 346-356, 2017 May.
Article in English | MEDLINE | ID: mdl-28233096

ABSTRACT

BACKGROUND/AIMS: Autonomic nervous system imbalance is associated with metabolic diseases, including diabetes. Glibenclamide is an antidiabetic drug that acts by stimulating insulin secretion from pancreatic beta cells and is widely used in the treatment of type 2 diabetes. Since there is scarce data concerning autonomic nervous system activity and diabetes, the aim of this work was to test whether glibenclamide can improve autonomic nervous system activity and muscarinic acetylcholine receptor function in pre-diabetic obese male rats. METHODS: Pre-diabetes was induced by treatment with monosodium L-glutamate in neonatal rats. The monosodium L-glutamate group was treated with glibenclamide (2 mg/kg body weight /day) from weaning to 100 days of age, and the control group was treated with water. Body weight, food intake, Lee index, fasting glucose, insulin levels, homeostasis model assessment of insulin resistance, omeostasis model assessment of ß-cell function, and fat tissue accumulation were measured. The vagus and sympathetic nerve electrical activity were recorded. Insulin secretion was measured in isolated islets challenged with glucose, acetylcholine, and the selective muscarinic acetylcholine receptor antagonists by radioimmunoassay technique. RESULTS: Glibenclamide treatment prevented the onset of obesity and diminished the retroperitoneal (18%) and epididymal (25%) fat pad tissues. In addition, the glibenclamide treatment also reduced the parasympathetic activity by 28% and glycemia by 20% in monosodium L-glutamate-treated rats. The insulinotropic effect and unaltered cholinergic actions in islets from monosodium L-glutamate groups were increased. CONCLUSION: Early glibenclamide treatment prevents monosodium L-glutamate-induced obesity onset by balancing autonomic nervous system activity.


Subject(s)
Glyburide/therapeutic use , Hypoglycemic Agents/therapeutic use , Obesity/metabolism , Prediabetic State/drug therapy , Vagus Nerve/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/physiopathology , Animals , Autonomic Nervous System/drug effects , Autonomic Nervous System/metabolism , Autonomic Nervous System/physiopathology , Blood Glucose/metabolism , Body Weight/drug effects , Eating/drug effects , Glyburide/pharmacology , Hypoglycemic Agents/pharmacology , Insulin/blood , Insulin Resistance/physiology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Male , Obesity/physiopathology , Prediabetic State/chemically induced , Prediabetic State/metabolism , Prediabetic State/physiopathology , Rats , Rats, Wistar , Sodium Glutamate , Vagus Nerve/physiopathology
10.
Am J Physiol Heart Circ Physiol ; 312(3): H469-H477, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28011585

ABSTRACT

Analysis of heart rate variability (HRV) by nonlinear approaches has been gaining interest due to their ability to extract additional information from heart rate (HR) dynamics that are not detectable by traditional approaches. Nevertheless, the physiological interpretation of nonlinear approaches remains unclear. Therefore, we propose long-term (60 min) protocols involving selective blockade of cardiac autonomic receptors to investigate the contribution of sympathetic and parasympathetic function upon nonlinear dynamics of HRV. Conscious male Wistar rats had their electrocardiogram (ECG) recorded under three distinct conditions: basal, selective (atenolol or atropine), or combined (atenolol plus atropine) pharmacological blockade of autonomic muscarinic or ß1-adrenergic receptors. Time series of RR interval were assessed by multiscale entropy (MSE) and detrended fluctuation analysis (DFA). Entropy over short (1 to 5, MSE1-5) and long (6 to 30, MSE6-30) time scales was computed, as well as DFA scaling exponents at short (αshort, 5 ≤ n ≤ 15), mid (αmid, 30 ≤ n ≤ 200), and long (αlong, 200 ≤ n ≤ 1,700) window sizes. The results show that MSE1-5 is reduced under atropine blockade and MSE6-30 is reduced under atropine, atenolol, or combined blockade. In addition, while atropine expressed its maximal effect at scale six, the effect of atenolol on MSE increased with scale. For DFA, αshort decreased during atenolol blockade, while the αmid increased under atropine blockade. Double blockade decreased αshort and increased αlong Results with surrogate data show that the dynamics during combined blockade is not random. In summary, sympathetic and vagal control differently affect entropy (MSE) and fractal properties (DFA) of HRV. These findings are important to guide future studies.NEW & NOTEWORTHY Although multiscale entropy (MSE) and detrended fluctuation analysis (DFA) are recognizably useful prognostic/diagnostic methods, their physiological interpretation remains unclear. The present study clarifies the effect of the cardiac autonomic control on MSE and DFA, assessed during long periods (1 h). These findings are important to help the interpretation of future studies.


Subject(s)
Heart Rate/physiology , Heart/innervation , Heart/physiology , Sympathetic Nervous System/physiology , Vagus Nerve/physiology , Algorithms , Animals , Atenolol/pharmacology , Atropine/pharmacology , Drug Interactions , Electrocardiography , Entropy , Heart/drug effects , Heart Rate/drug effects , Male , Parasympatholytics/pharmacology , Rats , Rats, Wistar , Sympathetic Nervous System/drug effects , Sympatholytics/pharmacology , Vagus Nerve/drug effects
11.
Clin Exp Pharmacol Physiol ; 43(11): 1038-1045, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27429172

ABSTRACT

Mercury is known to cause harmful neural effects affecting the cardiovascular system. Here, we evaluated the chronic effects of low-dose mercury exposure on the autonomic control of the cardiovascular system. Wistar rats were treated for 30 days with HgCl2 (1st dose 4.6 µg/kg followed by 0.07 µg/kg per day, intramuscular) or saline. The femoral artery and vein were then cannulated for evaluation of autonomic control of the hemodynamic function, which was evaluated in awake rats. The following tests were performed: baroreflex sensitivity, Von Bezold-Jarisch reflex, heart rate variability (HRV) and pharmacological blockade with methylatropine and atenolol to test the autonomic tone of the heart. Exposure to HgCl2 for 30 days slightly increased the mean arterial pressure and heart rate (HR). There was a significant reduction in the baroreflex gain of animals exposed to HgCl2 . Moreover, haemodynamic responses to the activation of the Von Bezold-Jarisch reflex were also reduced. The changes in the spectral analysis of HRV suggested a shift in the sympathovagal balance toward a sympathetic predominance after mercury exposure, which was confirmed by autonomic pharmacological blockade in the HgCl2 group. This group also exhibited reduced intrinsic HR after the double block suggesting that the pacemaker activity of the sinus node was also affected. These findings suggested that the autonomic modulation of the heart was significantly altered by chronic mercury exposure, thus reinforcing that even at low concentrations such exposure might be associated with increased cardiovascular risk.


Subject(s)
Blood Pressure/drug effects , Heart Rate/drug effects , Heart/drug effects , Mercury/toxicity , Vagus Nerve/drug effects , Animals , Baroreflex/drug effects , Baroreflex/physiology , Blood Pressure/physiology , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/physiopathology , Dose-Response Relationship, Drug , Heart/physiology , Heart Rate/physiology , Hemodynamics/drug effects , Hemodynamics/physiology , Male , Mercury/administration & dosage , Rats , Rats, Wistar , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Vagus Nerve/physiology
12.
Planta Med ; 82(15): 1329-1334, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27124242

ABSTRACT

α-Terpineol is a monoterpene with smooth muscle relaxant properties. In this study, its effects on the gastric emptying rate of awake rats were evaluated with emphasis on the mode by which it induces gastrointestinal actions. Administered by gavage, α-terpineol (50 mg/kg) delayed gastric emptying of a liquid test meal at 10 min postprandial. Hexamethonium or guanethidine did not interfere with the retarding effect induced by α-terpineol, but atropine and L-NG-nitroarginine methyl ester abolished it. In vagotomized rats, α-terpineol did not delay gastric emptying. In isolated strips of gastric fundus, concentration-effect curves in response to carbamylcholine were higher in magnitude after treatment with the monoterpene. α-Terpineol (1 to 2000 µM) relaxed sustained contractions induced by carbamylcholine or a high K+ concentration in a concentration-dependent manner. This relaxing effect was not affected by the presence of L-NG-nitroarginine methyl ester, 1 H-[1, 2, 4]oxadiazolo[4,3-a]quinoxalin-1-one, tetraethylammonium, or atropine. Smooth muscle contractions induced by electrical field stimulation were inhibited by α-terpineol. In conclusion, α-terpineol induced gastric retention in awake rats through mechanisms that depended on intact vagal innervation to the stomach, which involved cholinergic/nitrergic signalling. Such a retarding effect induced by α-terpineol appears not to result from a direct action of the monoterpene on gastric smooth muscle cells.


Subject(s)
Cyclohexenes/pharmacology , Gastric Emptying/drug effects , Gastric Fundus/drug effects , Monoterpenes/pharmacology , Vagus Nerve/drug effects , Animals , Atropine/pharmacology , Carbachol/pharmacology , Cyclohexane Monoterpenes , Cyclohexenes/administration & dosage , Dose-Response Relationship, Drug , Gastric Emptying/physiology , Guanethidine/pharmacology , Male , Monoterpenes/administration & dosage , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Organ Culture Techniques , Potassium/pharmacology , Rats, Wistar , Sympatholytics/pharmacology , Vagotomy , Vagus Nerve/metabolism , Vagus Nerve/surgery
13.
Exp Physiol ; 101(6): 708-16, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27028009

ABSTRACT

NEW FINDINGS: What is the central question of this study? Ischaemia-reperfusion of peripheral tissues protects the heart from subsequent myocardial ischaemia-reperfusion injury, a phenomenon referred to as remote ischaemic preconditioning (rIPC). This study evaluated the possible myocardial triggers of rIPC. What is the main finding and its importance? Remote ischaemic preconditioning reduces infarct size through a vagal pathway and a mechanism involving phosphorylation of Akt and endothelial nitric oxide synthase, opening of mitochondrial ATP-dependent K(+) channels and an increase in mitochondrial H2 O2 production. All these phenomena occur before the myocardial ischaemia; hence, they could act as 'triggers' of rIPC. It has been proposed that remote ischaemic preconditioning (rIPC) activates a parasympathetic neural pathway. However, the myocardial intracellular mechanism of rIPC remains unclear. Here, we characterized some of the intracellular signals participating as rIPC triggers. Isolated rat hearts were subjected to 30 min of global ischaemia and 120 min of reperfusion (Non-rIPC group). In a second group, before the isolation of the heart, an rIPC protocol (three cycles of hindlimb ischaemia-reperfusion) was performed. The infarct size was measured with tetrazolium staining. Expression/phosphorylation of Akt and endothelial nitric oxide synthase (eNOS) and mitochondrial H2 O2 production were evaluated at the end of the rIPC protocol, before myocardial ischaemia-reperfusion. The rIPC significantly decreased the infarct size and induced Akt and eNOS phosphorylation. The protective effect on infarct size was abolished by cervical vagal section, l-NAME (an NO synthesis inhibitor) and 5-hydroxydecanoate (a mitochondrial ATP-dependent K(+) channel blocker). Mitochondrial production of H2 O2 was increased by rIPC, whereas it was abolished by cervical vagal section, l-NAME and 5-hydroxydecanoate. We conclude that rIPC activates a parasympathetic vagal pathway and a mechanism involving the phosphorylation of Akt and eNOS, the opening of mitochondrial ATP-dependent K(+) channels and the release of H2 O2 by the mitochondria. All these phenomena occur before myocardial ischaemia and could act as triggers of rIPC.


Subject(s)
Myocardial Infarction/metabolism , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Adenosine Triphosphate/metabolism , Animals , Decanoic Acids/pharmacology , Heart/drug effects , Heart/physiopathology , Hindlimb/drug effects , Hindlimb/metabolism , Hydrogen Peroxide/metabolism , Hydroxy Acids/pharmacology , Ischemic Preconditioning, Myocardial/methods , Male , Mitochondria/drug effects , Mitochondria/metabolism , Myocardial Reperfusion/methods , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase Type III/metabolism , Parasympathetic Nervous System/drug effects , Parasympathetic Nervous System/metabolism , Phosphorylation/drug effects , Phosphorylation/physiology , Potassium Channels/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Vagus Nerve/drug effects , Vagus Nerve/metabolism
14.
Eur J Pharmacol ; 775: 96-105, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26872991

ABSTRACT

ß-Citronellol is a monoterpene found in the essential oil of various plants with antihypertensive properties. In fact, ß-citronellol possesses hypotensive actions due to its vasodilator abilities. Here we aimed to show that ß-citronellol recruits airway sensory neural circuitry to evoke cardiorespiratory effects. In anesthetized rats, intravenous injection of ß-citronellol caused biphasic hypotension, bradycardia and apnea. Bilateral vagotomy, perivagal capsaicin treatment or injection into the left ventricle abolished first rapid phase (named P1) but not delayed phase P2 of the ß-citronellol effects. P1 persisted after pretreatment with capsazepine, ondansetron, HC-030031 or suramin. Suramin abolished P2 of apnea. In awake rats, ß-citronellol induced biphasic hypotension and bradycardia being P1 abolished by methylatropine. In vitro, ß-citronellol inhibited spontaneous or electrically-evoked contractions of rat isolated right or left atrium, respectively, and fully relaxed sustained contractions of phenylephrine in mesenteric artery rings. In conclusion, chemosensitive pulmonary vagal afferent fibers appear to mediate the cardiovascular and respiratory effects of ß-citronellol. The transduction mechanism in P1 seems not to involve the activation of transient receptor potential vanilloid subtype 1 (TRPV1), transient receptor potential ankyrin subtype 1 (TRPA1), purinergic (P2X) or 5-HT3 receptors located on airways sensory nerves. P2 of hypotension and bradycardia seems resulting from a cardioinhibitory and vasodilatory effect of ß-citronellol and the apnea from a purinergic signaling.


Subject(s)
Apnea/chemically induced , Bradycardia/chemically induced , Hypotension/chemically induced , Monoterpenes/pharmacology , Acyclic Monoterpenes , Animals , Apnea/physiopathology , Arterial Pressure/drug effects , Atrial Function/drug effects , Bradycardia/physiopathology , Heart Rate/drug effects , Hypotension/physiopathology , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/physiology , Rats, Wistar , Respiratory Rate/drug effects , Vagotomy , Vagus Nerve/drug effects , Vagus Nerve/physiology
15.
Auton Neurosci ; 193: 97-103, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26471065

ABSTRACT

Hypertension is often accompanied by autonomic dysfunction, which is detrimental to cardiac regulation. On the other hand, cholinergic stimulation through inhibition of acetylcholinesterase appears to have beneficial effects on cardiac autonomic control. Thus, our objective was to investigate the effects of chronic cholinergic stimulation on hemodynamic and cardiovascular autonomic control parameters in spontaneously hypertensive rats (SHR). For this, 26-week-old SHR (N = 32) and Wistar Kyoto rats (WK; N = 32) were divided into two groups: one treated with vehicle (H2O; N = 16) and the other treated with pyridostigmine bromide (PYR; N = 16) in drinking water (25 mg/kg/day) for 2 weeks. All groups were subjected to recording of arterial pressure (AP) and heart rate (HR), quantification of ejection fraction (EF), evaluation of cardiac tonic autonomic balance by means of double autonomic blockade with methylatropine and propranolol, analysis of systolic AP (SAP) and HR variability (HRV), and evaluation of baroreflex sensitivity (BRS). AP, HR, and EF were reduced in the SHR-PYR group compared with the SHR-H2O group. Evaluation of autonomic parameters revealed an increase in vagal tone participation in cardiac tonic autonomic balance and reduced SAP variability; however, no changes were observed in HRV or BRS. These results suggest that chronic cholinergic stimulation with pyridostigmine bromide promotes reduction in the hemodynamic parameters AP, HR, and EF. Additionally, tonic autonomic balance was improved and a reduction in LF oscillations of SAP variability was observed that could not be attributed to BRS, as the latter did not change. Further studies should be conducted to identify the mechanisms involved in the observed responses.


Subject(s)
Autonomic Nervous System/physiopathology , Baroreflex/physiology , Blood Pressure/physiology , Heart Rate/physiology , Hypertension/physiopathology , Stroke Volume/physiology , Animals , Autonomic Nervous System/drug effects , Baroreflex/drug effects , Blood Pressure/drug effects , Cholinesterase Inhibitors/pharmacology , Disease Models, Animal , Heart Rate/drug effects , Male , Pyridostigmine Bromide/pharmacology , Rats, Inbred SHR , Rats, Inbred WKY , Stroke Volume/drug effects , Vagus Nerve/drug effects , Vagus Nerve/physiopathology
16.
PLoS One ; 10(3): e0119626, 2015.
Article in English | MEDLINE | ID: mdl-25785599

ABSTRACT

The purpose of this study was to investigate the effects of the ovarian hormones and the use of oral contraceptive pills (OCP) on cardiac vagal withdrawal at the onset of dynamic exercise. Thirty physically active women aged 19-32 years were divided into two groups: OCP users (n = 17) and non-OCP users (n = 13). Participants were studied randomly at three different phases of the menstrual cycle: early follicular (day 3.6 ± 1.2; range 1-5), ovulatory (day 14.3 ± 0.8; range 13-16) and midluteal (day 21.3 ± 0.8; range 20-24), according to endogenous (in non-OCP users) or exogenous (in OCP users) estradiol and progesterone variations. The cardiac vagal withdrawal was represented by the cardiac vagal index (CVI), which was obtained by the 4-s exercise test. Additionally, resting heart rate, systolic (SBP) and diastolic blood pressure (DBP) were obtained. The CVI was not significantly different between the three phases of the menstrual cycle in either the non-OCP users (early follicular: 1.58 ± 0.1; ovulatory: 1.56 ± 0.1; midluteal: 1.58 ± 0.1, P > 0.05) or OCP users (early follicular: 1.47 ± 0.1; ovulatory: 1.49 ± 0.1; midluteal: 1.47 ± 0.1, P > 0.05) (mean ± SEM). Resting cardiovascular responses were not affected by hormonal phase or OCP use, except that the SBP was higher in the OCP users than non-OCP users in all phases of the cycle (P < 0.05). In summary, our results demonstrate that cardiac vagal withdrawal at the onset of dynamic exercise was not impacted by the menstrual cycle or OCP use in physically active women.


Subject(s)
Contraceptives, Oral/pharmacology , Exercise , Heart/drug effects , Vagus Nerve/drug effects , Adult , Blood Pressure/drug effects , Contraception , Estradiol/blood , Estradiol/pharmacology , Female , Fertile Period/drug effects , Fertile Period/physiology , Follicular Phase/drug effects , Follicular Phase/physiology , Heart/innervation , Heart Rate/drug effects , Humans , Luteal Phase/drug effects , Luteal Phase/physiology , Progesterone/blood , Progesterone/pharmacology , Rest , Vagus Nerve/physiology
17.
Pflugers Arch ; 467(7): 1509-1522, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25127674

ABSTRACT

In a previous research, we described that vagal stimulation increases the infarct size by sympathetic co-activation. The aim of this study was to determine if hemodynamic changes secondary to the vagal stimulation are able to activate sympathetic compensatory neural reflexes, responsible for increasing the infarct size. A second goal was to determine if intermittent vagal stimulation avoids sympathetic activation and reduces infarct size by muscarinic activation of the Akt/glycogen synthase kinase 3 ß (GSK-3ß) pathway. Rabbits were subjected to 30 min of regional myocardial ischemia and 3 h of reperfusion without vagal stimulation, or the following protocols of right vagus nerve stimulation for 10 min before ischemia: (a) continuous vagal stimulation and (b) intermittent vagal stimulation (cycles of 10 s ON/50 s OFF). Continuous vagal stimulation increased the infarct size (70.7 ± 4.3 %), even after right vagal section (68.6 ± 4.1 %) compared with control group (52.0 ± 3.7 %, p < 0.05). Bilateral vagotomy, pacing, and esmolol abolished the deleterious effect, reaching an infarct size of 43.3 ± 5.1, 43.5 ± 2.1, and 46.0 ± 4.6 % (p < 0.05), respectively. Intermittent stimulation reduced the infarct size to 29.8 ± 3.0 % (p < 0.05 vs I/R). This effect was blocked with atropine (50.2 ± 3.6 %, p < 0.05). Continuous vagal stimulation induced bradycardia and increased the loading conditions and wall stretching of the atria. These changes provoked the co-activation reflex of the sympathetic nervous system, observed by the rise in plasmatic catecholamine levels, which increased the infarct size. Sympathetic co-activation was abolished by continuous vagal stimulation with constant heart rate or parasympathetic deafferentation. Intermittent vagal stimulation attenuated the sympathetic tone and reduced the infarct size by the muscarinic activation of the Akt pathway and GSK-3ß inhibition. Continuous stimulation only phosphorylated Akt and GSK-3ß when esmolol was administered.


Subject(s)
Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/physiopathology , Sympathetic Nervous System/physiology , Vagus Nerve/physiology , Adrenergic beta-1 Receptor Antagonists/pharmacology , Animals , Anti-Arrhythmia Agents/pharmacology , Atropine/pharmacology , Catecholamines/blood , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Hemodynamics , Male , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Propanolamines/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Rabbits , Reflex , Signal Transduction , Sympathetic Nervous System/drug effects , Vagus Nerve/drug effects
18.
Am J Psychiatry ; 171(12): 1328-34, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25158141

ABSTRACT

OBJECTIVE: Increases in resting-state heart rate and decreases in its variability are associated with substantial morbidity and mortality, yet contradictory findings have been reported for the effects of the mood and anxiety disorders and of antidepressants. The authors investigated heart rate and heart rate variability in a large cohort from Brazil, using propensity score weighting, a relatively novel method, to control for numerous potential confounders. METHOD: A total of 15,105 participants were recruited in the Brazilian Longitudinal Study of Adult Health. Mood and anxiety disorders were ascertained using the Portuguese version of the Clinical Interview Schedule-Revised. Heart rate and its variability were extracted from 10-minute resting-state electrocardiograms. Regressions weighted by propensity scores were carried out to compare participants with and without depressive or anxiety disorders, as well as users and non-users of antidepressants, on heart rate and heart rate variability. RESULTS: Use of antidepressants was associated with increases in heart rate and decreases in its variability. Effects were most pronounced for the tricyclic antidepressants (Cohen's d, 0.72-0.81), followed by serotonin and norepinephrine reuptake inhibitors (Cohen's d, 0.42-0.95) and other antidepressants (Cohen's d, 0.37-0.40), relative to participants not on antidepressants. Only participants with generalized anxiety disorder showed robust, though small, increases in heart rate and decreases in its variability after propensity score weighting. CONCLUSIONS: The findings may, in part, underpin epidemiological findings of increased risk for cardiovascular morbidity and mortality. Many factors that have an adverse impact on cardiac activity were controlled for in this study, highlighting the importance of cardiovascular risk reduction strategies. Further study is needed to examine whether, how, and when such effects contribute to morbidity and mortality.


Subject(s)
Antidepressive Agents/adverse effects , Anxiety Disorders/physiopathology , Anxiety/physiopathology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/psychology , Depression/physiopathology , Depressive Disorder, Major/physiopathology , Heart Rate/drug effects , Mood Disorders/physiopathology , Vagus Nerve/drug effects , Vagus Nerve/physiopathology , Adrenergic Uptake Inhibitors/adverse effects , Adult , Aged , Antidepressive Agents/administration & dosage , Antidepressive Agents, Tricyclic/adverse effects , Anxiety/epidemiology , Anxiety Disorders/epidemiology , Brazil/epidemiology , Cardiovascular Diseases/physiopathology , Comorbidity , Depression/epidemiology , Depressive Disorder, Major/epidemiology , Female , Humans , Interview, Psychological , Longitudinal Studies , Male , Middle Aged , Mood Disorders/epidemiology , Propensity Score , Selective Serotonin Reuptake Inhibitors/adverse effects
19.
Clin Sci (Lond) ; 125(11): 521-32, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23642207

ABSTRACT

We have reported previously that centrally applied ET (endothelin)-1 and ET-3 induce either choleresis or cholestasis depending on the dose. In the present study, we sought to establish the role of these endothelins in the short-term peripheral regulation of bile secretion in the rat. Intravenously infused endothelins induced significant choleresis in a dose-dependent fashion, ET-1 being more potent than ET-3. Endothelins (with the exception of a higher dose of ET-1) did not affect BP (blood pressure), portal venous pressure or portal blood flow. ET-1 and ET-3 augmented the biliary excretion of bile salts, glutathione and electrolytes, suggesting enhanced bile acid-dependent and -independent bile flows. ET-induced choleresis was mediated by ET(B) receptors coupled to NO and inhibited by truncal vagotomy, atropine administration and capsaicin perivagal application, supporting the participation of vagovagal reflexes. RT (reverse transcription)-PCR and Western blot analysis revealed ETA and ET(B) receptor expression in the vagus nerve. Endothelins, through ET(B) receptors, augmented the hepatocyte plasma membrane expression of Ntcp (Na⁺/taurocholate co-transporting polypeptide; Slc10a1), Bsep (bile-salt export pump; Abcb11), Mrp2 (multidrug resistance protein-2; Abcc2) and Aqp8 (aquaporin 8). Endothelins also increased the mRNAs of these transporters. ET-1 and ET-3 induced choleresis mediated by ET(B) receptors coupled to NO release and vagovagal reflexes without involving haemodynamic changes. Endothelin-induced choleresis seems to be caused by increased plasma membrane translocation and transcriptional expression of key bile transporters. These findings indicate that endothelins are able to elicit haemodynamic-independent biological effects in the liver and suggest that these peptides may play a beneficial role in pathophysiological situations where bile secretion is impaired.


Subject(s)
Cholestasis/chemically induced , Endothelin-1/pharmacology , Endothelin-3/pharmacology , Nitric Oxide/physiology , Receptor, Endothelin B/physiology , Vagus Nerve/drug effects , Animals , Bile/metabolism , Blood Pressure/drug effects , Cholagogues and Choleretics/pharmacology , Cholestasis/metabolism , Hemodynamics/drug effects , Nitric Oxide/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Endothelin B/metabolism , Reflex/drug effects , Regional Blood Flow/drug effects , Vagotomy , Vagus Nerve/metabolism , Vagus Nerve/physiology
20.
Neurol Res ; 35(1): 15-21, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23317794

ABSTRACT

OBJECTIVE: Changes in glucose levels mobilize a neuroendocrine response that prevents or corrects glycemia. The hypothalamus is the main area of the brain that regulates glycemic homeostasis. Metabolic diseases, such as obesity and diabetes, are related to imbalance of this control. The modulation of autonomic nervous system (ANS) activity is mediated by neuronal hypothalamic pathways. In the present work, we investigate whether glucose concentration in the hypothalamic area changes ANS activity. METHODS: Glucose was administered intracerebroventricularly to 90-day-old rats, and samples of blood were collected during brain glucose infusion to measure the blood glucose and insulin levels. The electric activity of the superior vagus nerve and superior sympathetic ganglion was directly registered. RESULTS: Glucose 5·6 mM infused in the hypothalamus induced a 67·6% decrease in blood insulin concentration compared to saline infusion (P<0·01); however, no glycemia changes occurred. During glucose 5·6 mM intracerebroventricular infusion, the firing rate of the vagus nerve was decreased 39% and sympathetic nerve activity was increased 177% compared to saline infusion (P<0·01). DISCUSSION: Glucose injection into the brain in the hypothalamic area modulates glucose homeostasis, which might be mediated by the sensitivity of the hypothalamic area to local changes in glucose concentration. We suggest that gluconeurons in the hypothalamus contribute to the control of glycemia through ANS activity.


Subject(s)
Autonomic Nervous System/physiology , Blood Glucose/metabolism , Glucose/administration & dosage , Lateral Ventricles/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Autonomic Nervous System/drug effects , Fasting/physiology , Ganglia, Sympathetic/drug effects , Ganglia, Sympathetic/physiology , Injections, Intravenous , Injections, Intraventricular , Insulin/blood , Male , Rats , Rats, Wistar , Vagus Nerve/drug effects , Vagus Nerve/physiology
SELECTION OF CITATIONS
SEARCH DETAIL