Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 958
Filter
1.
Biomaterials ; 313: 122774, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39208699

ABSTRACT

Osteomyelitis (OM) is a progressive, inflammatory infection of bone caused predominately by Staphylococcus aureus. Herein, we engineered an antibiotic-eluting collagen-hydroxyapatite scaffold capable of eliminating infection and facilitating bone healing. An iterative freeze-drying and chemical crosslinking approach was leveraged to modify antibiotic release kinetics, resulting in a layered dual-release system whereby an initial rapid release of antibiotic to clear infection was followed by a sustained controlled release to prevent reoccurrence of infection. We observed that the presence of microbial collagenase accelerated antibiotic release from the crosslinked layer of the scaffold, indicating that the material is responsive to microbial activity. As exemplar drugs, vancomycin and gentamicin-eluting scaffolds were demonstrated to be bactericidal, and supported osteogenesis in vitro. In a pilot murine model of OM, vancomycin-eluting scaffolds were observed to reduce S. aureus infection within the tibia. Finally, in a rabbit model of chronic OM, gentamicin-eluting scaffolds both facilitated radial bone defect healing and eliminated S. aureus infection. These results show that antibiotic-eluting collagen-hydroxyapatite scaffolds are a one-stage therapy for OM, which when implanted into infected bone defects simultaneously eradicate infection and facilitate bone tissue healing.


Subject(s)
Anti-Bacterial Agents , Gentamicins , Osteomyelitis , Staphylococcal Infections , Staphylococcus aureus , Tissue Scaffolds , Animals , Tissue Scaffolds/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcal Infections/drug therapy , Osteomyelitis/drug therapy , Rabbits , Staphylococcus aureus/drug effects , Gentamicins/pharmacology , Gentamicins/administration & dosage , Gentamicins/chemistry , Gentamicins/therapeutic use , Mice , Vancomycin/pharmacology , Vancomycin/chemistry , Vancomycin/administration & dosage , Durapatite/chemistry , Kinetics , Wound Healing/drug effects , Osteogenesis/drug effects , Collagen/chemistry , Female
2.
Sci Rep ; 14(1): 21749, 2024 09 18.
Article in English | MEDLINE | ID: mdl-39294268

ABSTRACT

Implant-related infections pose significant challenges to orthopedic surgeries due to the high risk of severe complications. The widespread use of bioactive prostheses in joint replacements, featuring roughened surfaces and tight integration with the bone marrow cavity, has facilitated bacterial proliferation and complicated treatment. Developing antibacterial coatings for orthopedic implants has been a key research focus in recent years to address this critical issue. Researchers have designed coatings using various materials and antibacterial strategies. In this study, we fabricated 3D-printed porous titanium rods, incorporated vancomycin-loaded mPEG750-b-PCL2500 gel, and coated them with a PCL layer. We then evaluated the antibacterial efficacy through both in vitro and in vivo experiments. Our coating passively inhibits bacterial biofilm formation and actively controls antibiotic release in response to bacterial growth, providing a practical solution for proactive and sustained infection control. This study utilized 3D printing technology to produce porous titanium rod implants simulating bioactive joint prostheses. The porous structure of the titanium rods was used to load a thermoresponsive gel, mPEG750-b-PCL2500 (PEG: polyethylene glycol; PCL: polycaprolactone), serving as a novel drug delivery system carrying vancomycin for controlled antibiotic release. The assembly was then covered with a PCL membrane that inhibits bacterial biofilm formation early in infection and degrades when exposed to lipase solutions, mimicking enzymatic activity during bacterial infections. This setup provides infection-responsive protection and promotes drug release. We investigated the coating's controlled release, antibacterial capability, and biocompatibility through in vitro experiments. We established a Staphylococcus aureus infection model in rabbits, implanting titanium rods in the femoral medullary cavity. We evaluated the efficacy and safety of the composite coating in preventing implant-related infections using imaging, hematology, and pathology. In vitro experiments demonstrated that the PCL membrane stably protects encapsulated vancomycin during PBS immersion. The PCL membrane rapidly degraded at a lipase concentration of 0.2 mg/mL. The mPEG750-b-PCL2500 gel ensured stable and sustained vancomycin release, inhibiting bacterial growth. We investigated the antibacterial effect of the 3D-printed titanium material, coated with PCL and loaded with mPEG750-b-PCL2500 hydrogel, using a rabbit Staphylococcus aureus infection model. Imaging, hematology, and histopathology confirmed that our composite antibacterial coating exhibited excellent antibacterial effects and infection prevention, with good safety in trials. Our results indicate that the composite antibacterial coating effectively protects vancomycin in the hydrogel from premature release in the absence of bacterial infection. The outer PCL membrane inhibits bacterial growth and prevents biofilm formation. Upon contact with bacterial lipase, the PCL membrane rapidly degrades, releasing vancomycin for antibacterial action. The mPEG750-b-PCL2500 gel provides stable and sustained vancomycin release, prolonging its antibacterial effects. Our composite antibacterial coating demonstrates promising potential for clinical application.


Subject(s)
Anti-Bacterial Agents , Hydrogels , Polyesters , Printing, Three-Dimensional , Titanium , Vancomycin , Titanium/chemistry , Vancomycin/pharmacology , Vancomycin/administration & dosage , Vancomycin/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Polyesters/chemistry , Animals , Hydrogels/chemistry , Rabbits , Staphylococcus aureus/drug effects , Drug Liberation , Porosity , Biofilms/drug effects , Polyethylene Glycols/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/prevention & control , Drug Delivery Systems/methods , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology
3.
ACS Appl Mater Interfaces ; 16(36): 48058-48072, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39221786

ABSTRACT

Chiral amino acids (AAs) are essential in metabolism and understanding physiological processes, and they could be used as biomarkers for the diagnosis of different diseases. In this study, chiral Cdots@Van were prepared by postmodifying an achiral Cdots core with vancomycin for recognizing and determining the enantiomeric excess (ee) of tyrosine (Tyr) enantiomers. The fluorescence response of Cdots@Van is based on an "on-off" strategy, with different quenching percentages for d- and l-tyrosine. Interestingly, the circular dichroism (CD) spectrum of Cdots@Van responded to only one form of Tyr enantiomer, specifically d-Tyr, and remained nearly unchanged upon the addition of l-Tyr. Quantum mechanical (QM) calculations were in excellent agreement with the experimental results, confirming the stronger binding affinity of Cdots@Van for d-Tyr compared to l-Tyr. We further investigated the chiral recognition ability of the interconnected vancomycin particles, which was synthesized using the EDC/NHS coupling reaction between vancomycin molecules without a Cdots core. Surprisingly, unlike free vancomycin molecules, interconnected vancomycin displayed an enantiomeric recognition ability by CD spectroscopy, similar to what was observed for Cdots@Van. Crucially, this chiral probe has been successfully utilized for cell imaging applications.


Subject(s)
Circular Dichroism , Tyrosine , Vancomycin , Tyrosine/chemistry , Vancomycin/chemistry , Humans , Stereoisomerism , Fluorescent Dyes/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence , Optical Imaging
4.
Int J Pharm ; 664: 124630, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39216651

ABSTRACT

The rise of antibiotic resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), requires novel approaches to combat infections. Medical devices like implants and wound dressings are frequently used in conjunction with antibiotics, motivating the development of antibacterial biomaterials capable of exhibiting combined antibacterial effects with conventional antibiotics. This study explores the synergistic antibacterial effects of combining antimicrobial peptide (AMP) functionalized hydrogel particles with conventional antibiotics, vancomycin (VCM) and oxacillin (OXA), against Staphylococcus aureus and MRSA. The AMP employed, RRPRPRPRPWWWW-NH2, has previously demonstrated broad-spectrum activity and enhanced stability when attached to hydrogel substrates. Here, checkerboard assays revealed additive and synergistic interactions between the free AMP and both VCM and OXA against Staphylococcus aureus and MRSA. Notably, the AMP-OXA combination displayed a significant synergistic effect against MRSA, with a 512-fold reduction in OXA's minimum inhibitory concentration (MIC) when combined with free AMP. The observed synergism against MRSA was retained upon covalent AMP immobilization onto the hydrogel particles; however, at a lower rate with a 64-fold reduction in OXA MIC. Despite this, the OXA-AMP hydrogel particle combinations retained considerable synergistic potential against MRSA, a strain resistant to OXA, highlighting the potential of AMP-functionalized materials for enhancing antibiotic efficacy. These findings underscore the importance of developing antimicrobial biomaterials for future medical devices to fight biomaterial-associated infections and reverse antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Drug Synergism , Hydrogels , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Oxacillin , Vancomycin , Vancomycin/pharmacology , Vancomycin/administration & dosage , Vancomycin/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Methicillin-Resistant Staphylococcus aureus/drug effects , Oxacillin/pharmacology , Oxacillin/administration & dosage , Hydrogels/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/administration & dosage , Staphylococcus aureus/drug effects
5.
Talanta ; 280: 126691, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39151316

ABSTRACT

Staphylococcus aureus (S. aureus) is the most common pathogen in human purulent infections, which can cause local purulent infections, as well as pneumonia, pseudomembranous enteritis, pericarditis, and even systemic infections. The conventional methods including bacteria colony counting, polymerase chain reaction and enzyme-linked immunosorbent assay can't fully meet the requirement of highly sensitive detection of S. aureus due to their own disadvantages. Therefore, it's an urgent need to develop new platform to detect S. aureus in the early infection stage. In this study, a new surface-enhanced Raman scattering (SERS)-based nanoplatform based on dual-recognition of aptamer (Apt) and vancomycin (Van) was developed for the highly sensitive detection of S. aureus. The SERS nanoplatform consisted of two functional parts: aptamer-conjugated Fe3O4 magnetic nanoparticles (Fe3O4-Apt MNPs) for bacteria enrichment and vancomycin modified-Au nanoparticles (Van-Au NPs) as the SERS probes for S. aureus quantitative detection. Upon the target bacteria enrichment, the SERS signals of the supernatant after magnetic separation could be obtained and analyzed under different concentrations of S. aureus. The limit of detection of the proposed assay was found to be 3.27 CFU/mL. We believe that the proposed SERS-based nanoplatform has great potential as a powerful tool in the early detection of specific bacteria.


Subject(s)
Aptamers, Nucleotide , Spectrum Analysis, Raman , Staphylococcus aureus , Vancomycin , Vancomycin/chemistry , Aptamers, Nucleotide/chemistry , Spectrum Analysis, Raman/methods , Staphylococcus aureus/isolation & purification , Humans , Gold/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Magnetite Nanoparticles/chemistry
6.
J Biomater Appl ; 39(5): 439-454, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39193668

ABSTRACT

Since conventional antibiotics are almost ineffective on methicillin-resistant Staphylococcus aureus (MRSA) strains, designing their antibacterial alternatives is necessary. Besides, the use of vancomycin is applied for specific detection of the bacteria. Silver-incorporated vancomycin-modified mesoporous silica nanoparticles (MSNs@Van@Ag NPs) were designed for detection and treatment of MRSA bacteria. Mesoporous silica nanoparticles (MSNs) were synthesized through the template method, modified with vancomycin, and finally incorporated with silver nanoparticles (Ag NPs). The MSNs@Van@Ag NPs with a homogenously spherical shape, average size of 50-100 nm, surface area of 955.8 m2/g, and thermal stability up to 200°C were successfully characterized. The amount of Ag incorporated into the MSNs@Van@Ag was calculated at 3.9 ppm and the release amount of Ag was received at 2.92 ppm (75%) after 100 h. The in vitro antibacterial susceptibility test showed the MIC of 100 µg mL-1 for MSNs@Van and 50 µg mL-1 for MSNs@Van@Ag, showing in vitro enhanced effect of Ag and vancomycin in the bactericidal process. An in vivo acute pneumonia model was performed and biochemical assays and pathological studies confirmed the nanomedicine's short-term safety for in vivo application. Cytokine assay using ELISA showed that MSN@Van@Ag causes a reduction of pro-inflammatory cytokines and bacterial proliferation leading to alleviation of inflammatory response.


Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Silicon Dioxide , Silver , Vancomycin , Methicillin-Resistant Staphylococcus aureus/drug effects , Vancomycin/pharmacology , Vancomycin/chemistry , Vancomycin/administration & dosage , Silicon Dioxide/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Silver/chemistry , Silver/pharmacology , Animals , Metal Nanoparticles/chemistry , Porosity , Mice , Staphylococcal Infections/drug therapy , Humans
7.
J Am Chem Soc ; 146(32): 22541-22552, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39088791

ABSTRACT

Strategies to increase the efficacy and/or expand the spectrum of activity of existing antibiotics provide a potentially fast path to clinically address the growing crisis of antibiotic-resistant infections. Here, we report the synthesis, antibacterial efficacy, and mechanistic activity of an unprecedented class of biguanide-antibiotic conjugates. Our lead biguanide-vancomycin conjugate, V-C6-Bg-PhCl (5e), induces highly effective cell killing with up to a 2 orders-of-magnitude improvement over its parent compound, vancomycin (V), against vancomycin-resistant enterococcus. V-C6-Bg-PhCl (5e) also exhibits improved activity against mycobacteria and each of the ESKAPE pathogens, including the Gram-negative organisms. Furthermore, we uncover broad-spectrum killing activity against biofilm-associated Gram-positive and Gram-negative bacteria as well as mycobacteria not observed for clinically used antibiotics such as oritavancin. Mode-of-action studies reveal that vancomycin-like cell wall synthesis inhibition with improved efficacy attributed to enhanced engagement at vancomycin binding sites through biguanide association with relevant cell-surface anions for Gram-positive and Gram-negative bacteria. Due to its potency, remarkably broad activity, and lack of acute mammalian cell toxicity, V-C6-Bg-PhCl (5e) is a promising candidate for treating antibiotic-resistant infections and notoriously difficult-to-treat slowly growing and antibiotic-tolerant bacteria associated with chronic and often incurable infections. More generally, this study offers a new strategy (biguanidinylation) to enhance antibiotic activity and facilitate clinical entry.


Subject(s)
Anti-Bacterial Agents , Biguanides , Biofilms , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Vancomycin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Biofilms/drug effects , Vancomycin/pharmacology , Vancomycin/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Biguanides/pharmacology , Biguanides/chemistry , Biguanides/chemical synthesis , Mycobacterium/drug effects , Molecular Structure
8.
Int J Biol Macromol ; 278(Pt 3): 134940, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39173806

ABSTRACT

The patterns of formation of chitosan nanoparticles doped with vancomycin and coatings based on them in carbonate solutions have been investigated for the first time in this study. Using a technique of radioactive indicators, it was found that at a CO2 pressure of 30 MPa, the yield of the nanoparticles was ∼85 %, and a maximum antibiotic encapsulation efficiency of ∼30 % was achieved. By spectrophotometric and high-resolution microscopy, it was found that the coating of stabilized xenopericardial tissue of bioprosthetic heart valve, based on chitosan nanoparticles doped with vancomycin with a zeta potential |ζ| ∼20 mV completely covers collagen fibers by depositing about 60 nm nanoparticles onto them under direct deposition from carbonic acid at a pressure of 30 MPa CO2. The coating preserves the mechanical strength characteristics of collagen tissue and completely suppresses the growth of S. aureus pathogenic biofilm. This is consistent with the observed increase in antibiotic release of 15 % when the medium was acidified. Histological study demonstrated that the structure of pericardial tissues was not significantly altered by the deposition nanoparticles from carbonic acid. It was found that the rate of biodegradation of polymers and vancomycin in the coating differs by half (16 weeks for the rat model). A significantly lower degradation rate of antibiotics (∼50 % of vancomycin total remaining mass and ∼25 % of chitosan) was associated with its reliable encapsulation into nanoparticles.


Subject(s)
Carbon Dioxide , Chitosan , Nanoparticles , Vancomycin , Chitosan/chemistry , Vancomycin/chemistry , Vancomycin/pharmacology , Nanoparticles/chemistry , Animals , Carbon Dioxide/chemistry , Rats , Water/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Biofilms/drug effects , Biofilms/growth & development
9.
J Pharm Biomed Anal ; 251: 116420, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39208648

ABSTRACT

1,4-dihydropyridine (DHP) scaffold occupies a prominent position among all heterocyclic compounds owing to its versatile pharmacological properties, particularly its well-known calcium channel blocking activity. In the quest of developing new calcium channel blockers, fifty seven 5-oxo-hexahydroquinoline (HHQ) derivatives carrying DHP framework in a condensed ring system were recently synthesized as racemic mixtures. Due to their potential as drug candidates, enantiomers arising from the asymmetric center at the C-4 position of the HHQ ring were separated. Four modern columns packed with 2.7 µm superficially porous particles bonded with a chiral selector were used. The chiral selectors were three macrocyclic glycopeptide selectors: vancomycin, teicoplanin, and a macrocyclic derivative called nico. The fourth bonded selector was the dinitrobenzamido-tetrahydrophenanthrenyl derivative called Whelko. The four chromatographic modes were assayed with the mobile phase compositions: reversed phase with acetonitrile/buffer 30/70 %v/v, normal phase with hexane/ethanol 80/20 %v/v, and subcritical fluid chromatography with CO2/methanol 80/20 %v/v at 25 °C. The WhelkoShell column was the most effective in separating this set of 57 compounds. Several enantioresolution factors passed 20 with enantioselectivity ratios higher than 4. Molecular modeling showed that the compounds had a T-shape that fitted well the molecular structure of the WhelkoShell selector in the normal or subcritical modes. Additionally, seven compounds had a second chiral center. The NicoShell column was able to separate all four stereoisomers of these compounds in the reversed phase mode. The preparative production of pure enantiomers of these compounds would be straightforward using the WhelkoShell column in the subcritical mode.


Subject(s)
Dihydropyridines , Dihydropyridines/chemistry , Stereoisomerism , Porosity , Chromatography, High Pressure Liquid/methods , Calcium Channel Blockers/chemistry , Vancomycin/chemistry , Teicoplanin/chemistry , Teicoplanin/analogs & derivatives
10.
Int J Mol Sci ; 25(16)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39201804

ABSTRACT

An asymmetric synthesis is a favorable approach for obtaining enantiomerically pure substances, but racemic resolution remains an efficient strategy. This study aims to elucidate the chiral resolution of aromatic amino acids and their elution order using glycopeptides as chiral selectors through molecular docking analysis. Chiral separation experiments were conducted using Vancomycin as a chiral additive in the mobile phase (CMPA) at various concentrations, coupled with an achiral amino column as the stationary phase. The Autodock Vina 1.1.2 software was employed to perform molecular docking simulations between each enantiomer (ligand) and Vancomycin (receptor) to evaluate binding affinities, demonstrate enantiomeric resolution feasibility, and elucidate chiral recognition mechanisms. Utilizing Vancomycin as CMPA at a concentration of 1.5 mM enabled the separation of tryptophan enantiomers with a resolution of 3.98 and tyrosine enantiomers with a resolution of 2.97. However, a poor chiral resolution was observed for phenylalanine and phenylglycine. Molecular docking analysis was employed to elucidate the lack of separation and elution order for tryptophan and tyrosine enantiomers. By calculating the binding energy, docking results were found to be in good agreement with experimental findings, providing insights into the underlying mechanisms governing chiral recognition in this system and the interaction sites. This comprehensive approach clarifies the complex relationship between chiral discrimination and molecular architecture, offering valuable information for creating and improving chiral separation protocols.


Subject(s)
Amino Acids, Aromatic , Glycopeptides , Molecular Docking Simulation , Glycopeptides/chemistry , Amino Acids, Aromatic/chemistry , Stereoisomerism , Vancomycin/chemistry , Chromatography, High Pressure Liquid/methods , Ligands
11.
ACS Nano ; 18(35): 24327-24349, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39169538

ABSTRACT

A series of progress has been made in the field of antimicrobial use of nanozymes due to their superior stability and decreased susceptibility to drug resistance. However, catalytically generated reactive oxygen species (ROS) are insufficient for coping with multidrug-resistant organisms (MDROs) in complex wound environments due to their low targeting ability and insufficient catalytic activity. To address this problem, chemically stable copper-gallic acid-vancomycin (CuGA-VAN) nanoneedles were successfully constructed by a simple approach for targeting bacteria; these nanoneedles exhibit OXD-like and GSH-px-like dual enzyme activities to produce ROS and induce bacterial cuproptosis-like death, thereby eliminating MDRO infections. The results of in vitro experiments showed that the free carboxylic acid of GA could react with the free ammonia of teichoic acid in the methicillin-resistant Staphylococcus aureus (MRSA) cell wall skeleton. Thus, CuGA-VAN nanoneedles can rapidly "capture" MRSA in liquid environments, releasing ROS, VAN and Cu2+ on bacterial surfaces to break down the MRSA barrier, destroying the biofilm. In addition, CuGA-VAN effectively promoted wound repair cell proliferation and angiogenesis to facilitate wound healing while ensuring biosafety. According to transcriptome sequencing, highly internalized Cu2+ causes copper overload toxicity; downregulates genes related to the bacterial glyoxylate cycle, tricarboxylic acid cycle, and oxidative respiratory chain; and induces lipid peroxidation in the cytoplasm, leading to bacterial cuproptosis-like death. In this study, CuGA-VAN was cleverly designed to trigger a cascade reaction of targeting, drug release, ROS-catalyzed antibacterial activity and cuproptosis-like death. This provides an innovative idea for multidrug-resistant infections.


Subject(s)
Anti-Bacterial Agents , Copper , Methicillin-Resistant Staphylococcus aureus , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Copper/chemistry , Copper/pharmacology , Reactive Oxygen Species/metabolism , Vancomycin/pharmacology , Vancomycin/chemistry , Microbial Sensitivity Tests , Animals , Humans , Biofilms/drug effects , Nanostructures/chemistry , Mice
12.
Mikrochim Acta ; 191(7): 438, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951285

ABSTRACT

A dual-recognition strategy is reported to construct a one-step washing and highly efficient signal-transduction tag system for high-sensitivity colorimetric detection of Staphylococcus aureus (S. aureus). The porous (gold core)@(platinum shell) nanozymes (Au@PtNEs) as the signal labels show highly efficient peroxidase mimetic activity and are robust. For the sake of simplicity the detection involved the use of a vancomycin-immobilized magnetic bead (MB) and aptamer-functionalized Au@PtNEs for dual-recognition detection in the presence of S. aureus. In addition, we designed a magnetic plate to fit the 96-well microplate to ensure consistent magnetic properties of each well, which can quickly remove unreacted Au@PtNEs and sample matrix while avoiding tedious washing steps. Subsequently, Au@PtNEs catalyze hydrogen peroxide (H2O2) to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) generating a color signal. Finally, the developed Au@PtNEs-based dual-recognition washing-free colorimetric assay displayed a response in the range of S. aureus of 5 × 101-5 × 105 CFU/mL, and the detection limit was 40 CFU/mL within 1.5 h. In addition, S. aureus-fortified samples were analyzed to further evaluate the performance of the proposed method, which yielded average recoveries ranging from 93.66 to 112.44% and coefficients of variation (CVs) within the range 2.72-9.01%. These results furnish a novel horizon for the exploitation of a different mode of recognition and inexpensive enzyme-free assay platforms as an alternative to traditional enzyme-based immunoassays for the detection of other Gram-positive pathogenic bacteria.


Subject(s)
Benzidines , Colorimetry , Gold , Hydrogen Peroxide , Limit of Detection , Platinum , Staphylococcus aureus , Staphylococcus aureus/isolation & purification , Colorimetry/methods , Gold/chemistry , Platinum/chemistry , Porosity , Benzidines/chemistry , Hydrogen Peroxide/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Vancomycin/chemistry , Biosensing Techniques/methods , Catalysis , Humans
13.
J Chromatogr A ; 1730: 465135, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38991601

ABSTRACT

Chromatographic behavior of new chiral stationary phases (CSPs) Chiral-T and Chiral-V with teicoplanin and vancomycin antibiotics grafted onto superficially porous silica particles was studied in relation to dipeptide (DP) stereoisomers. The unbuffered water-methanol solutions were used as mobile phases (MPs). The effects of physical properties and molecular structure of analytes and selectors on retention and separation of DP stereoisomers are discussed herein. Chiral-T was evinced to exhibit high enantioselectivity, with highest α values attaining 16.5, 18.8 and 20.4 for Gly-Leu, dd/ll-Phe-Leu and ld/dl-Ala-Ala. At this point, Chiral-V did not exhibit enantioselectivity towards DP stereoisomers. The effect of MP composition on retention and enantioseparation of DPs was investigated. Lipophilicity of DPs was found to be an essential factor in the dependence of their retention vs. methanol concentration in МPs. Lipophobic DPs were eluted more quickly by water-rich solvents, with lipophilic DPs exhibiting an asymmetric U-shaped, or a descending dependence of retention factor vs. the methanol percentage on Chiral-T or Chiral-V, respectively. A theoretical model taking into account interaction of both solvents of a binary MP with both an analyte and adsorption sites was successfully applied so as to approximate and interpret the dependences of DP retention (monotonic and U-shaped) vs. a modifier content in MP. Water molecules were evinced to predominantly participate in competitive adsorption with DP molecules. The model predicted better solvation of lipophilic DPs by methanol and better solvation of lipophobic DPs by water. An attempt was made to verify the possibility of modeling by molecular docking the processes occurring during interaction between DP stereoisomers and CSPs, including consideration of the influence of competitive binding of eluent molecules in selector cavity.


Subject(s)
Dipeptides , Teicoplanin , Vancomycin , Teicoplanin/chemistry , Vancomycin/chemistry , Stereoisomerism , Dipeptides/chemistry , Dipeptides/isolation & purification , Porosity , Chromatography, High Pressure Liquid/methods , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Silicon Dioxide/chemistry , Methanol/chemistry , Hydrophobic and Hydrophilic Interactions
14.
Proc Natl Acad Sci U S A ; 121(29): e2315310121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990944

ABSTRACT

Bacitracin is a macrocyclic peptide antibiotic that is widely used as a topical treatment for infections caused by gram-positive bacteria. Mechanistically, bacitracin targets bacteria by specifically binding to the phospholipid undecaprenyl pyrophosphate (C55PP), which plays a key role in the bacterial lipid II cycle. Recent crystallographic studies have shown that when bound to C55PP, bacitracin adopts a highly ordered amphipathic conformation. In doing so, all hydrophobic side chains align on one face of the bacitracin-C55PP complex, presumably interacting with the bacterial cell membrane. These insights led us to undertake structure-activity investigations into the individual contribution of the nonpolar amino acids found in bacitracin. To achieve this we designed, synthesized, and evaluated a series of bacitracin analogues, a number of which were found to exhibit significantly enhanced antibacterial activity against clinically relevant, drug-resistant pathogens. As for the natural product, these next-generation bacitracins were found to form stable complexes with C55PP. The structure-activity insights thus obtained serve to inform the design of C55PP-targeting antibiotics, a key and underexploited antibacterial strategy.


Subject(s)
Anti-Bacterial Agents , Bacitracin , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacitracin/pharmacology , Bacitracin/chemistry , Structure-Activity Relationship , Drug Resistance, Bacterial/drug effects , Vancomycin/pharmacology , Vancomycin/chemistry , Vancomycin/analogs & derivatives , Drug Design , Polyisoprenyl Phosphates/metabolism , Polyisoprenyl Phosphates/chemistry , Polyisoprenyl Phosphates/pharmacology
15.
Drug Deliv ; 31(1): 2372279, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38992340

ABSTRACT

The aim of this study was to develop eye-drops with cefuroxime (CEF) sodium or vancomycin (VAN) hydrochloride, antibiotics that are instable in water. Anhydrous self-emulsifying oils (SEO) are proposed as a carrier and antibiotics are suspended. In the contact with tear fluid, the formulation should transform into emulsion, with fast dissolution of an antibiotic. CEF or VAN (5% w/w) was suspended in SEO carriers prepared by dissolving surfactants (Tween 20 or Span 80 5% w/w) in Miglyol, castor oil, or olive oil. Formulations with or without sodium citrate (2% w/w) were compared. Six-months or 1-year stability tests were carried out at 40 °C. The content of CEF and VAN was evaluated using HPLC and the potency of the antibiotic was assessed with agar diffusion method. In contact with water, drug particles suspended in SEO dissolved rapidly and o/w emulsion was formed. After 1-year at 40 °C, the content of degradation products was at most 0.5% in CEF and 4.0% in VAN formulations. The agar diffusion assay has shown that CEF and VAN loaded into SEO retained its potency against the sensitive microorganisms comparable to an aqueous solution. Therefore, SEO can be used as a novel carrier for the active substances which may not require improved solubility or absorption but need to be protected from moisture. This is a formulation that can be produced on industrial scale, with no limitation of stability or drug concentration.


Subject(s)
Anti-Bacterial Agents , Drug Stability , Emulsions , Ophthalmic Solutions , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Emulsions/chemistry , Ophthalmic Solutions/chemistry , Hydrolysis , Castor Oil/chemistry , Cefuroxime/chemistry , Cefuroxime/administration & dosage , Cefuroxime/pharmacokinetics , Vancomycin/chemistry , Vancomycin/administration & dosage , Surface-Active Agents/chemistry , Chemistry, Pharmaceutical/methods , Suspensions , Water/chemistry , Solubility , Polysorbates/chemistry , Olive Oil/chemistry , Hexoses/chemistry , Drug Carriers/chemistry
16.
BMC Biotechnol ; 24(1): 47, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978013

ABSTRACT

The threat of methicillin-resistant Staphylococcus aureus (MRSA) is increasing worldwide, making it significantly necessary to discover a novel way of dealing with related infections. The quick spread of MRSA isolates among infected individuals has heightened public health concerns and significantly limited treatment options. Vancomycin (VAN) can be applied to treat severe MRSA infections, and the indiscriminate administration of this antimicrobial agent has caused several concerns in medical settings. Owing to several advantageous characteristics, a niosomal drug delivery system may increase the potential of loaded antimicrobial agents. This work aims to examine the antibacterial and anti-biofilm properties of VAN-niosome against MRSA clinical isolates with emphasis on cytotoxicity and stability studies. Furthermore, we aim to suggest an effective approach against MRSA infections by investigating the inhibitory effect of formulated niosome on the expression of the biofilm-associated gene (icaR). The thin-film hydration approach was used to prepare the niosome (Tween 60, Span 60, and cholesterol), and field emission scanning electron microscopy (FE-SEM), an in vitro drug release, dynamic light scattering (DLS), and entrapment efficiency (EE%) were used to investigate the physicochemical properties. The physical stability of VAN-niosome, including hydrodynamic size, polydispersity index (PDI), and EE%, was analyzed for a 30-day storage time at 4 °C and 25 °C. In addition, the human foreskin fibroblast (HFF) cell line was used to evaluate the cytotoxic effect of synthesized niosome. Moreover, minimum inhibitory and bactericidal concentrations (MICs/MBCs) were applied to assess the antibacterial properties of niosomal VAN formulation. Also, the antibiofilm potential of VAN-niosome was investigated by microtiter plate (MTP) and real-time PCR methods. The FE-SEM result revealed that synthesized VAN-niosome had a spherical morphology. The hydrodynamic size and PDI of VAN-niosome reported by the DLS method were 201.2 nm and 0.301, respectively. Also, the surface zeta charge of the prepared niosome was - 35.4 mV, and the EE% ranged between 58.9 and 62.5%. Moreover, in vitro release study revealed a sustained-release profile for synthesized niosomal formulation. Our study showed that VAN-niosome had acceptable stability during a 30-day storage time. Additionally, the VAN-niosome had stronger antibacterial and anti-biofilm properties against MRSA clinical isolates compared with free VAN. In conclusion, the result of our study demonstrated that niosomal VAN could be promising as a successful drug delivery system due to sustained drug release, negligible toxicity, and high encapsulation capacity. Also, the antibacterial and anti-biofilm studies showed the high capacity of VAN-niosome against MRSA clinical isolates. Furthermore, the results of real-time PCR exhibited that VAN-niosome could be proposed as a powerful strategy against MRSA biofilm via down-regulation of icaR gene expression.


Subject(s)
Anti-Bacterial Agents , Biofilms , Drug Delivery Systems , Liposomes , Methicillin-Resistant Staphylococcus aureus , Vancomycin , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Vancomycin/pharmacology , Vancomycin/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Liposomes/chemistry , Humans , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Drug Liberation
17.
Talanta ; 278: 126525, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38991406

ABSTRACT

Bacterial infection is a great threat to human health. Lateral flow immunoassays (LFIAs) with the merits of low cost, quick screening, and on-site detection are competitive technologies for bacteria detection, but their detection limits depend on the optical performance of the adopted nanotags. Herein, we presented a LFIA platform for bacteria detection using polydopamine (PDA) functionalized Au nanoparticles (denoted as Au@PDA) as the nanotag. The introduction of PDA could provide enhanced light absorption of Au, as well as numerous functional groups for conjugation. Small recognition molecules i.e. vancomycin (Van) and p-mercaptophenylboronic acid (PMBA) were covalently anchored to Au@PDA, and selected as the specific probes towards Gram-positive (G+) and Gram-negative (G-) bacteria, respectively. Taken Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) as the representative targets of G+ and G- bacteria, two LFA strips were successfully constructed based on the immuno-sandwich principle. They could quantitatively detect S. aureus and E. coli both down to 102 cfu/mL, a very competitive detection limit in comparison with other colorimetric or luminescent probes-based LFIAs. Furthermore, the proposed two strips were applied for the quantitative, accurate, and rapid detection of S. aureus and E. coli in food and human urine samples with good analytical results obtained. In addition, they were integrated as a screening platform for quick evaluation of diverse antibacterial agents within 3 h, which is remarkably shortened compared with that of the two traditional methods i.e. bacterial culture and plate-counting.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Gold Colloid , Indoles , Metal Nanoparticles , Polymers , Staphylococcus aureus , Indoles/chemistry , Polymers/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Immunoassay/methods , Escherichia coli/isolation & purification , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/immunology , Gold Colloid/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Humans , Microbial Sensitivity Tests , Gold/chemistry , Vancomycin/chemistry
18.
Int J Pharm ; 662: 124493, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39048042

ABSTRACT

Sepsis is a life-threatening syndrome resulting from an imbalanced immune response to severe infections. Despite advances in nanomedicines, effective treatments for sepsis are still lacking. Herein, vancomycin free base (VCM)-loaded dual functionalized biomimetic liposomes based on a novel TLR4-targeting peptide (P3) and hyaluronic acid (HA) (HA-P3-Lipo) were developed to enhance sepsis therapy. The nanocarrier revealed appropriate physicochemical parameters, good stability, and biocompatibility. The release of VCM from HA-P3-Lipo was found to be sustained with 76 % VCM released in 48 h. The biomimicry was elucidated by in silico tools and MST and results confirmed strong binding between the system and TLR4. Furthermore, HA-P3-Lipo revealed 2-fold enhanced antibacterial activity against S. aureus, sustained antibacterial activity against MRSA over 72 h and 5-fold better MRSA biofilm inhibition compared to bare VCM. Bacterial-killing kinetics and flow cytometry confirmed the superiority of HA-P3-Lipo in eliminating MRSA faster than VCM. The in vivo potential of the nanocarrier was elucidated in an MRSA-induced sepsis mice model, and the results confirmed the superiority of HA-P3-Lipo compared to free VCM in eliminating bacteria and down-regulating the proinflammatory markers. Therefore, HA-P3-Lipo exhibits potential as a promising novel multi-functional nanosystem against sepsis and could significantly contribute to the transformation of sepsis therapy.


Subject(s)
Anti-Bacterial Agents , Hyaluronic Acid , Liposomes , Methicillin-Resistant Staphylococcus aureus , Peptides , Sepsis , Vancomycin , Hyaluronic Acid/chemistry , Animals , Sepsis/drug therapy , Sepsis/microbiology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Methicillin-Resistant Staphylococcus aureus/drug effects , Vancomycin/administration & dosage , Vancomycin/pharmacology , Vancomycin/chemistry , Peptides/chemistry , Peptides/pharmacology , Peptides/administration & dosage , Drug Liberation , Staphylococcal Infections/drug therapy , Toll-Like Receptor 4/metabolism , Biofilms/drug effects , Staphylococcus aureus/drug effects , Male , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Biomimetic Materials/administration & dosage , RAW 264.7 Cells
19.
J Am Chem Soc ; 146(29): 19629-19634, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38989876

ABSTRACT

Cytochrome P450 enzymes are abundantly encoded in microbial genomes. Their reactions have two general outcomes, one involving oxygen insertion via a canonical "oxygen rebound" mechanism and a second that diverts from this pathway and leads to a wide array of products, notably intramolecular oxidative cross-links. The antibiotic of-last-resort, vancomycin, contains three such cross-links, which are crucial for biological activity and are installed by the P450 enzymes OxyB, OxyA, and OxyC. The mechanisms of these enzymes have remained elusive in part because of the difficulty in spectroscopically capturing transient intermediates. Using stopped-flow UV/visible absorption and rapid freeze-quench electron paramagnetic resonance spectroscopies, we show that OxyB generates the highly reactive compound-I intermediate, which can react with a model vancomycin peptide substrate in a kinetically competent fashion to generate product. Our results have implications for the mechanism of OxyB and are in line with the notion that oxygen rebound and oxidative cross-links share early steps in their catalytic cycles.


Subject(s)
Vancomycin , Vancomycin/chemistry , Vancomycin/biosynthesis , Kinetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/biosynthesis
20.
Biomacromolecules ; 25(7): 4156-4167, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38922325

ABSTRACT

Polymeric drugs containing up to 60% by weight of the antibiotic vancomycin were synthesized based on dextran carriers activated with epichlorohydrin. Vancomycin was covalently bound, involving the primary amino group of the molecule through the hydroxypropyl radical to the C6 position of the anhydroglucose units of the dextran main chain. Covalent binding is necessary to prevent spontaneous release of the antibiotic from the gel, thereby reducing the risk of bacterial multiresistance. Antibacterial depot gels were obtained from those polymers, containing up to 17.5% by weight of polysaccharide with a cross-linking density of q = 3-5 nodes per macromolecule for the deposition of another type of drugs not covalently bound to the polymer gel. They were used to coat the surface of the internal pores of biocomposite bone implants based on bovine cancellous bone used in orthopedics. The chemical structure of the polymer was studied using 13C NMR spectroscopy and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. The stiffness of the gels was evaluated by the values of the accumulation modulus G' = 170-270 kPa and the loss modulus G″ = 3.7-4.2 kPa determined on a rheometer. Their values are close to those typical for materials used to replace soft tissue in plastic surgery. The minimum inhibitory concentration of the gels against Staphylococcus aureus P209 depends on the antibiotic content in the polymer. It equals 2.5 mg/L for vancomycin we used and 100 mg/L for a polymer containing 50% by weight of covalently bound antibiotic. The cytotoxic concentration measured with cell culture HEK 293T exceeds 1200 mg/L in 24 h exposure. The release dynamics of drugs not covalently bound to dextran from the depot gel were studied using fluorescein as a model. The release time is independent of the gel density and lasts up to 6 days for a 2 mm thick layer. Both the gel and the bone implants impregnated with it maintained consistently high antibacterial activity throughout the experiment, up to its completion after 168 h, with the local concentration of the released antibiotic at the site of bacterial attack exceeding the therapeutic level by 200 times.


Subject(s)
Anti-Bacterial Agents , Gels , Vancomycin , Vancomycin/pharmacology , Vancomycin/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Gels/chemistry , Animals , Staphylococcus aureus/drug effects , Cattle , Dextrans/chemistry , Dextrans/pharmacology , HEK293 Cells , Microbial Sensitivity Tests , Prostheses and Implants
SELECTION OF CITATIONS
SEARCH DETAIL