Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 306
Filter
1.
Molecules ; 29(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999050

ABSTRACT

Recently, nanoparticles have received considerable attention owing to their efficiency in overcoming the limitations of traditional chemotherapeutic drugs. In our study, we synthesized a vanillic acid nanocomposite using both chitosan and silver nanoparticles, tested its efficacy against lung cancer cells, and analyzed its antimicrobial effects. We used several characterization techniques such as ultraviolet-visible spectroscopy (UV-Vis), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to determine the stability, morphological characteristics, and properties of the biosynthesized vanillic acid nanocomposites. Furthermore, the vanillic acid nanocomposites were tested for their antimicrobial effects against Escherichia coli and Staphylococcus aureus, and Candida albicans. The data showed that the nanocomposite effectively inhibited microbes, but its efficacy was less than that of the individual silver and chitosan nanoparticles. Moreover, the vanillic acid nanocomposite exhibited anticancer effects by increasing the expression of pro-apoptotic proteins (BAX, Casp3, Casp7, cyt C, and p53) and decreasing the gene expression of Bcl-2. Overall, vanillic acid nanocomposites possess promising potential against microbes, exhibit anticancer effects, and can be effectively used for treating diseases such as cancers and infectious diseases.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Nanocomposites , Vanillic Acid , Vanillic Acid/chemistry , Vanillic Acid/pharmacology , Nanocomposites/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Silver/chemistry , Silver/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Candida albicans/drug effects , Escherichia coli/drug effects , Metal Nanoparticles/chemistry , Cell Line, Tumor
2.
Biomed Pharmacother ; 177: 117000, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941895

ABSTRACT

Alzheimer's disease (AD) is characterized by cognitive impairment, loss of learning and memory, and abnormal behaviors. Scopolamine (SCOP) is a non-selective antagonist of muscarinic acetylcholine receptors that exhibits the behavioral and molecular hallmarks of AD. Vanillic acid (VA), a phenolic compound, is obtained from the roots of a traditional plant called Angelica sinensis, and has several pharmacologic effects, including antimicrobial, anti-inflammatory, anti-angiogenic, anti-metastatic, and antioxidant properties. Nevertheless, VA's neuroprotective potential associated with the memory has not been thoroughly investigated. Therefore, this study investigated whether VA treatment has an ameliorative effect on the learning and memory impairment induced by SCOP in rats. Behavioral experiments were utilized to assess the learning and memory performance associated with the hippocampus. Using western blotting analysis and assay kits, the neuronal damage, oxidative stress, and acetylcholinesterase activity responses of hippocampus were evaluated. Additionally, the measurement of long-term potentiation was used to determine the function of synaptic plasticity in organotypic hippocampal slice cultures. In addition, the synaptic vesicles' density and the length and width of the postsynaptic density were evaluated using electron microscopy. Consequently, the behavioral, biochemical, electrophysiological, and ultrastructural analyses revealed that VA treatment prevents learning and memory impairments caused by SCOP in rats. The study's findings suggest that VA has a neuroprotective effect on SCOP-induced learning and memory impairment linked to the hippocampal cholinergic system, oxidative damage, and synaptic plasticity. Therefore, VA may be a prospective therapeutic agent for treating AD.


Subject(s)
Hippocampus , Memory Disorders , Neuronal Plasticity , Neuroprotective Agents , Oxidative Stress , Scopolamine , Vanillic Acid , Animals , Oxidative Stress/drug effects , Vanillic Acid/pharmacology , Male , Neuronal Plasticity/drug effects , Rats , Memory Disorders/drug therapy , Memory Disorders/chemically induced , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Neuroprotective Agents/pharmacology , Rats, Wistar , Maze Learning/drug effects , Memory/drug effects , Antioxidants/pharmacology , Rats, Sprague-Dawley
3.
Mol Biol Rep ; 51(1): 744, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874632

ABSTRACT

BACKGROUND: Vanillic acid (VA; 4-hydroxy-3-methoxybenzoic acid) is a flavouring agent found in various natural sources such as olives, fruits, and green tea. While VA exhibits numerous pharmacological effects, its potential protective effects against gastric injury warrants further investigation. Therefore, the primary objective of this study is to elucidate investigate the gastroprotective properties of VA against ethanol-induced gastric injury. METHODS AND RESULTS: Rats were orally administered either saline or VA at different doses (50, 100, and 200 mg/kg/day), with omeprazole (20 mg/kg) serving as a positive control, for fourteen consecutive days before ethanol administration. Blood and gastric tissue samples were collected one hour after ethanol administration for biochemical, molecular, and histological analyses. Pre-treatment with VA before ulcer induction alleviated both macroscopic and microscopic damage. It also increased antioxidant glutathione levels and decreased malondialdehyde and myeloperoxidase activity, along with reducing inflammatory markers such as tumour necrosis factor (TNF)-α, interleukin (IL)-6, and nuclear factor kappa B (NF-κB). Additionally, VA pre-treatment reversed the elevation of Bax mRNA expression and gastric caspase-3 levels induced by gastric damage. It also mitigated the reduction in Bcl-2 mRNA expression. CONCLUSION: These findings suggest that VA exerts protective effects against ethanol-induced gastric injury in rats. It achieves this by augmenting gastric antioxidant capacity and mitigating oxidative, inflammatory, and apoptotic damage.


Subject(s)
Apoptosis , Ethanol , NF-kappa B , Signal Transduction , Stomach Ulcer , Vanillic Acid , Animals , NF-kappa B/metabolism , Ethanol/toxicity , Ethanol/adverse effects , Rats , Apoptosis/drug effects , Vanillic Acid/pharmacology , Signal Transduction/drug effects , Male , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Gastric Mucosa/metabolism , Gastric Mucosa/injuries , Oxidative Stress/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Protective Agents/pharmacology , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Glutathione/metabolism
4.
J Appl Biomed ; 22(2): 67-73, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38912861

ABSTRACT

BACKGROUND AND OBJECTIVES: We aimed to determine the effects of vanillic acid (VA) on fracture healing radiologically, histologically, immunohistochemically, and biomechanically using a rat femur open fracture injury model. METHODS: 32 male Wistar-Albino rats were used and divided into two groups: the study group (VA) and the control group. From the time they were operated on until they were sacrificed, the rats in the study group were given 100 mg/kg/day VA by oral gavage. After sacrification, the femurs were analyzed. RESULTS: It was observed that the Huo histological scoring was significantly higher in the VA group (p = 0.001), and the ratio of the amount of callus tissue compared to intact bone tissue was significantly higher. While no significant difference was observed in immunohistochemical H-scores in ColI antibody staining (p = 1.000), a borderline significant difference in favor of VA was observed in ColIII antibody staining (p = 0.078). In biomechanical analysis, failure load (N), total energy (J), maximum stress (MPa), and stiffness (N/mm) measurements were significantly higher in the VA group (p = 0.040, p = 0.021, p = 0.015, and p = 0.035, respectively). CONCLUSION: It has been observed that VA, with its antioxidative properties, increases fracture healing in rats, in which an open fracture model was created. We are hopeful that such an antioxidant, which is common in nature, will increase fracture healing. Since this study is the first to examine the effect of VA on fracture healing, further studies are needed.


Subject(s)
Femoral Fractures , Fracture Healing , Rats, Wistar , Vanillic Acid , Animals , Vanillic Acid/pharmacology , Vanillic Acid/therapeutic use , Fracture Healing/drug effects , Male , Femoral Fractures/drug therapy , Femoral Fractures/pathology , Rats , Disease Models, Animal , Biomechanical Phenomena/drug effects , Femur/drug effects , Femur/pathology , Bony Callus/drug effects , Bony Callus/pathology
5.
Drug Dev Res ; 85(4): e22199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38812443

ABSTRACT

It has been reported that lipophilic statins such as atorvastatin can more readily penetrate into ß-cells and reach the mitochondria, resulting in mitochondrial dysfunction, oxidative stress, decrease in insulin release. Many studies have shown that natural products can protect mitochondrial dysfunction induced by drug in different tissue. We aimed to explore mitochondrial protection potency of hesperidin, vanillic acid, and sinapic acid as natural compounds against mitochondrial dysfunction induced by atorvastatin in pancreas isolated mitochondria. Mitochondria were isolated form rat pancreas and directly treated with toxic concentration of atorvastatin (500 µM) in presence of various concentrations hesperidin, vanillic acid, and sinapic acid (1, 10, and 100 µM) separately. Mitochondrial toxicity parameters such as the reactive oxygen species (ROS) formation, succinate dehydrogenases (SDH) activity, mitochondrial swelling, depletion of glutathione (GSH), mitochondrial membrane potential (MMP) collapse, and malondialdehyde (MDA) production were measured. Our findings demonstrated that atorvastatin directly induced mitochondrial toxicity at concentration of 500 µM and higher in pancreatic mitochondria. Except MDA, atorvastatin caused significantly reduction in SDH activity, mitochondrial swelling, ROS formation, depletion of GSH, and collapse of MMP. While, our data showed that all three protective compounds at low concentrations ameliorated atorvastatin-induced mitochondrial dysfunction with the increase of SDH activity, improvement of mitochondrial swelling, MMP collapse and mitochondrial GSH, and reduction of ROS formation. We can conclude that hesperidin, vanillic acid, and sinapic acid can directly reverse the toxic of atorvastatin in rat pancreas isolated mitochondria, which may be beneficial for protection against diabetogenic-induced mitochondrial dysfunction in pancreatic ß-cells.


Subject(s)
Atorvastatin , Coumaric Acids , Hesperidin , Membrane Potential, Mitochondrial , Mitochondria , Mitochondrial Swelling , Pancreas , Reactive Oxygen Species , Vanillic Acid , Animals , Atorvastatin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Coumaric Acids/pharmacology , Rats , Reactive Oxygen Species/metabolism , Male , Mitochondrial Swelling/drug effects , Membrane Potential, Mitochondrial/drug effects , Vanillic Acid/pharmacology , Hesperidin/pharmacology , Glutathione/metabolism , Rats, Wistar , Succinate Dehydrogenase/metabolism , Malondialdehyde/metabolism
7.
J Diabetes Res ; 2024: 4873544, 2024.
Article in English | MEDLINE | ID: mdl-38577302

ABSTRACT

The production of nanoparticles enhances the bioactivity of biological molecules for drug delivery to diseased sites. This study explains how silver nanoparticle (AgNP) coating enhanced the protection effects of vanillic acid in male diabetic rats with streptozotocin- (STZ-) induced diabetes. Twenty-four rats were divided into four groups (n = 6) for this investigation. The first group (G1) is untreated, whereas diabetes was induced in the other three groups through STZ injection. Diabetic rats that were not getting therapy were included in the second group (G2, STZ-positive), whereas the other diabetic rats were divided into the third group (G3, vanillic acid-treated) and the fourth group (G4, vanillic acid-coated AgNPs treated). The treatment lasted four weeks. In G2, the induction of diabetes significantly (at P = 0.05) increased in serum glucose, glycated proteins, renal indices, interleukin-6 (IL-6), K+, immunoglobulins, and lipid peroxidation, while decreased Ca++, Na+, and other antioxidants in the kidney tissue homogenate. In addition, pathological altered signs were present in the pancreas and kidneys of diabetic rats. The renal and pancreatic tissues were effectively enhanced by vanillic acid or vanillic acid-coated AgNPs, bringing them very close to their prediabetic conditions. Vanillic acid-coated AgNPs offered a stronger defense against STZ-induced diabetes and lessened the effects of hyperglycemia compared to ordinary vanillic acid. Additionally, using vanillic acid coated with silver nanoparticles greatly increased the antioxidant and antidiabetic activity and reduced inflammation when compared to using vanillic acid alone.


Subject(s)
Diabetes Mellitus, Experimental , Metal Nanoparticles , Rats , Male , Animals , Streptozocin/pharmacology , Vanillic Acid/pharmacology , Vanillic Acid/therapeutic use , Silver/pharmacology , Silver/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Antioxidants/therapeutic use , Oxidative Stress
8.
Ecotoxicol Environ Saf ; 277: 116383, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663192

ABSTRACT

Vanillic acid (4-hydroxy-3-methoxybenzoic acid) (VA) is a natural benzoic acid derivative commonly found in herbs, rice, maize, and some fruits and vegetables. However, due to the wide use of VA in various industrial sectors, its presence in the environment might harm living organisms. This study evaluated the toxicity of VA and its isomers, iso-VA and orto-VA. Firstly, the antimicrobial effect of VA and its isomers iso-VA and orto-VA (in doses of 1000; 100, 10, 1; 0.1; 0.01 mg/L) against Escherichia coli, Sarcina spp., Enterobacter homaechei, Staphylococcus aureus and Candida albicans were identified. The toxic effect and protein degradation potential of VA and its isomers were determined using E. coli grpE:luxCDABE and lac:luxCDABE biosensor strains. However, the genotoxicity and oxidative stress generation were assessed with the E. coli recA:luxCDABE biosensor and E. coli strain. The results showed that VA, iso-VA, and orto-VA exhibited antimicrobial activity against all tested bacterial strains. However, VA's antimicrobial effect differed from iso-VA and orto-VA. Similar toxic, genotoxic, and oxidative stress-inducing effects were observed for VA and its isomers. Each compound exhibited toxicity, cellular protein degradation, and genotoxic activity against E. coli grpE:luxCDABE, E. coli lac:luxCDABE, and E. coli recA:luxCDABE strains. Analysis of reactive oxygen species (ROS) generation within E. coli cells highlighted oxidative stress as a contributing factor to the toxicity and genotoxicity of VA and its isomers. While the findings suggest potential applications of VA compounds as food preservatives, their presence in the environment raises concerns regarding the risks posed to living organisms due to their toxic and genotoxic characteristics.


Subject(s)
Escherichia coli , Oxidative Stress , Vanillic Acid , Vanillic Acid/pharmacology , Vanillic Acid/toxicity , Escherichia coli/drug effects , Oxidative Stress/drug effects , Environmental Pollutants/toxicity , Staphylococcus aureus/drug effects , Candida albicans/drug effects , Microbial Sensitivity Tests , Mutagenicity Tests , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/toxicity , Anti-Infective Agents/pharmacology
9.
J Microencapsul ; 41(4): 255-268, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38647544

ABSTRACT

The aim is to investigate the possible pulmonary protective effect of vanillic acid (VA) in liposome-TPGS nanoparticles, to overcome VA's poor bioavailability. VA was successfully extracted. Liposomes were prepared using thin film hydration. Central composite design was adopted for optimisation of liposomes to get the maximum entrapment efficiency (EE%) and the minimum mean diameter, where the liposomes were further modified with TPGS, and tested for PDI, zeta-potential, and in-vitro drug release. In-vivo study on mice with LPS-acute pulmonary toxicity was tested. TPGS-modified VA-liposomes showed EE% of 69.35 ± 1.23%, PS of 201.7 ± 3.23 nm, PDI of 0.19 ± 0.02, and zeta-potential of -32.2 ± 0.32 mv. A sustained drug release of the TPGS-modified VA-liposomes was observed compared to standard VA, and a pulmonary-protective effect through decreasing miR-217 expression with subsequent anti-inflammatory effect through suppression of MAPK and PI3K/NF-κB pathways was also demonstrated in the current study. TPGS-modified VA-liposomes showed an enhanced bioavailability and a sustained drug release with promising pulmonary protective effects against acute pulmonary injury diseases.


Subject(s)
Liposomes , MicroRNAs , NF-kappa B , Vanillic Acid , Vitamin E , Animals , NF-kappa B/metabolism , Vanillic Acid/pharmacology , Vanillic Acid/analogs & derivatives , Vitamin E/chemistry , Vitamin E/pharmacology , Vitamin E/analogs & derivatives , Mice , Signal Transduction/drug effects , Male , Lung/drug effects
10.
Bioorg Chem ; 145: 107254, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432152

ABSTRACT

Vanillic acid (VA) - a naturally occurring phenolic compound in plants - is not only used as a flavoring agent but also a prominent metabolite post tea consumption. VA and its associated compounds are believed to play a significant role in preventing diseases, underscoring the need for a systematic investigation. Herein, we report a 4-step synthesis employing the classical organic reactions, such as Willamson's alkylation, Fischer-Spier reaction, and Steglich esterification, complemented with a protection-deprotection strategy to prepare 46 VA derivatives across the five series (1a-1i, 2a-2i, 3, 3a-3i, 4a-4i, 5a-5i) in high yields. The synthesized compounds were investigated for their antifungal, anti-inflammatory, and toxic effects. Notably, compound 1a demonstrated remarkable ROS inhibition with an IC50 value of 5.1 ± 0.7 µg/mL, which is more than twice as effective as the standard ibuprofen drug. A subset of the synthesized derivatives (2b, 2c, 2e, 3b-3d, 4a-4c, 5a, and 5e) manifested their antifungal effect against drug-resistant Candida strains. Compound 5g, in particular, revealed synergism with the established antifungal drugs amphotericin B (AMB) and fluconazole (FLZ), doubling FLZ's potency against azole resistant Candida albican ATCC 36082. Furthermore, 5g improved the potency of these antifungals against FLZ-sensitive strains, including C. glabrata ATCC 2001 and C. parapsilosis ATCC 22019, as well as various multidrug-resistant (MDR) Candida strains, namely C. albicans ATCC 14053, C. albicans CL1, and C. krusei SH2L OM341600. Additionally, pharmacodynamics of compound 5g was examined using time-kill assay, and a benign safety profile was observed with no hemolytic activity in whole blood, and no cytotoxicity towards the normal BJ human cell line. The synergistic potential of 5g was further investigated through both experimental methods and docking simulations.These findings highlight the therapeutic potential of VA derivatives, particularly in addressing inflammation and circumventing FLZ resistance in Candida albicans.


Subject(s)
Antifungal Agents , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Vanillic Acid/pharmacology , Vanillic Acid/therapeutic use , Azoles/pharmacology , Microbial Sensitivity Tests , Mycoses/drug therapy , Fluconazole/pharmacology , Candida , Candida albicans , Candida glabrata , Inflammation/drug therapy
11.
Mol Microbiol ; 121(5): 833-849, 2024 05.
Article in English | MEDLINE | ID: mdl-38308563

ABSTRACT

The nosocomial bacterium Acinetobacter baumannii is protected from antibiotic treatment by acquiring antibiotic resistances and by forming biofilms. Cell attachment, one of the first steps in biofilm formation, is normally induced by environmental metabolites. We hypothesized that vanillic acid (VA), the oxidized form of vanillin and a widely available metabolite, may play a role in A. baumannii cell attachment. We first discovered that A. baumannii actively breaks down VA through the evolutionarily conserved vanABKP genes. These genes are under the control of the repressor VanR, which we show binds directly to VanR binding sites within the vanABKP genes bidirectional promoter. VA in turn counteracts VanR inhibition. We identified a VanR binding site and searched for it throughout the genome, especially in pili encoding promoter genes. We found a VanR binding site in the pilus encoding csu operon promoter and showed that VanR binds specifically to it. As expected, a strain lacking VanR overproduces Csu pili and makes robust biofilms. Our study uncovers the role that VA plays in facilitating the attachment of A. baumannii cells to surfaces, a crucial step in biofilm formation. These findings provide valuable insights into a previously obscure catabolic pathway with significant clinical implications.


Subject(s)
Acinetobacter baumannii , Bacterial Adhesion , Bacterial Proteins , Biofilms , Fimbriae, Bacterial , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Vanillic Acid , Acinetobacter baumannii/metabolism , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Vanillic Acid/metabolism , Vanillic Acid/pharmacology , Biofilms/growth & development , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Operon , Binding Sites , Benzaldehydes/metabolism , Benzaldehydes/pharmacology
12.
Phytother Res ; 38(3): 1262-1277, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185917

ABSTRACT

Hippocampal synaptic dysfunction, oxidative stress, neuroinflammation, and neuronal loss play critical roles in the pathophysiology of diabetes-associated cognitive decline (DACD). The study aimed to investigate the effects of vanillic acid (VA), a phenolic compound, against DACD and explore the potential underlying mechanisms. Following confirmation of diabetes, rats were treated with VA (50 mg/kg/day; P.O.) or insulin (6 IU/rat/day; S.C.) for 8 consecutive weeks. The cognitive performance of the rats was evaluated using passive-avoidance and water-maze tasks. Long-term potentiation (LTP) was induced at hippocampal dentate gyrus (DG) synapses in response to high-frequency stimulation (HFS) applied to the perforant pathway (PP) to evaluate synaptic plasticity. Oxidative stress factors, inflammatory markers, and histological changes were evaluated in the rat hippocampus. This study showed that streptozotocin (STZ)-induced diabetes caused cognitive decline that was associated with inhibition of LTP induction, suppression of enzymatic antioxidant activities, enhanced lipid peroxidation, elevated levels of inflammatory proteins, and neuronal loss. Interestingly, chronic treatment with VA alleviated blood glucose levels, improved cognitive decline, ameliorated LTP impairment, modulated oxidative-antioxidative status, inhibited inflammatory response, and prevented neuronal loss in diabetic rats at a level comparable to insulin therapy. The results suggest that the antihyperglycemic, antioxidative, anti-inflammatory, and neuroplastic properties of VA may be the mechanisms behind its neuroprotective effect against DACD.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Experimental , Neuroprotective Agents , Rats , Animals , Diabetes Mellitus, Experimental/complications , Neuroprotective Agents/pharmacology , Vanillic Acid/pharmacology , Rats, Wistar , Hippocampus , Antioxidants/pharmacology , Neuronal Plasticity , Cognitive Dysfunction/pathology , Insulin
13.
Life Sci ; 334: 122190, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37866805

ABSTRACT

BACKGROUND: The search for alternative therapies for treatment of Benign prostatic hyperplasia (BPH) has been increasingly studied to avoid the common adverse effects of the usual regimens. Therefore, this study aimed at delineating possible mechanisms of benign prostatic hyperplasia (BPH) and possible therapeutic role of zinc oxide nanoparticles (ZnO-NPs) versus vanillic acid. METHODS: Forty rats were divided into five groups: control, sham control, Testosterone-induced BPH, BPH and Zn-NPs, and BPH and vanillic acid. Light microscopic, immune-histochemical; PCNA, Bcl-2, Bax, caspase-3, p-Akt and p-mTOR, histomorphometric analysis, MDA/SOD and GPx and were done. Gene expression of p-Akt, p-mTOR and survivin were evaluated. RESULTS: Application of zinc oxide nanoparticles as well as vanillic acid significantly reduced prostatic index, epithelial thickness, stromal collagen fibers, expression of PCNA, Bcl2, p-Akt, p-mTOR and MDA tissue level (p < 0.05). Whereas expression of Bax and caspase 3, and tissue levels of SOD and GPx were significantly increased in groups treated with Zno-Nps and vanillic acid compared to that of BPH group. Zinc oxide nanoparticles showed a better effect than vanillic acid in alleviating BPH. CONCLUSION: These findings suggested that ZnO-NPs as well as VA ameliorated the histolo-pathological and biochemical effects of induced BPH, moreover they improved the proapoptotic and antioxidant parameters which ere induced in BPH. It is recommended to search for new agents to prevent the development and progression of BPH.


Subject(s)
Nanoparticles , Prostatic Hyperplasia , Zinc Oxide , Male , Humans , Rats , Animals , Testosterone/metabolism , Prostatic Hyperplasia/chemically induced , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/metabolism , Zinc Oxide/therapeutic use , Vanillic Acid/pharmacology , Vanillic Acid/therapeutic use , Proto-Oncogene Proteins c-akt , bcl-2-Associated X Protein , Proliferating Cell Nuclear Antigen , TOR Serine-Threonine Kinases , Superoxide Dismutase
14.
Biomed Pharmacother ; 168: 115673, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37857251

ABSTRACT

MIF/CD74 signaling pathway and autophagy may be closely related to liver fibrosis. Vanillic acid (VA) is likely to have an anti-liver fibrosis effect, although related studies have not been reported. The aim of this study was to verify the role of hepatic stellate cells (HSCs) autophagy and the MIF/CD74 signaling pathway in the pathogenesis of liver fibrosis, and to investigate the effect of VA on liver fibrosis through in vivo and in vitro experiments. Our results showed that VA significantly attenuated CCl4-induced liver fibrosis. The alleviation of liver fibrosis with VA treatment was associated with a reduction of MIF, CD74, α-SMA, LC3B and Collagen 1. In addition, VA, MIF inhibitor (ISO-1) and autophagy inhibitor (3-MA) markedly inhibited the proliferation and migration of HSCs. This study indicates that VA could protect against HSCs activation, proliferation and migration by inhibiting the autophagy in HSCs via the MIF/CD74 signaling pathway so that alleviates liver fibrosis.


Subject(s)
Hepatic Stellate Cells , Macrophage Migration-Inhibitory Factors , Humans , Hepatic Stellate Cells/metabolism , Vanillic Acid/pharmacology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Signal Transduction , Autophagy , Liver , Macrophage Migration-Inhibitory Factors/metabolism , Intramolecular Oxidoreductases/metabolism
15.
Tissue Cell ; 84: 102161, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37478646

ABSTRACT

Although cisplatin (CDDP) is an effective anticancer agent, the ovotoxicity that can occur in female patients limits its use. Oxidative stress (OS) and inflammation are known to contribute to CDDP-induced ovotoxicity. Vanillic acid (VA) is a dietary herbal secondary metabolite with high free radical scavenging activity. It was aimed to evaluate the therapeutic effects of VA against CDDP-induced ovotoxicity in rats in this study for the first time. Ovotoxicity was achieved with a single dose of CDDP (5 mg/kg) in female rats. The therapeutic effect of VA was evaluated with 3-day administration of two different doses (5 and 10 mg/kg). While OS, inflammation, endoplasmic reticulum stress (ERS) and apoptosis markers were measured in tissue samples, the levels of reproductive hormones were determined in serum samples using colorimetric methods. The results showed that CDDP-induced nuclear factor erythroid 2-associated factor 2 (Nrf2) inhibition combined with increased OS, inflammation, ERS and apoptosis increased ovarian damage. VA treatments reversed these changes via activating Nrf2 pathway dose-dependently. In addition, histopathological findings also supported the biochemical results. VA may be a good therapeutic molecule candidate for CDDP-induced ovarian damage due to strong antioxidant and Nrf2 activator properties.


Subject(s)
Antineoplastic Agents , Cisplatin , Female , Rats , Animals , Cisplatin/toxicity , NF-E2-Related Factor 2/metabolism , Vanillic Acid/pharmacology , Antineoplastic Agents/toxicity , Oxidative Stress , Inflammation/chemically induced , Apoptosis
16.
Bioresour Technol ; 385: 129416, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37390932

ABSTRACT

Aromatic acids play a selective role in the separation of hemicellulose. Phenolic acids have demonstrated an inhibitory effect on lignin condensation. In the current study, vanillic acid (VA), which combines the characteristics of aromatic and phenolic acids, is used to separate eucalyptus. The efficient and selective separation of hemicellulose is achieved simultaneously at 170 °C, 8.0% VA concentration, and 80 min. The separation yield of xylose increased from 78.80% to 88.59% compared to acetic acid (AA) pretreatment. The separation yield of lignin decreased from 19.32% to 11.19%. In particular, the ß-O-4 content of lignin increased by 5.78% after pretreatment. The results indicate that VA, as a "carbon positive ion scavenger", it preferentially reacts with the carbon-positive ion intermediate of lignin. Surprisingly, the inhibition of lignin condensation is achieved. This study provides a new starting point for the development of an efficient and sustainable commercial technology by organic acid pretreatment.


Subject(s)
Lignin , Vanillic Acid , Vanillic Acid/pharmacology , Polysaccharides , Carbon , Hydrolysis
17.
Carbohydr Res ; 530: 108862, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37327765

ABSTRACT

Leishmaniasis is caused by infection with the protozoan parasites Leishmania. It is classified as one of the most significant neglected tropical diseases. It remains a significant global public health concern. Current treatments include the use of pentavalent antimonial, amphotericin B, pentamidine, miltefosine, and paromomycin. However, several limitations such as toxicity, side effect, and resistance to these drugs of certain species are of concern. To combat this disease, effective chemotherapy is urgently required for its treatment and management. In this study, we synthesized a series of carbohydrate-coumarin/vanillic acid hybrids linked through triazole moiety via CuACC (Copper-catalysed azide-alkyne cycloaddition) reaction. These compounds were evaluated for their in vitro antiparasitic activity using MTT assay against Leishmania donovani whereas, all compounds show IC50 value in the range of 65-74 µM.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Antiprotozoal Agents/pharmacology , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use , Vanillic Acid/pharmacology , Coumarins/pharmacology , Carbohydrates/pharmacology
18.
BMC Pharmacol Toxicol ; 24(1): 33, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208773

ABSTRACT

BACKGROUND: Methamphetamine is widely abused in all parts of the world. It has been reported that short-term and long-term methamphetamine exposure could damage the dopaminergic system and induce cardiomyopathy and cardiotoxicity via mitochondrial dysfunction and oxidative stress. Vanillic acid (VA), a phenolic acid compound derived from plants, is known for its antioxidant and mitochondrial protection properties. METHODS: In the current study we used VA for attenuating of Methamphetamine-induced mitochondrial toxicity in cardiac mitochondria. Isolated mitochondria obtained from rat heart were grouped as: control, methamphetamine (250 µM), VA (10, 50 and 100 µM) was cotreated with methamphetamine (250 µM) and VA (100 µM) alone. After 60 min, mitochondrial fraction including: succinate dehydrogenases (SDH) activity, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial glutathione (GSH), reactive oxygen species (ROS) and lipid peroxidation (LPO) were evaluated. RESULTS: Methamphetamine exposure significantly disrupted mitochondrial function and induced ROS formation, lipid peroxidation, GSH depletion, MMP collapse and mitochondrial swelling, while VA significantly increased SDH activity as indicator of mitochondrial toxicity and dysfunction. VA also significantly decreased ROS formation, lipid peroxidation, mitochondrial swelling, MMP collapse and depletion of GSH in cardiac mitochondria in the presence of methamphetamine. CONCLUSION: These findings suggested that VA is able to reduce methamphetamine-induced mitochondrial dysfunction and oxidative stress. Our results demonstrate that VA could potentially serve as a promising and accessible cardioprotective agent against methamphetamine-induced cardiotoxicity, via antioxidant and mitochondrial protection properties.


Subject(s)
Antioxidants , Methamphetamine , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Methamphetamine/toxicity , Methamphetamine/metabolism , Reactive Oxygen Species/metabolism , Vanillic Acid/pharmacology , Vanillic Acid/metabolism , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , Oxidative Stress , Mitochondria/metabolism , Glutathione/metabolism , Lipid Peroxidation , Membrane Potential, Mitochondrial
19.
Nutrients ; 15(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37242140

ABSTRACT

Vanillic acid (VA) has shown antioxidant and anti-inflammatory activities in different cell types, but its biological effects in the context of early embryo development have not yet been clarified. In the current study, the impact of VA supplementation during in vitro maturation (IVM) and/or post-fertilization (in vitro culture; IVC) on redox homeostasis, mitochondrial function, AKT signaling, developmental competence, and the quality of bovine pre-implantation embryos was investigated. The results showed that dual exposure to VA during IVM and late embryo culture (IVC3) significantly improved the blastocyst development rate, reduced oxidative stress, and promoted fatty acid oxidation as well as mitochondrial activity. Additionally, the total numbers of cells and trophectoderm cells per blastocyst were higher in the VA-treated group compared to control (p < 0.05). The RT-qPCR results showed down-regulation of the mRNA of the apoptosis-specific markers and up-regulation of AKT2 and the redox homeostasis-related gene TXN in the treated group. Additionally, the immunofluorescence analysis showed high levels of pAKT-Ser473 and the fatty acid metabolism marker CPT1A in embryos developed following VA treatment. In conclusion, the study reports, for the first time, the embryotrophic effects of VA, and the potential linkage to AKT signaling pathway that could be used as an efficacious protocol in assisted reproductive technologies (ART) to improve human fertility.


Subject(s)
In Vitro Oocyte Maturation Techniques , Oocytes , Animals , Cattle , Humans , Oocytes/metabolism , In Vitro Oocyte Maturation Techniques/methods , Proto-Oncogene Proteins c-akt/metabolism , Vanillic Acid/pharmacology , Oxidative Stress , Embryonic Development , Signal Transduction , Fatty Acids/metabolism
20.
Biochem Pharmacol ; 213: 115618, 2023 07.
Article in English | MEDLINE | ID: mdl-37211172

ABSTRACT

The host stimulator of interferon genes (STING) signaling pathway is a major innate immune sensing pathway, and the stimulation of this pathway within antigen-presenting cells shows promise in targeting immune-suppressed tumors. Macrophages resident in tumors exhibit anti-inflammatory properties and enhance tumor growth and development. Polarizing such macrophages towards a pro-inflammatory phenotype is an effective strategy for tumor suppression. In the present study, we observed that the STING pathway was inactivated in breast and lung carcinomas, and a positive correlation existed between STING and macrophage markers in these tumors. We found that vanillic acid (VA) could stimulate the STING/TBK1/IRF3 pathway. VA mediated the production of type I IFN and promoted macrophage polarization into the M1 phenotype; this activity was dependent on STING activation. A direct-contact co-culture model and a transwell co-culture model revealed that macrophages with VA-induced STING activation exhibited anti-proliferative effects on SKBR3 and H1299 cells, although a STING antagonist and M2 macrophage-related cytokines alleviated this anti-proliferative effect. Further investigation indicated that phagocytosis and apoptosis-inducing effects were the major mediators of the anti-tumor effect of VA-treated macrophages. Mechanistically, VA promoted the polarization of macrophages to a M1 phenotype via IL-6R/JAK signaling, resulting in enhanced phagocytosis and apoptosis-induction effects. Additionally, STING activation-induced IFNß production also participated in the apoptosis mediated by VA-treated macrophage in SKBR3 and H1299 cells. Mouse models with 4 T1 tumors confirmed the anti-tumor properties of VA in vivo and revealed the infiltration of VA-induced cytotoxic T cells into the tumors. These data suggest that VA is an effective agonist of STING and provides a new perspective for cancer immunotherapy.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/metabolism , Lung Neoplasms/metabolism , Macrophages , Phagocytosis , Vanillic Acid/pharmacology , Vanillic Acid/therapeutic use , Vanillic Acid/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL