Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.001
Filter
1.
Sci Transl Med ; 16(755): eadg3456, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985854

ABSTRACT

Five hundred thirty-seven million people globally suffer from diabetes. Insulin-producing ß cells are reduced in number in most people with diabetes, but most individuals still have some residual ß cells. However, none of the many diabetes drugs in common use increases human ß cell numbers. Recently, small molecules that inhibit dual tyrosine-regulated kinase 1A (DYRK1A) have been shown to induce immunohistochemical markers of human ß cell replication, and this is enhanced by drugs that stimulate the glucagon-like peptide 1 (GLP1) receptor (GLP1R) on ß cells. However, it remains to be demonstrated whether these immunohistochemical findings translate into an actual increase in human ß cell numbers in vivo. It is also unknown whether DYRK1A inhibitors together with GLP1R agonists (GLP1RAs) affect human ß cell survival. Here, using an optimized immunolabeling-enabled three-dimensional imaging of solvent-cleared organs (iDISCO+) protocol in mouse kidneys bearing human islet grafts, we demonstrate that combination of a DYRK1A inhibitor with exendin-4 increases actual human ß cell mass in vivo by a mean of four- to sevenfold in diabetic and nondiabetic mice over 3 months and reverses diabetes, without alteration in human α cell mass. The augmentation in human ß cell mass occurred through mechanisms that included enhanced human ß cell proliferation, function, and survival. The increase in human ß cell survival was mediated, in part, by the islet prohormone VGF. Together, these findings demonstrate the therapeutic potential and favorable preclinical safety profile of the DYRK1A inhibitor-GLP1RA combination for diabetes treatment.


Subject(s)
Dyrk Kinases , Exenatide , Harmine , Insulin-Secreting Cells , Peptides , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Animals , Humans , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Exenatide/pharmacology , Exenatide/therapeutic use , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Harmine/pharmacology , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Mice , Peptides/pharmacology , Peptides/metabolism , Venoms/pharmacology , Venoms/therapeutic use , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Drug Therapy, Combination , Cell Proliferation/drug effects , Heterografts
2.
Tissue Cell ; 89: 102479, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39018713

ABSTRACT

Diabetic muscular atrophy is becoming a fast-growing problem worldwide, including sarcopenia, which is associated with substantial mortality and morbidity risk. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been marketed and suggested to exert protective effects on not only glycemic control but also diabetic complications in diabetic patients. In this study, we investigated the therapeutic use of GLP-1RAs exendin-4, compared to antidiabetic drug metformin, for the intervention of muscular dysfunction during diabetic conditions using a streptozotocin (STZ)-induced diabetic mouse model. The results showed that both exendin-4 and metformin could effectively alleviate hyperglycemia in diabetic mice, and also counteract diabetes-induced muscle weight loss, weaker grip, and changes in muscle fiber cross-sectional area distribution. Unexpectedly, exendin-4, but not metformin, enhanced the increased kidney weight and histological change in diabetic mice. Taken together, these findings suggest that both exendin-4 and metformin could effectively improve the diabetic hyperglycemia and muscular dysfunction; but exendin-4 may aggravate the nephropathy in STZ-induced diabetic mice.


Subject(s)
Diabetes Mellitus, Experimental , Exenatide , Glucagon-Like Peptide-1 Receptor , Metformin , Animals , Exenatide/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Metformin/pharmacology , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Mice , Male , Hypoglycemic Agents/pharmacology , Streptozocin , Disease Models, Animal , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Peptides/pharmacology , Venoms/pharmacology , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Muscular Atrophy/etiology
3.
F1000Res ; 13: 225, 2024.
Article in English | MEDLINE | ID: mdl-38919947

ABSTRACT

Epilepsy affects millions of people worldwide, and there is an urgent need to develop safe and effective therapeutic agents. Animal venoms contain diverse bioactive compounds like proteins, peptides, and small molecules, which may possess medicinal properties against epilepsy. In recent years, research has shown that venoms from various organisms such as spiders, ants, bees, wasps, and conus snails have anticonvulsant and antiepileptic effects by targeting specific receptors and ion channels. This review underscores the significance of purified proteins and toxins from these sources as potential therapeutic agents for epilepsy. In conclusion, this review emphasizes the valuable role of animal venoms as a natural resource for further exploration in epilepsy treatment research.


Subject(s)
Anticonvulsants , Venoms , Animals , Anticonvulsants/pharmacology , Humans , Venoms/therapeutic use , Venoms/pharmacology , Venoms/chemistry , Epilepsy/drug therapy
4.
Life Sci ; 351: 122777, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38851419

ABSTRACT

Cerebral stroke is a pressing global health concern, ranking as the second leading cause of mortality and resulting in persistent neurobehavioral impairments. Cerebral strokes, triggered by various embolic events, initiate complex signaling pathways involving neuroexcitotoxicity, ionic imbalances, inflammation, oxidative stress, acidosis, and mitochondrial dysfunction, leading to programmed cell death. Currently, the FDA has approved tissue plasminogen activator as a relatively benign intervention for cerebral stroke, leaving a significant treatment gap. However, a promising avenue has emerged from Earth's toxic creatures. Animal venoms harbor bioactive molecules, particularly neuropeptides, with potential in innovative healthcare applications. These venomous components, affecting ion channels, receptors, and transporters, encompass neurochemicals, amino acids, and peptides, making them prime candidates for treating cerebral ischemia and neurological disorders. This review explores the composition, applications, and significance of toxin-derived peptides as viable therapeutic agents. It also investigates diverse toxins from select venomous creatures, with the primary objective of shedding light on current stroke treatments and paving the way for pioneering therapeutic strategies capable of addressing neurobehavioral deficits.


Subject(s)
Peptides , Stroke , Humans , Animals , Stroke/drug therapy , Stroke/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Toxins, Biological , Venoms/therapeutic use , Venoms/pharmacology
5.
Med Oncol ; 41(6): 138, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38705935

ABSTRACT

Breast cancer (BC) is associated with type 2 diabetes mellitus (T2DM) and obesity. Glucagon-like peptide (GLP)-1 regulates post-prandial insulin secretion, satiety, and gastric emptying. Several GLP-1 analogs have been FDA-approved for the treatment of T2DM and obesity. Moreover, GLP-1 regulates various metabolic activities across different tissues by activating metabolic signaling pathways like adenosine monophosphate (AMP) activated protein kinase (AMPK), and AKT. Rewiring metabolic pathways is a recognized hallmark of cancer, regulated by several cancer-related pathways, including AKT and AMPK. As GLP-1 regulates AKT and AMPK, we hypothesized that it alters BC cells' metabolism, thus inhibiting proliferation. The effect of the GLP-1 analogs exendin-4 (Ex4) and liraglutide on viability, AMPK signaling and metabolism of BC cell lines were assessed. Viability of BC cells was evaluated using colony formation and MTT/XTT assays. Activation of AMPK and related signaling effects were evaluated using western blot. Metabolism effects were measured for glucose, lactate and ATP. Exendin-4 and liraglutide activated AMPK in a cAMP-dependent manner. Blocking Ex4-induced activation of AMPK by inhibition of AMPK restored cell viability. Interestingly, Ex4 and liraglutide reduced the levels of glycolytic metabolites and decreased ATP production, suggesting that GLP-1 analogs impair glycolysis. Notably, inhibiting AMPK reversed the decline in ATP levels, highlighting the role of AMPK in this process. These results establish a novel signaling pathway for GLP-1 in BC cells through cAMP and AMPK modulation affecting proliferation and metabolism. This study suggests that GLP-1 analogs should be considered for diabetic patients with BC.


Subject(s)
Breast Neoplasms , Exenatide , Glucagon-Like Peptide 1 , Liraglutide , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Exenatide/pharmacology , Female , Liraglutide/pharmacology , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/analogs & derivatives , Cell Line, Tumor , AMP-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Cell Survival/drug effects , Warburg Effect, Oncologic/drug effects , Cell Proliferation/drug effects , Venoms/pharmacology , Adenylate Kinase/metabolism , Peptides/pharmacology
6.
Neuropharmacology ; 252: 109946, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38599494

ABSTRACT

The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.


Subject(s)
Action Potentials , Dopaminergic Neurons , Exenatide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Mice, Inbred C57BL , Substantia Nigra , Animals , Male , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Exenatide/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Action Potentials/drug effects , Action Potentials/physiology , Mice , Venoms/pharmacology , Peptides/pharmacology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/physiopathology , Peptide Fragments/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism
7.
Zebrafish ; 21(3): 231-242, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608228

ABSTRACT

Animal venoms and toxins hold promise as sources of novel drug candidates, therapeutic agents, and biomolecules. To fully harness their potential, it is crucial to develop reliable testing methods that provide a comprehensive understanding of their effects and mechanisms of action. However, traditional rodent assays encounter difficulties in mimicking venom-induced effects in human due to the impractical venom dosage levels. The search for reliable testing methods has led to the emergence of zebrafish (Danio rerio) as a versatile model organism for evaluating animal venoms and toxins. Zebrafish possess genetic similarities to humans, rapid development, transparency, and amenability to high-throughput assays, making it ideal for assessing the effects of animal venoms and toxins. This review highlights unique attributes of zebrafish and explores their applications in studying venom- and toxin-induced effects from various species, including snakes, jellyfish, cuttlefish, anemones, spiders, and cone snails. Through zebrafish-based research, intricate physiological responses, developmental alterations, and potential therapeutic interventions induced by venoms are revealed. Novel techniques such as CRISPR/Cas9 gene editing, optogenetics, and high-throughput screening hold great promise for advancing venom research. As zebrafish-based insights converge with findings from other models, the comprehensive understanding of venom-induced effects continues to expand, guiding the development of targeted interventions and promoting both scientific knowledge and practical applications.


Subject(s)
Models, Animal , Venoms , Zebrafish , Animals , Zebrafish/genetics , Venoms/pharmacology , Toxins, Biological/pharmacology
8.
J Vet Med Sci ; 86(5): 555-562, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38556323

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is an incretin released into the gastrointestinal tract after food ingestion, and stimulates insulin secretion from the beta cells of the pancreatic islets. Incretins have recently been reported to have extrapancreatic actions, and they are anticipated to have potential efficacy for conditions such as male infertility as well as diabetes. However, the effects of incretins on male reproductive function remain unclear. In this study, GLP-1 receptor expression and the effects of GLP-1 on spermatogenesis-associated genes were investigated using mouse testes and testis-derived cultured cell lines. Glp1r mRNA and GLP-1 protein were expressed in mouse testes at levels comparable to or greater than those in positive control adipose tissue, and the liver and intestine, and also in a Sertoli cell line (TM4) and a Leydig cell line (MA-10) as well as the GC-1 spg and GC-2 spd (ts) germ cell lines. TM4 cells treated with the GLP-1 receptor agonist exenatide showed transiently and significantly upregulated Kitl, Pdgfa, and Glp1r mRNA expression. Furthermore, at 1 hr post-exenatide administration to male mice, Kitl and Glp1r mRNA expression levels were significantly increased, and Pdgfa mRNA expression level also showed a tendency toward increase. TM4 cells were treated with various cell-activating agents, and bucladesine elicited significantly increased Glp1r mRNA expression. We suggest that GLP-1 provides acute stimulation of Sertoli cells in the mouse testis and has a stimulatory effect on the expression of spermatogenesis-related genes.


Subject(s)
Exenatide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor Agonists , Spermatogenesis , Testis , Animals , Male , Mice , Cell Line , Exenatide/pharmacology , Gene Expression/drug effects , Gene Expression Regulation/drug effects , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor Agonists/pharmacology , Leydig Cells/drug effects , Leydig Cells/metabolism , Peptides/pharmacology , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Spermatogenesis/drug effects , Testis/drug effects , Testis/metabolism , Venoms/pharmacology
9.
Mol Cancer Ther ; 23(2): 139-147, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38015557

ABSTRACT

The regulation of cellular processes by ion channels has become central to the study of cancer mechanisms. Designing molecules that can modify ion channels specific to tumor cells is a promising area of targeted drug delivery and therapy. Despite their potential in drug discovery, venom peptides-a group of natural products-have largely remained understudied and under-characterized. In general, venom peptides display high specificity and selectivity for their target ion channels. Therefore, they may represent an effective strategy for selectively targeting the dysregulation of ion channels in tumor cells. This review examines existing venom peptide therapies for different cancer types and focuses on the application of snail venom peptides in hepatocellular carcinoma (HCC), the most common form of primary liver cancer worldwide. We provide insights into the mode of action of venom peptides that have been shown to target tumors. We also explore the benefit of using new computational methods like de novo protein structure prediction to screen venom peptides and identify potential druggable candidates. Finally, we summarize the role of cell culture, animal, and organoid models in developing effective therapies against HCC and highlight the need for creating models that represent the most disproportionately affected ethnicities in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Venoms/pharmacology , Venoms/therapeutic use , Venoms/chemistry , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/drug therapy , Peptides/chemistry , Ion Channels/metabolism
10.
Diabetes Obes Metab ; 26(1): 329-338, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37818589

ABSTRACT

AIM: The aim of the present study was to assess the long-term therapeutic efficacy of a recently discovered 28 amino acid peptide, Δ-theraphotoxin-Ac1 (Δ-TRTX-Ac1), originally isolated from venom of the Aphonopelma chalcodes tarantula. Δ-TRTX-Ac has previously been shown to improve pancreatic beta-cell function and suppress appetite. MATERIALS AND METHODS: Δ-TRTX-Ac1 was administered twice daily in high-fat fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF/STZ mice, for 28 days both alone and in combination with the venom-derived glucagon-like peptide-1 (GLP-1) mimetic, exenatide. RESULTS: Initial pharmacokinetic profiling of ΔTRTX-Ac1 revealed a plasma half-life of 2 h in mice, with ΔTRTX-Ac1 also evidenced in the pancreas 12 h post-injection. Accordingly, HFF-STZ mice received twice-daily injections of Δ-TRTX-Ac1, exenatide or a combination of both peptides for 28 days. As anticipated, HFF/STZ mice presented with hyperglycaemia, impaired glucose tolerance, decreased plasma and pancreatic insulin and disturbed pancreatic islet morphology. Administration of ΔTRTX-Ac1 reduced body weight, improved glucose tolerance and augmented pancreatic insulin content while decreasing glucagon content. Exenatide had similar benefits on body weight and pancreatic hormone content while also reducing circulating glucose. ΔTRTX-Ac1 decreased energy expenditure on day 28 whereas exenatide had no impact. All treatment regimens restored pancreatic islet and beta-cell area towards lean control levels, which was linked to significantly elevated beta-cell proliferation rates. In terms of benefits of combined ΔTRTX-Ac1 and exenatide treatment over individual agents, there was augmentation of glucose tolerance and ambulatory activity with combination therapy, and these mice presented with increased pancreatic glucagon. CONCLUSION: These data highlight the therapeutic promise of ΔTRTX-Ac1 for diabetes, with suggestion that benefits could be enhanced through combined administration with exenatide.


Subject(s)
Glucagon , Hypoglycemic Agents , Mice , Animals , Exenatide , Glucagon/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Blood Glucose/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Insulin/metabolism , Venoms/pharmacology , Venoms/therapeutic use , Glucose , Body Weight
11.
Cell Metab ; 36(1): 130-143.e5, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38113888

ABSTRACT

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) exert anti-inflammatory effects relevant to the chronic complications of type 2 diabetes. Although GLP-1RAs attenuate T cell-mediated gut and systemic inflammation directly through the gut intraepithelial lymphocyte GLP-1R, how GLP-1RAs inhibit systemic inflammation in the absence of widespread immune expression of the GLP-1R remains uncertain. Here, we show that GLP-1R activation attenuates the induction of plasma tumor necrosis factor alpha (TNF-α) by multiple Toll-like receptor agonists. These actions are not mediated by hematopoietic or endothelial GLP-1Rs but require central neuronal GLP-1Rs. In a cecal slurry model of polymicrobial sepsis, GLP-1RAs similarly require neuronal GLP-1Rs to attenuate detrimental responses associated with sepsis, including sickness, hypothermia, systemic inflammation, and lung injury. Mechanistically, GLP-1R activation leads to reduced TNF-α via α1-adrenergic, δ-opioid, and κ-opioid receptor signaling. These data extend emerging concepts of brain-immune networks and posit a new gut-brain GLP-1R axis for suppression of peripheral inflammation.


Subject(s)
Diabetes Mellitus, Type 2 , Sepsis , Humans , Exenatide , Glucagon-Like Peptide 1/metabolism , Peptides/pharmacology , Toll-Like Receptor Agonists , Venoms/pharmacology , Tumor Necrosis Factor-alpha , Inflammation , Glucagon-Like Peptide-1 Receptor/metabolism
12.
Toxins (Basel) ; 15(7)2023 06 27.
Article in English | MEDLINE | ID: mdl-37505687

ABSTRACT

Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore employed a panel of 41 spider and 9 scorpion venoms to screen for mosquitocidal toxins. Using an assay-guided fractionation approach, we isolated two peptides from the venom of the tarantula Lasiodora klugi with activity against adult A. aegypti. The isolated peptides were named U-TRTX-Lk1a and U-TRTX-Lk2a and comprised 41 and 49 residues with monoisotopic masses of 4687.02 Da and 5718.88 Da, respectively. U-TRTX-Lk1a exhibited an LD50 of 38.3 pmol/g when injected into A. aegypti and its modeled structure conformed to the inhibitor cystine knot motif. U-TRTX-Lk2a has an LD50 of 45.4 pmol/g against adult A. aegypti and its predicted structure conforms to the disulfide-directed ß-hairpin motif. These spider-venom peptides represent potential leads for the development of novel control agents for A. aegypti.


Subject(s)
Spider Venoms , Venoms , Animals , Venoms/pharmacology , Brazil , Mosquito Vectors , Peptides/pharmacology , Insecta , Spider Venoms/toxicity , Spider Venoms/chemistry
13.
Exp Clin Endocrinol Diabetes ; 131(11): 583-588, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37524110

ABSTRACT

AIM: This study investigated the effects of insulin glargine and exenatide on the muscle mass of patients with newly diagnosed type 2 diabetes (T2DM) and nonalcoholic fatty liver disease (NAFLD). METHODS: We performed a post-hoc analysis of our previously study, a 24-week randomized controlled multicenter clinical trial (ClinicalTrials.gov, NCT02303730). Seventy-six patients were randomly assigned 1:1 to receive insulin glargine or exenatide treatment. The changes in psoas muscle area (PMA) (mm2) were obtained with the cross-sectional Dixonfat magnetic resonance images at the fourth lumber vertebra. RESULTS: There were no significant differences in age, BMI, gender, and PMA in insulin glargine and exenatide groups at baseline. After treatment, PMA tended to increase by 13.13 (-215.52, 280.80) mm2 in the insulin glargine group and decrease by 149.09 (322.90-56.39) mm2 in the exenatide group (both p>0.05). Subgroup analysis showed a 560.64 (77.88, 1043.40) (mm2) increase of PMA in the insulin group relative to the Exenatide group in patients with BMI<28 kg/m2 (p0.031) after adjusting for gender, age, and research center. Interaction analysis showed an interaction between BMI and treatment (p0.009). However, no interaction was observed among subgroups with a BMI≥28 kg/m2 or with different genders and ages. CONCLUSION: Compared to exenatide, insulin glargine can relativity increase PMA in patients with T2DM having BMI<28 kg/m2 and NAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Humans , Female , Male , Insulin Glargine/pharmacology , Exenatide/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Cross-Sectional Studies , Muscles , Hypoglycemic Agents/pharmacology , Venoms/pharmacology
14.
Toxins (Basel) ; 15(6)2023 06 03.
Article in English | MEDLINE | ID: mdl-37368676

ABSTRACT

Malaria is an infectious disease caused by Plasmodium spp. and it is mainly transmitted to humans by female mosquitoes of the genus Anopheles. Malaria is an important global public health problem due to its high rates of morbidity and mortality. At present, drug therapies and vector control with insecticides are respectively the most commonly used methods for the treatment and control of malaria. However, several studies have shown the resistance of Plasmodium to drugs that are recommended for the treatment of malaria. In view of this, it is necessary to carry out studies to discover new antimalarial molecules as lead compounds for the development of new medicines. In this sense, in the last few decades, animal venoms have attracted attention as a potential source for new antimalarial molecules. Therefore, the aim of this review was to summarize animal venom toxins with antimalarial activity found in the literature. From this research, 50 isolated substances, 4 venom fractions and 7 venom extracts from animals such as anurans, spiders, scorpions, snakes, and bees were identified. These toxins act as inhibitors at different key points in the biological cycle of Plasmodium and may be important in the context of the resistance of Plasmodium to currently available antimalarial drugs.


Subject(s)
Anopheles , Antimalarials , Malaria , Plasmodium , Toxins, Biological , Female , Humans , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Venoms/pharmacology , Venoms/therapeutic use , Mosquito Vectors , Malaria/drug therapy , Toxins, Biological/therapeutic use , Plasmodium falciparum
15.
Neuropharmacology ; 238: 109637, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37391028

ABSTRACT

Peptide-based drug development for CNS disorders is challenged by poor blood-brain barrier (BBB) penetrability of peptides. While acylation protractions (lipidation) have been successfully applied to increase circulating half-life of therapeutic peptides, little is known about the CNS accessibility of lipidated peptide drugs. Light-sheet fluorescence microscopy (LSFM) has emerged as a powerful method to visualize whole-brain 3D distribution of fluorescently labelled therapeutic peptides at single-cell resolution. Here, we applied LSFM to map CNS distribution of the clinically relevant GLP-1 receptor agonist (GLP-1RA) exendin-4 (Ex4) and lipidated analogues following peripheral administration. Mice received an intravenous dose (100 nmol/kg) of IR800 fluorophore-labelled Ex4 (Ex4), Ex4 acylated with a C16-monoacid (Ex4_C16MA) or C18-diacid (Ex4_C18DA). Other mice were administered C16MA-acylated exendin 9-39 (Ex9-39_C16MA), a selective GLP-1R antagonist, serving as negative control for GLP-1R mediated agonist internalization. Two hours post-dosing, brain distribution of Ex4 and analogues was predominantly restricted to the circumventricular organs, notably area postrema and nucleus of the solitary tract. However, Ex4_C16MA and Ex9-39_C16MA also distributed to the paraventricular hypothalamic nucleus and medial habenula. Notably, Ex4_C18DA was detected in deeper-lying brain structures such as dorsomedial/ventromedial hypothalamic nuclei and the dentate gyrus. Similar CNS distribution maps of Ex4_C16MA and Ex9-39_C16MA suggest that brain access of lipidated Ex4 analogues is independent on GLP-1 receptor internalization. The cerebrovasculature was devoid of specific labelling, hence not supporting a direct role of GLP-1 RAs in BBB function. In conclusion, peptide lipidation increases CNS accessibility of Ex4. Our fully automated LSFM pipeline is suitable for mapping whole-brain distribution of fluorescently labelled drugs.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Venoms , Mice , Animals , Exenatide , Glucagon-Like Peptide-1 Receptor/agonists , Venoms/pharmacology , Venoms/chemistry , Peptides/chemistry , Brain/diagnostic imaging , Brain/metabolism
16.
Toxins (Basel) ; 15(3)2023 03 10.
Article in English | MEDLINE | ID: mdl-36977102

ABSTRACT

Evolution endowed snakes with the ultimate weapon: venom [...].


Subject(s)
Snake Venoms , Snakes , Animals , Snake Venoms/pharmacology , Venoms/pharmacology
17.
Cells ; 12(6)2023 03 20.
Article in English | MEDLINE | ID: mdl-36980281

ABSTRACT

Improvement of insulin secretion by pancreatic ß-cells and preservation of their mass are the current challenges that future antidiabetic drugs should meet for achieving efficient and long-term glycemic control in patients with type 2 diabetes (T2D). The successful development of glucagon-like peptide 1 (GLP-1) analogues, derived from the saliva of a lizard from the Helodermatidae family, has provided the proof of concept that antidiabetic drugs directly targeting pancreatic ß-cells can emerge from venomous animals. The literature reporting on the antidiabetic effects of medicinal plants suggests that they contain some promising active substances such as polyphenols and alkaloids, which could be active as insulin secretagogues and ß-cell protectors. In this review, we discuss the potential of several polyphenols, alkaloids and venom peptides from snake, frogs, scorpions and cone snails. These molecules could contribute to the development of new efficient antidiabetic medicines targeting ß-cells, which would tackle the progression of the disease.


Subject(s)
Alkaloids , Diabetes Mellitus, Type 2 , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Diabetes Mellitus, Type 2/drug therapy , Polyphenols/pharmacology , Polyphenols/therapeutic use , Venoms/pharmacology , Venoms/therapeutic use , Peptides/pharmacology , Alkaloids/pharmacology , Alkaloids/therapeutic use
18.
Toxins (Basel) ; 15(2)2023 02 14.
Article in English | MEDLINE | ID: mdl-36828473

ABSTRACT

Animal-derived venoms are complex mixtures of toxins triggering important biological effects during envenomings. Although venom-derived toxins are known for their potential of causing harm to victims, toxins can also act as pharmacological agents. During the COVID-19 pandemic, there was observed an increase in in-depth studies on antiviral agents, and since, to date, there has been no completely effective drug against the global disease. This review explores the crosstalk of animal toxins and COVID-19, aiming to map potential therapeutic agents derived from venoms (e.g., bees, snakes, scorpions, etc.) targeting COVID-19.


Subject(s)
COVID-19 , Venoms , Animals , Humans , Venoms/pharmacology , Pandemics , Snakes , Scorpions
19.
Eur J Nucl Med Mol Imaging ; 50(4): 996-1004, 2023 03.
Article in English | MEDLINE | ID: mdl-36446951

ABSTRACT

PURPOSE: Exendin, an analogue of the glucagon-like peptide 1 (GLP1), is an excellent tracer for molecular imaging of pancreatic beta cells and beta cell-derived tumours. The commonly used form, exendin-4, activates the GLP1 receptor and causes internalisation of the peptide-receptor complex. As a consequence, injection of exendin-4 can lead to adverse effects such as nausea, vomiting and hypoglycaemia and thus requires close monitoring during application. By comparison, the antagonist exendin(9-39) does not activate the receptor, but its lack of internalisation has precluded its use as a tracer. Improving the cellular uptake of exendin(9-39) could turn it into a useful alternative tracer with less side-effects than exendin-4. METHODS: We conjugated exendin-4 and exendin(9-39) to the well-known cell-penetrating peptide (CPP) penetratin. We evaluated cell binding and internalisation of the radiolabelled peptides in vitro and their biodistribution in vivo. RESULTS: Exendin-4 showed internalisation irrespective of the presence of the CPP, whereas for exendin(9-39) only the penetratin conjugate internalised. Conjugation to the CPP also enhanced the in vivo tumour uptake and retention of exendin(9-39). CONCLUSION: We demonstrate that penetratin robustly improves internalisation and tumour retention of exendin(9-39), opening new avenues for antagonist-based in vivo imaging of GLP1R.


Subject(s)
Cell-Penetrating Peptides , Insulinoma , Pancreatic Neoplasms , Humans , Exenatide/metabolism , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/metabolism , Tissue Distribution , Insulinoma/metabolism , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Venoms/pharmacology , Venoms/chemistry , Venoms/metabolism
20.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36499761

ABSTRACT

Peptides are potential therapeutic alternatives against global diseases, such as antimicrobial-resistant infections and cancer. Venoms are a rich source of bioactive peptides that have evolved over time to act on specific targets of the prey. Peptides are one of the main components responsible for the biological activity and toxicity of venoms. South American organisms such as scorpions, snakes, and spiders are important producers of a myriad of peptides with different biological activities. In this review, we report the main venom-derived peptide families produced from South American organisms and their corresponding activities and biological targets.


Subject(s)
Neoplasms , Venoms , Animals , Venoms/pharmacology , Venoms/therapeutic use , Scorpions/chemistry , Peptides/pharmacology , Peptides/chemistry , Neoplasms/drug therapy , Drug Resistance, Microbial
SELECTION OF CITATIONS
SEARCH DETAIL