Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.853
1.
Neurology ; 102(11): e209445, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38759137

BACKGROUND AND OBJECTIVES: Gene-gene interactions likely contribute to the etiology of multifactorial diseases such as cerebral venous thrombosis (CVT) and could be one of the main sources of known missing heritability. We explored Factor XI (F11) and ABO gene interactions among patients with CVT. METHODS: Patients with CVT of European ancestry from the large Bio-Repository to Establish the Aetiology of Sinovenous Thrombosis (BEAST) international collaboration were recruited. Codominant modelling was used to determine interactions between genome-wide identified F11 and ABO genes with CVT status. RESULTS: We studied 882 patients with CVT and 1,205 ethnically matched control participants (age: 42 ± 15 vs 43 ± 12 years, p = 0.08: sex: 71% male vs 68% female, p = 0.09, respectively). Individuals heterozygous (AT) for the risk allele (T) at both loci (rs56810541/F11 and rs8176645/ABO) had a 3.9 (95% CI 2.74-5.71, p = 2.75e-13) increase in risk of CVT. Individuals homozygous (TT) for the risk allele at both loci had a 13.9 (95% CI 7.64-26.17, p = 2.0e-15) increase in risk of CVT. The presence of a non-O blood group (A, B, AB) combined with TT/rs56810541/F11 increased CVT risk by OR = 6.8 (95% CI 4.54-10.33, p = 2.00e15), compared with blood group-O combined with AA. DISCUSSION: Interactions between factor XI and ABO genes increase risk of CVT by 4- to 14-fold.


ABO Blood-Group System , Factor XI , Humans , ABO Blood-Group System/genetics , Female , Male , Adult , Middle Aged , Factor XI/genetics , Venous Thrombosis/genetics , Intracranial Thrombosis/genetics , Epistasis, Genetic/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Galactosyltransferases
2.
Curr Med Sci ; 44(2): 369-379, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619683

OBJECTIVE: Matrix metalloproteinase 13 (MMP13) is an extracellular matrix protease that affects the progression of atherosclerotic plaques and arterial thrombi by degrading collagens, modifying protein structures and regulating inflammatory responses, but its role in deep vein thrombosis (DVT) has not been determined. The purpose of this study was to investigate the potential effects of MMP13 and MMP13-related genes on the formation of DVT. METHODS: We altered the expression level of MMP13 in vivo and conducted a transcriptome study to examine the expression and relationship between MMP13 and MMP13-related genes in a mouse model of DVT. After screening genes possibly related to MMP13 in DVT mice, the expression levels of candidate genes in human umbilical vein endothelial cells (HUVECs) and the venous wall were evaluated. The effect of MMP13 on platelet aggregation in HUVECs was investigated in vitro. RESULTS: Among the differentially expressed genes, interleukin 1 beta, podoplanin (Pdpn), and factor VIII von Willebrand factor (F8VWF) were selected for analysis in mice. When MMP13 was inhibited, the expression level of PDPN decreased significantly in vitro. In HUVECs, overexpression of MMP13 led to an increase in the expression level of PDPN and induced platelet aggregation, while transfection of PDPN-siRNA weakened the ability of MMP13 to increase platelet aggregation. CONCLUSIONS: Inhibiting the expression of MMP13 could reduce the burden of DVT in mice. The mechanism involves downregulating the expression of Pdpn through MMP13, which could provide a novel gene target for DVT diagnosis and treatment.


Venous Thrombosis , Animals , Humans , Mice , Disease Models, Animal , Human Umbilical Vein Endothelial Cells/metabolism , Matrix Metalloproteinase 13/genetics , Platelet Aggregation , Venous Thrombosis/genetics
3.
Oncogene ; 43(21): 1631-1643, 2024 May.
Article En | MEDLINE | ID: mdl-38589675

Androgen deprivation therapy (ADT) is the first line of treatment for metastatic prostate cancer (PCa) that effectively delays the tumor progression. However, it also increases the risk of venous thrombosis event (VTE) in patients, a leading cause of mortality. How a pro-thrombotic cascade is induced by ADT remains poorly understood. Here, we report that protein disulfide isomerase A2 (PDIA2) is upregulated in PCa cells to promote VTE formation and enhance PCa cells resistant to ADT. Using various in vitro and in vivo models, we demonstrated a dual function of PDIA2 that enhances tumor-mediated pro-coagulation activity via tumor-derived extracellular vehicles (EVs). It also stimulates PCa cell proliferation, colony formation, and xenograft growth androgen-independently. Mechanistically, PDIA2 activates the tissue factor (TF) on EVs through its isomerase activity, which subsequently triggers a pro-thrombotic cascade in the blood. Additionally, TF-containing EVs can activate the Src kinase inside PCa cells to enhance the AR signaling ligand independently. Androgen deprivation does not alter PDIA2 expression in PCa cells but enhances PDIA2 translocation to the cell membrane and EVs via suppressing the clathrin-dependent endocytic process. Co-recruitment of AR and FOXA1 to the PDIA2 promoter is required for PDIA2 transcription under androgen-deprived conditions. Importantly, blocking PDIA2 isomerase activity suppresses the pro-coagulation activity of patient plasma, PCa cell, and xenograft samples as well as castrate-resistant PCa xenograft growth. These results demonstrate that PDIA2 promotes VTE and tumor progression via activating TF from tumor-derived EVs. They rationalize pharmacological inhibition of PDIA2 to suppress ADT-induced VTE and castrate-resistant tumor progression.


Disease Progression , Prostatic Neoplasms, Castration-Resistant , Protein Disulfide-Isomerases , Venous Thrombosis , Animals , Humans , Male , Mice , Androgen Antagonists/pharmacology , Androgen Antagonists/adverse effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Thromboplastin/metabolism , Thromboplastin/genetics , Venous Thrombosis/metabolism , Venous Thrombosis/chemically induced , Venous Thrombosis/pathology , Venous Thrombosis/genetics , Venous Thrombosis/etiology , Xenograft Model Antitumor Assays
4.
Circ Res ; 134(10): e93-e111, 2024 May 10.
Article En | MEDLINE | ID: mdl-38563147

BACKGROUND: Endothelial activation promotes the release of procoagulant extracellular vesicles and inflammatory mediators from specialized storage granules. Endothelial membrane exocytosis is controlled by phosphorylation. We hypothesized that the absence of PTP1B (protein tyrosine phosphatase 1B) in endothelial cells promotes venous thromboinflammation by triggering endothelial membrane fusion and exocytosis. METHODS: Mice with inducible endothelial deletion of PTP1B (End.PTP1B-KO) underwent inferior vena cava ligation to induce stenosis and venous thrombosis. Primary endothelial cells from transgenic mice and human umbilical vein endothelial cells were used for mechanistic studies. RESULTS: Vascular ultrasound and histology showed significantly larger venous thrombi containing higher numbers of Ly6G (lymphocyte antigen 6 family member G)-positive neutrophils in mice with endothelial PTP1B deletion, and intravital microscopy confirmed the more pronounced neutrophil recruitment following inferior vena cava ligation. RT2 PCR profiler array and immunocytochemistry analysis revealed increased endothelial activation and adhesion molecule expression in primary End.PTP1B-KO endothelial cells, including CD62P (P-selectin) and VWF (von Willebrand factor). Pretreatment with the NF-κB (nuclear factor kappa B) kinase inhibitor BAY11-7082, antibodies neutralizing CD162 (P-selectin glycoprotein ligand-1) or VWF, or arginylglycylaspartic acid integrin-blocking peptides abolished the neutrophil adhesion to End.PTP1B-KO endothelial cells in vitro. Circulating levels of annexin V+ procoagulant endothelial CD62E+ (E-selectin) and neutrophil (Ly6G+) extracellular vesicles were also elevated in End.PTP1B-KO mice after inferior vena cava ligation. Higher plasma MPO (myeloperoxidase) and Cit-H3 (citrullinated histone-3) levels and neutrophil elastase activity indicated neutrophil activation and extracellular trap formation. Infusion of End.PTP1B-KO extracellular vesicles into C57BL/6J wild-type mice most prominently enhanced the recruitment of endogenous neutrophils, and this response was blunted in VWF-deficient mice or by VWF-blocking antibodies. Reduced PTP1B binding and tyrosine dephosphorylation of SNAP23 (synaptosome-associated protein 23) resulting in increased VWF exocytosis and neutrophil adhesion were identified as mechanisms, all of which could be restored by NF-κB kinase inhibition using BAY11-7082. CONCLUSIONS: Our findings show that endothelial PTP1B deletion promotes venous thromboinflammation by enhancing SNAP23 phosphorylation, endothelial VWF exocytosis, and neutrophil recruitment.


Exocytosis , Mice, Knockout , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Venous Thrombosis , von Willebrand Factor , Animals , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/deficiency , Humans , Mice , von Willebrand Factor/metabolism , von Willebrand Factor/genetics , Venous Thrombosis/metabolism , Venous Thrombosis/genetics , Venous Thrombosis/pathology , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation/metabolism , Inflammation/genetics , Mice, Inbred C57BL , Neutrophils/metabolism , Endothelial Cells/metabolism , Cells, Cultured , Vena Cava, Inferior/metabolism , Vena Cava, Inferior/pathology , Male , Neutrophil Infiltration , NF-kappa B/metabolism
5.
Blood Coagul Fibrinolysis ; 35(4): 180-186, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38526965

The aim of this study was to evaluate the impact of methylene tetrahydrofolate reductase (MTHFR) rs1801133 (C→T667 transition) on age at first idiopathic portal vein thrombosis (PVT) and to identify clinical and/or laboratory variables influencing age at first PVT, including plasma homocysteine and the prothrombin rs1799963 PT (G→A transition at position 20210) (PT) mutation. A retrospective cross-sectional cohort, including 15 MTHFR TT, 32 MTHFR TC and 22 MTHFR CC idiopathic PVT participants contributing demographics, age at PVT, plasma concentrations of homocysteine and of natural anticoagulants. MTHFR TT carriers presented with a lower age at PVT than heterozygous or wild-type genotypes (31 ±â€Š8 vs. 48 ±â€Š15 vs. 52 ±â€Š13 years, P  = 0.001) and were more likely to have a plasma HC concentration above the cut-off (73.3 vs. 32 vs. 50%, P  = 0.04). MTHFR TT and protein C predicted age at PVT ( P  < 0.0001 and P  = 0.06); MTHFR TT predicted plasma homocysteine ( P  = 0.05). In the MTHFR TT group, plasma homocysteine inversely related to protein C ( P  = 0.03). Plasma homocysteine predicted the extent of PVT ( P  = 0.03). Compound MTHFR TT + PT GA did not lower age at first PVT compared to MTHFR TT alone (35 ±â€Š9 vs. 30 ±â€Š8 years). MTHFR TT is associated with a 20-year earlier PVT presentation than heterozygous and wild-type MTHFR genotypes. The inverse relation between plasma homocysteine and protein C contributes to the prematurity of PVT in the MTHFR TT group, whereas plasma homocysteine contributes to the extent of PVT. The recent exclusion of MTHFR genotyping from the thrombophilia screen needs revisiting in this setting.


Methylenetetrahydrofolate Reductase (NADPH2) , Portal Vein , Venous Thrombosis , Adult , Aged , Female , Humans , Male , Middle Aged , Cross-Sectional Studies , Genotype , Homocysteine/blood , Homozygote , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Portal Vein/pathology , Prothrombin/genetics , Retrospective Studies , Venous Thrombosis/genetics , Venous Thrombosis/blood , Aged, 80 and over
6.
Ann Hematol ; 103(6): 2145-2155, 2024 Jun.
Article En | MEDLINE | ID: mdl-38433129

OBJECTIVE: To analyze the clinical features and gene mutations in four families with hereditary protein C (PC) deficiency and explore their association with vascular thromboembolism. METHODS: The clinical data of four patients with PC deficiency were retrospectively analyzed. Venous blood samples were collected from the four affected patients and their family members, and relevant coagulation indexes and thrombin production and inhibition tests were performed. PCR was used to amplify and directly sequence the PROC gene of the probands. Software analysis was conducted to assess the conservativeness and pathogenicity of the mutated loci. Protein models were constructed to analyze the spatial structure before and after the mutation. RESULTS: Thrombin generation and inhibition assays demonstrated impaired anticoagulation in all four probands. Proband 1 and 4 presented clinically with pulmonary embolism and lower extremity deep vein thrombosis (DVT), Proband 2 with cerebral infarction, and Proband 3 with DVT. Genetic analysis revealed the presence of the following mutations: c.541T > G heterozygous missense mutation, c.577-579delAAG heterozygous deletion mutation, c.247-248insCT heterozygous insertion mutation, c.659G > A heterozygous missense mutation, and a new variant locus c.1146_1146delT heterozygous deletion mutation in the four probands, respectively. In particular, c.1146_1146delT heterozygous deletion mutations not reported previously. Conservativeness and pathogenicity analyses confirmed that most of these amino acid residues were conserved, and all the mutations were found to be pathogenic. Analysis of protein modeling revealed that these mutations induced structural alterations in the protein or led to the formation of truncated proteins. According to the American College of Medical Genetics and Genomics (ACMG) classification criteria and guidelines for genetic variants, c.1146_1146delT was rated as pathogenic (PVS1 + M2 + PM4 + PP1 + PP3 + PP4). CONCLUSION: The identified mutations are likely associated with decreased PC levels in each of the four families. The clinical manifestations of hereditary PC deficiency exhibit considerable diversity.


Pedigree , Protein C Deficiency , Protein C , Humans , Protein C Deficiency/genetics , Protein C Deficiency/complications , Female , Male , Adult , Protein C/genetics , Middle Aged , Retrospective Studies , Venous Thrombosis/genetics , Venous Thrombosis/blood , Mutation, Missense , Pulmonary Embolism/genetics , Mutation
7.
Stroke ; 55(4): 934-942, 2024 Apr.
Article En | MEDLINE | ID: mdl-38527140

BACKGROUND: The importance of thromboembolism in the pathogenesis of lacunar stroke (LS), resulting from cerebral small vessel disease (cSVD), is debated, and although antiplatelets are widely used in secondary prevention after LS, there is limited trial evidence from well-subtyped patients to support this approach. We sought to evaluate whether altered anticoagulation plays a causal role in LS and cSVD using 2-sample Mendelian randomization. METHODS: From a recent genome-wide association study (n=81 190), we used 119 genetic variants associated with venous thrombosis at genome-wide significance (P<5*10-8) and with a linkage disequilibrium r2<0.001 as instrumental variables. We also used genetic associations with stroke from the GIGASTROKE consortium (62 100 ischemic stroke cases: 10 804 cardioembolic stroke, 6399 large-artery stroke, and 6811 LS). In view of the lower specificity for LS with the CT-based phenotyping mainly used in GIGASTROKE, we also used data from patients with magnetic resonance imaging-confirmed LS (n=3199). We also investigated associations with more chronic magnetic resonance imaging features of cSVD, namely, white matter hyperintensities (n=37 355) and diffusion tensor imaging metrics (n=36 533). RESULTS: Mendelian randomization analyses showed that genetic predisposition to venous thrombosis was associated with an increased odds of any ischemic stroke (odds ratio [OR], 1.19 [95% CI, 1.13-1.26]), cardioembolic stroke (OR, 1.32 [95% CI, 1.21-1.45]), and large-artery stroke (OR, 1.41 [95% CI, 1.26-1.57]) but not with LS (OR, 1.07 [95% CI, 0.99-1.17]) in GIGASTROKE. Similar results were found for magnetic resonance imaging-confirmed LS (OR, 0.94 [95% CI, 0.81-1.09]). Genetically predicted risk of venous thrombosis was not associated with imaging markers of cSVD. CONCLUSIONS: These findings suggest that altered thrombosis plays a role in the risk of cardioembolic and large-artery stroke but is not a causal risk factor for LS or imaging markers of cSVD. This raises the possibility that antithrombotic medication may be less effective in cSVD and underscores the necessity for further trials in well-subtyped cohorts with LS to evaluate the efficacy of different antithrombotic regimens in LS.


Cerebral Small Vessel Diseases , Embolic Stroke , Stroke, Lacunar , Stroke , Thrombosis , Venous Thrombosis , Humans , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/complications , Diffusion Tensor Imaging , Embolic Stroke/complications , Fibrinolytic Agents , Genome-Wide Association Study , Mendelian Randomization Analysis , Stroke/diagnostic imaging , Stroke/genetics , Stroke/complications , Stroke, Lacunar/diagnostic imaging , Stroke, Lacunar/genetics , Stroke, Lacunar/complications , Thrombosis/complications , Venous Thrombosis/diagnostic imaging , Venous Thrombosis/epidemiology , Venous Thrombosis/genetics
8.
Nutr Metab Cardiovasc Dis ; 34(4): 1021-1027, 2024 Apr.
Article En | MEDLINE | ID: mdl-38402000

BACKGROUND AND AIM: Previous experimental and observational studies showed that serum uric acid (SUA) was associated with deep venous thrombosis (DVT), but the causal relationship is unclear. This study aimed to explore the potential causal association between SUA and DVT. METHODS AND RESULTS: We designed a two-sample Mendelian randomization (MR) analysis by using summary-level data from large genome-wide association studies performed in European individuals. A total of 14 SUA-related single-nucleotide polymorphisms (SNPs) (P value < 5 × 10-8) were identified as instrumental variables. The inverse variance weighted method was used as the primary method to compute the odds ratios (ORs) and 95 % confidence intervals (95 % CIs) for per standard deviation increase in SUA. MR Egger, weighted median, weighted mode, and simple mode were also applied to test the robustness of the results. We found no significant causal effects of serum uric acid on deep venous thrombosis (odds ratio [OR]: 1.000, 95 % confidence interval [CI]: 0.998-1.002, p = 0.78) by using inverse variance weighted. MR analyses based on other methods showed similar results. CONCLUSIONS: There was no potential causal associations between higher genetically predicted SUA levels and increased risk of deep venous thrombosis. Further, MR studies with more valid SNPs and more DVT cases are needed. Validation of the findings is also recommended.


Genome-Wide Association Study , Venous Thrombosis , Humans , Mendelian Randomization Analysis , Uric Acid , Polymorphism, Single Nucleotide , Venous Thrombosis/diagnosis , Venous Thrombosis/epidemiology , Venous Thrombosis/genetics
9.
J Med Case Rep ; 18(1): 77, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38414076

BACKGROUND: Lower limb deep vein thrombosis (DVT) concurrent with pulmonary embolism (PE) is perilous, particularly in the elderly, exhibiting heterogeneity with thrombophilia mutations. Tailored treatment is essential, yet sudden deaths complicate causative factor elucidation. This report emphasizes genetic testing necessity in PE patients with thrombophilia indicators, facilitating cause identification, personalized treatment guidance, and family education. CASE PRESENTATION: This study details a 75-year-old Chinese woman with DVT and PE, where genetic testing identified thrombophilia, guiding personalized treatment decisions. RESULTS: Upon admission, the patient, after over 10 days of bed rest, presented chest tightness, shortness of breath, and unilateral leg swelling. Diagnostic measures revealed DVT and a substantial PE. Genetic testing identified a PROS1 gene C200A>C mutation, reducing protein S activity. Following 2 weeks of anticoagulation and inferior vena cava filter insertion, the patient, discharged, initiated lifelong anticoagulant therapy. A 1-year follow-up showed no recurrent thrombotic events. Family members carrying the mutation received informed and educational interventions. CONCLUSION: Genetic testing for thrombophilic predisposition post-PE is crucial, elucidating etiology, guiding individualized treatment, and playing a pivotal role in family education.


Protein S Deficiency , Pulmonary Embolism , Thrombosis , Vena Cava Filters , Venous Thrombosis , Female , Humans , Aged , Protein S Deficiency/complications , Protein S Deficiency/genetics , Pulmonary Embolism/genetics , Pulmonary Embolism/complications , Venous Thrombosis/genetics , Venous Thrombosis/complications , Thrombosis/complications , Mutation , Vena Cava Filters/adverse effects
10.
J Thromb Thrombolysis ; 57(4): 699-709, 2024 Apr.
Article En | MEDLINE | ID: mdl-38393674

Venous thrombosis (VT) is a complex multi-factorial disease and a major health concern worldwide. Its clinical implications include deep vein thrombosis (DVT) and pulmonary embolism (PE). VT pathogenesis involves intricate interplay of various coagulants and anti-coagulants. Growing evidences from epidemiological studies have shown that many non-coding microRNAs play significant regulatory role in VT pathogenesis by modulating expressions of large number of gene involved in blood coagulation. Present study aimed to investigate the effect of human micro RNA (hsa-miR)-320a antagonist on thrombus formation in VT. Surgery was performed on Sprague-Dawley (SD) rats, wherein the inferior vena cava (IVC) was ligated to introduce DVT. Animals were divided into four groups (n = 5 in each group); Sham controls (Sham), IVC ligated-DVT (DVT), IVC ligated-DVT + transfection reagent (DVT-NC) and IVC ligated-DVT + miR320a antagonist (DVT-miR-320a antagonist). IVC was dissected after 6 h and 24 h of surgery to estimate thrombus weight and coagulatory parameters such as levels of D-dimer, clotting time and bleeding time. Also, ELISA based biochemical assays were formed to assess toxicity of miRNA antagonist in animals. Our experimental analysis demonstrated that there was a marked reduction in size of thrombus in hsa-miR-320a antagonist treated animals, both at 6 h and 24 h. There was a marked reduction in D-dimer levels in hsa-miR-320a antagonist treated animals. Also, blood clotting time was delayed and bleeding time was increased significantly in hsa-miR-320a antagonist treated rats compared to the non-treated and Sham rats. There was no sign of toxicity in treated group compared to control animals. Hsa-miR-320a antagonist could be promising therapeutic target for management of VT.


MicroRNAs , Venous Thrombosis , Animals , Rats , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Pulmonary Embolism , Rats, Sprague-Dawley , Venous Thrombosis/complications , Venous Thrombosis/genetics
11.
Blood ; 143(21): 2190-2200, 2024 May 23.
Article En | MEDLINE | ID: mdl-38306657

ABSTRACT: VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome, caused by somatic mutations in UBA1, is an autoinflammatory disorder with diverse systemic manifestations. Thrombosis is a prominent clinical feature of VEXAS syndrome. The risk factors and frequency of thrombosis in VEXAS syndrome are not well described, due to the disease's recent discovery and the paucity of large databases. We evaluated 119 patients with VEXAS syndrome for venous and arterial thrombosis and correlated their presence with clinical outcomes and survival. Thrombosis occurred in 49% of patients, mostly venous thromboembolism (VTE; 41%). Almost two-thirds of VTEs were unprovoked, 41% were recurrent, and 20% occurred despite anticoagulation. The cumulative incidence of VTE was 17% at 1 year from symptom onset and 40% by 5 years. Cardiac and pulmonary inflammatory manifestations were associated with time to VTE. M41L was positively associated specifically with pulmonary embolism by univariate (odds ratio [OR]: 4.58, confidence interval [CI] 1.28-16.21, P = .02) and multivariate (OR: 16.94, CI 1.99-144.3, P = .01) logistic regression. The cumulative incidence of arterial thrombosis was 6% at 1 year and 11% at 5 years. The overall survival of the entire patient cohort at median follow-up time of 4.8 years was 88%, and there was no difference in survival between patients with or without thrombosis (P = .8). Patients with VEXAS syndrome are at high risk of VTE; thromboprophylaxis should administered be in high-risk settings unless strongly contraindicated.


Thrombosis , Humans , Male , Female , Adult , Middle Aged , Thrombosis/etiology , Thrombosis/genetics , Thrombosis/epidemiology , Adolescent , Ubiquitin-Activating Enzymes/genetics , Young Adult , Risk Factors , Aged , Child , Venous Thrombosis/etiology , Venous Thrombosis/epidemiology , Venous Thrombosis/genetics , Incidence , Mutation , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/complications , Child, Preschool
12.
PLoS One ; 19(2): e0298123, 2024.
Article En | MEDLINE | ID: mdl-38349931

This study aimed to explore the potential link between coffee and tea consumption and the risk of deep vein thrombosis (DVT) through Mendelian randomization (MR) analysis. Employing the MR, we identified 33 single nucleotide polymorphisms (SNPs) as instrumental variables (IVs) for coffee intake and 38 SNPs for tea intake. The investigation employed the inverse-variance weighted (IVW) method to evaluate the causal impact of beverage consumption on DVT risk. Additionally, MR-Egger and MR-PRESSO tests were conducted to assess pleiotropy, while Cochran's Q test gauged heterogeneity. Robustness analysis was performed through a leave-one-out approach. The MR analysis uncovered a significant association between coffee intake and an increased risk of DVT (odds ratio [OR] 1.008, 95% confidence interval [CI] = 1.001-1.015, P = 0.025). Conversely, no substantial causal effect of tea consumption on DVT was observed (OR 1.001, 95% CI = 0.995-1.007, P = 0.735). Importantly, no significant levels of heterogeneity, pleiotropy, or bias were detected in the instrumental variables used. In summary, our findings suggest a modestly heightened risk of DVT associated with coffee intake, while tea consumption did not exhibit a significant impact on DVT risk.


Coffee , Venous Thrombosis , Humans , Coffee/adverse effects , Mendelian Randomization Analysis , Beverages , Venous Thrombosis/etiology , Venous Thrombosis/genetics , Tea/adverse effects , Genome-Wide Association Study
13.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article En | MEDLINE | ID: mdl-38338802

Myeloproliferative neoplasms (MPNs) are the leading causes of unusual site thrombosis, affecting nearly 40% of individuals with conditions like Budd-Chiari syndrome or portal vein thrombosis. Diagnosing MPNs in these cases is challenging because common indicators, such as spleen enlargement and elevated blood cell counts, can be obscured by portal hypertension or bleeding issues. Recent advancements in diagnostic tools have enhanced the accuracy of MPN diagnosis and classification. While bone marrow biopsies remain significant diagnostic criteria, molecular markers now play a pivotal role in both diagnosis and prognosis assessment. Hence, it is essential to initiate the diagnostic process for splanchnic vein thrombosis with a JAK2 V617F mutation screening, but a comprehensive approach is necessary. A multidisciplinary strategy is vital to accurately determine the specific subtype of MPNs, recommend additional tests, and propose the most effective treatment plan. Establishing specialized care pathways for patients with splanchnic vein thrombosis and underlying MPNs is crucial to tailor management approaches that reduce the risk of hematological outcomes and hepatic complications.


Budd-Chiari Syndrome , Myeloproliferative Disorders , Neoplasms , Thrombosis , Venous Thrombosis , Humans , Portal Vein , Neoplasms/pathology , Venous Thrombosis/genetics , Venous Thrombosis/complications , Budd-Chiari Syndrome/complications , Budd-Chiari Syndrome/genetics , Myeloproliferative Disorders/complications , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Thrombosis/pathology , Mutation , Janus Kinase 2/genetics
14.
Blood Coagul Fibrinolysis ; 35(3): 133-135, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38358900

Inferior vena cava thrombosis (IVCT) is rare. Thrombophilia is one of the important risk factors. It is also uncommon for gene mutations in F9 gene to cause thrombosis but not hemorrhage. A 35-year-old male patient was admitted to our department with left lower limb swelling without an obvious cause for 1 day. Through contrast-enhanced computed tomography and color Doppler ultrasound, he was found to have lower extremity deep vein thrombosis, IVCT and pulmonary embolism. Through whole-exome sequencing analysis, he was found to carry a 925.7 kb duplication (chrX:137939698-138865419, hg19) encompassing ATP11C , SRD5A1P1 , MCF2 , FGF13 and F9 genes. This duplication of F9 gene was not detected in his parents. Other thrombophilic genes defects were not found. The factor IX activities of this patient, his father and mother were 194, 70 and 148, respectively. He was treated with catheter-directed thrombolysis, AngioJet-assisted pharmaco-mechanical thromboectomy and manual aspiration thromboectomy. Complete recanalization of left femoral, iliac veins and inferior vena cava was achieved. F9 gene duplication is a rare mutation, which can induce multiple venous thrombosis through increasing the activity level of factor IX in plasma. IVCT is a serious type of venous thrombosis. Personalized intervention treatment plans should be developed based on the different clinical characteristics of each case to achieve a higher benefit-risk ratio.


Gene Duplication , Venous Thrombosis , Male , Humans , Adult , Factor IX/therapeutic use , Venous Thrombosis/etiology , Venous Thrombosis/genetics , Vena Cava, Inferior , Thrombolytic Therapy/methods , Catheters/adverse effects , Treatment Outcome , Proto-Oncogene Proteins/therapeutic use , Guanine Nucleotide Exchange Factors/therapeutic use , Adenosine Triphosphatases/therapeutic use , Membrane Transport Proteins/therapeutic use
15.
J Glob Health ; 14: 05001, 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38214889

Background: Several large-scale observational studies have found deep vein thrombosis (DVT) to be related with coronavirus disease 2019 (COVID-19). However, whether there is a clear causal connection between the two is unknown. Methods: Our primary analytical method was the inverse variance-weighted (IVW) approach, complemented by the Mendelian randomisation-Egger (MR-Egger) and weighted median methods. We also used MR-Egger to examine the presence of pleiotropy and the Mendelian randomisation pleiotropy residual sum and outlier (MR-PRESSO) approach to analyse for heterogeneity in the data. Results: We did not observe a direct causal relationship between COVID-19 susceptibility (odds ratio (OR) = 1.023; 95% confidence interval (CI) = 0.828-1.264, standard error (SE) = 0.108, P = 0.833), hospitalisation (OR = 1.030; 95% CI = 0.943-1.125, SE = 0.374, P = 0.720), severity (OR = 0.994; 95% CI = 0.923-1.071, SE = 0.038, P = 0.877), and DVT. The results of the reverse Mendelian randomisation (MR) for DVT and COVID-19 susceptibility exhibited heterogeneity and horizontal pleiotropy. Even after removing outliers, we detected no direct causal relationship between the two (OR = 1.015; 95% CI = 0.954-1.080, SE = 0.032, P = 0.630). Similarly, we found no direct causal relationship between DVT and COVID-19 hospitalisation (OR = 0.999; 95% CI = 0.907-1.102, SE = 0.050, P = 0.999) or severity (OR = 1.014; 95% CI = 0.893-1.153, SE = 0.065, P = 0.826). Conclusions: In this MR study, we identified no direct causal impact in a European population between DVT and the COVID-19 susceptibility, severity, or hospitalisation.


COVID-19 , Venous Thrombosis , Humans , Hospitalization , Venous Thrombosis/epidemiology , Venous Thrombosis/genetics , Mendelian Randomization Analysis
16.
Ann Hematol ; 103(3): 737-747, 2024 Mar.
Article En | MEDLINE | ID: mdl-38263537

To elucidate the role of splanchnic vein thrombosis (SVT) and genomic characteristics in prognosis and survival, we compared patients with polycythemia vera (PV) or essential thrombocythemia (ET) presenting SVT at diagnosis (n = 69, median age 43 years) or during follow-up (n = 21, median age 46 years) to a sex- and age-matched control group of PV/ET without SVT (n = 165, median age 48 years). The majority of patients presenting with SVT at diagnosis were classified as myeloproliferative neoplasm with heterozygous JAK2 mutation (87% of cases vs. 69% in PV/ET control group, p < 0.05), characterized by low JAK2 allele burden and no high-risk mutations. Despite this lower molecular complexity, patients presenting with SVT showed a higher risk of death (HR 3.0, 95% CI 1.5-6.0, p = 0.003) and lower event-free survival (HR 3.0, 95% CI 1.9-4.8, p < 0.001) than age- and sex-matched PV/ET controls. In patients presenting with SVT, molecular high-risk was associated with increased risk of venous re-thrombosis (HR 5.8, 95% CI 1.4-24.0, p = 0.01). Patients developing SVT during follow-up were more frequently allocated in molecular high-risk than those with SVT at diagnosis (52% versus 13%, p < 0.05). In the whole cohort of patients, molecular classification identified PV/ET patients at higher risk of disease progression whereas DNMT3A/TET2/ASXL1 mutations were associated with higher risk of arterial thrombosis. In conclusion, clinical and molecular characteristics are different in PV/ET patients with SVT, depending on whether it occurs at diagnosis or at follow-up. Molecular characterization by NGS is useful for assessing the risk of thrombosis and disease progression in young patients with PV/ET.


Polycythemia Vera , Thrombocythemia, Essential , Thrombosis , Venous Thrombosis , Humans , Adult , Middle Aged , Polycythemia Vera/complications , Polycythemia Vera/genetics , Polycythemia Vera/diagnosis , Thrombocythemia, Essential/complications , Thrombocythemia, Essential/genetics , Thrombocythemia, Essential/diagnosis , Venous Thrombosis/genetics , Thrombosis/etiology , Thrombosis/genetics , Genomics , Disease Progression , Janus Kinase 2/genetics
17.
Thromb Res ; 234: 158-161, 2024 02.
Article En | MEDLINE | ID: mdl-38241766

Myeloproliferative neoplasms (MPN) are the most common cause of noncirrhotic, nontumoral portal vein thrombosis (PVT). Over 90 % of MPN patients with PVT carry the JAK2V617F mutation. Compared to other etiologies of PVT, patients with JAK2V617F MPNs are at increased risk of developing significant portal hypertension. However, when these patients develop refractory portal hypertensive complications requiring portosystemic shunt placement, they have limited options. Transjugular intrahepatic portosystemic shunt (TIPS) insertion is often not feasible, as these patients tend to have extensive, occlusive portal thrombus with cavernous transformation. Surgical portosystemic shunt creation can be an alternative; however, this is associated with significant mortality. In this report, we describe the novel use of a percutaneous mesocaval shunt for successful portomesenteric decompression in a patient with portal hypertension from PVT associated with JAK2V617F positive essential thrombocythemia.


Hypertension, Portal , Portasystemic Shunt, Transjugular Intrahepatic , Venous Thrombosis , Humans , Portal Vein/surgery , Treatment Outcome , Venous Thrombosis/genetics , Venous Thrombosis/surgery , Hypertension, Portal/complications , Hypertension, Portal/genetics , Portasystemic Shunt, Transjugular Intrahepatic/adverse effects
18.
Stem Cell Res Ther ; 15(1): 7, 2024 01 02.
Article En | MEDLINE | ID: mdl-38169418

Venous thromboembolism, which includes deep venous thrombosis (DVT) and pulmonary embolism, is the third most common vascular disease in the world and seriously threatens the lives of patients. Currently, the effect of conventional treatments on DVT is limited. Endothelial progenitor cells (EPCs) play an important role in the resolution and recanalization of DVT, but an unfavorable microenvironment reduces EPC function. Non-coding RNAs, especially long non-coding RNAs and microRNAs, play a crucial role in improving the biological function of EPCs. Non-coding RNAs have become clinical biomarkers of diseases and are expected to serve as new targets for disease intervention. A theoretical and experimental basis for the development of new methods for preventing and treating DVT in the clinic will be provided by studies on the role and molecular mechanism of non-coding RNAs regulating EPC function in the occurrence and development of DVT. To summarize, the characteristics of venous thrombosis, the regulatory role of EPCs in venous thrombosis, and the effect of non-coding RNAs regulating EPCs on venous thrombosis are reviewed. This summary serves as a useful reference and theoretical basis for research into the diagnosis, prevention, treatment, and prognosis of venous thrombosis.


Endothelial Progenitor Cells , MicroRNAs , Vascular Diseases , Venous Thrombosis , Humans , MicroRNAs/genetics , Venous Thrombosis/genetics , Venous Thrombosis/therapy , Cell Movement
19.
Haematologica ; 109(1): 53-59, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-37408475

Venous thrombosis is a common adverse effect of modern therapy for acute lymphoblastic leukemia (ALL). Prior studies to identify risks of thrombosis in pediatric ALL have been limited by genetic screens of pre-identified genetic variants or genome- wide association studies (GWAS) in ancestrally uniform populations. To address this, we performed a retrospective cohort evaluation of thrombosis risk in 1,005 children treated for newly diagnosed ALL. Genetic risk factors were comprehensively evaluated from genome-wide single nucleotide polymorphism (SNP) arrays and were evaluated using Cox regression adjusting for identified clinical risk factors and genetic ancestry. The cumulative incidence of thrombosis was 7.8%. In multivariate analysis, older age, T-lineage ALL, and non-O blood group were associated with increased thrombosis while non-low-risk treatment and higher presenting white blood cell count trended toward increased thrombosis. No SNP reached genome-wide significance. The SNP most strongly associated with thrombosis was rs2874964 near RFXAP (G risk allele; P=4x10-7; hazard ratio [HR] =2.8). In patients of non-European ancestry, rs55689276 near the α globin cluster (P=1.28x10-6; HR=27) was most strongly associated with thrombosis. Among GWAS catalogue SNP reported to be associated with thrombosis, rs2519093 (T risk allele, P=4.8x10-4; HR=2.1), an intronic variant in ABO, was most strongly associated with risk in this cohort. Classic thrombophilia risks were not associated with thrombosis. Our study confirms known clinical risk features associated with thrombosis risk in children with ALL. In this ancestrally diverse cohort, genetic risks linked to thrombosis risk aggregated in erythrocyte-related SNP, suggesting the critical role of this tissue in thrombosis risk.


Precursor Cell Lymphoblastic Leukemia-Lymphoma , Venous Thrombosis , Child , Humans , Retrospective Studies , Risk Factors , Genome-Wide Association Study , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Venous Thrombosis/genetics , Genomics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
20.
Leuk Res ; 136: 107420, 2024 01.
Article En | MEDLINE | ID: mdl-38016412

BCR::ABL1-negative myeloproliferative neoplasms (MPNs) are classically represented by polycythemia vera, essential thrombocythemia, and primary myelofibrosis. BCR::ABL1-negative MPNs are significantly associated with morbidity and mortality related to an increased risk of thrombo-hemorrhagic events. They show a consistent association with splanchnic vein thrombosis (SVT), either represented by the portal, mesenteric or splenic vein thrombosis, or Budd-Chiari Syndrome. SVT is also a frequent presenting manifestation of MPN. MPNs associated with SVT show a predilection for younger women, high association with JAK2V617F mutation, low JAK2V617F variant allele frequency (generally <10 %), and low rates of CALR, MPL, or JAK2 exon 12 mutations. Next-Generation Sequencing techniques have contributed to deepening our knowledge of the molecular landscape of such cases, with potential diagnostic and prognostic implications. In this narrative review, we analyze the current perspective on the molecular background of MPN associated with SVT, pointing as well future directions in this field.


Myeloproliferative Disorders , Polycythemia Vera , Thrombocythemia, Essential , Venous Thrombosis , Humans , Female , Myeloproliferative Disorders/complications , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/diagnosis , Venous Thrombosis/genetics , Polycythemia Vera/complications , Thrombocythemia, Essential/genetics , Mutation , Calreticulin/genetics , Janus Kinase 2/genetics
...