Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Nat Commun ; 13(1): 6097, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36243871

ABSTRACT

Hox transcription factors play fundamental roles during early patterning, but they are also expressed continuously, from embryonic stages through adulthood, in the nervous system. However, the functional significance of their sustained expression remains unclear. In C. elegans motor neurons (MNs), we find that LIN-39 (Scr/Dfd/Hox4-5) is continuously required during post-embryonic life to maintain neurotransmitter identity, a core element of neuronal function. LIN-39 acts directly to co-regulate genes that define cholinergic identity (e.g., unc-17/VAChT, cho-1/ChT). We further show that LIN-39, MAB-5 (Antp/Hox6-8) and the transcription factor UNC-3 (Collier/Ebf) operate in a positive feedforward loop to ensure continuous and robust expression of cholinergic identity genes. Finally, we identify a two-component design principle for homeostatic control of Hox gene expression in adult MNs: Hox transcriptional autoregulation is counterbalanced by negative UNC-3 feedback. These findings uncover a noncanonical role for Hox proteins during post-embryonic life, critically broadening their functional repertoire from early patterning to the control of neurotransmitter identity.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cholinergic Agents , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Homeostasis , Motor Neurons/metabolism , Neurotransmitter Agents , Transcription Factors/metabolism , Vesicular Acetylcholine Transport Proteins/genetics , Vesicular Acetylcholine Transport Proteins/metabolism
2.
Gene ; 842: 146794, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-35952841

ABSTRACT

Choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) are essential enzymes for synthesizing and transporting acetylcholine (ACh). But their functions in metamorphosis, reproduction, and the insecticide susceptibility were poorly understood in the insects. To address these issues, we identified the orthologues of chat and vacht in Tribolium castaneum. Spatiotemporal expression profiling showed Chat has the highest expression at the early adult stage, while vacht shows peak expression at the early larval stage. Both of them were highly expressed at the head of late adult. RNA interference (RNAi) of chat and vacht both led to a decrease in ACh content at the late larval stage. It is observed that chat knockdown severely affected larval development and pupal eclosion, but vacht RNAi only disrupted pupal eclosion. Further, parental RNAi of chat or vacht led to 35 % or 30 % reduction in fecundity, respectively, and knockdown of them completely inhibited egg hatchability. Further analysis has confirmed that both the reduction in fecundity and hatchability caused through the maternal specificity in T. castaneum. Moreover, the transcript levels of chat and vacht were elevated after carbofuran or dichlorvos treatment. Reduction of chat or vacht decreased the resistance to carbofuran and dichlorvos. This study provides the evidence for chat and vacht not only involved in development and reproduction of insects but also could as the potential targets of insecticides.


Subject(s)
Carbofuran , Insecticides , Tribolium , Acetylcholine/metabolism , Animals , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Dichlorvos , Insecticides/pharmacology , Reproduction , Tribolium/genetics , Vesicular Acetylcholine Transport Proteins/genetics
3.
Am J Physiol Cell Physiol ; 322(4): C794-C801, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35264016

ABSTRACT

It is well known that cholinergic hypofunction contributes to cardiac pathology, yet, the mechanisms involved remain unclear. Our previous study has shown that genetically engineered model of cholinergic deficit, the vesicular acetylcholine transporter knockdown homozygous (VAChT KDHOM) mice, exhibit pathological cardiac remodeling and a gradual increase in cardiac mass with aging. Given that an increase in cardiac mass is often caused by adrenergic hyperactivity, we hypothesized that VAChT KDHOM mice might have an increase in cardiac norepinephrine (NE) levels. We thus investigated the temporal changes in NE content in the heart from 3-, 6-, and 12-mo-old VAChT mutants. Interestingly, mice with cholinergic hypofunction showed a gradual elevation in cardiac NE content, which was already increased at 6 mo of age. Consistent with this finding, 6-mo-old VAChT KDHOM mice showed enhanced sympathetic activity and a greater abundance of tyrosine hydroxylase positive sympathetic nerves in the heart. VAChT mutants exhibited an increase in peak calcium transient, and mitochondrial oxidative stress in cardiomyocytes along with enhanced G protein-coupled receptor kinase 5 (GRK5) and nuclear factor of activated T-cells (NFAT) staining in the heart. These are known targets of adrenergic signaling in the cell. Moreover, vagotomized-mice displayed an increase in cardiac NE content confirming the data obtained in VAChT KDHOM mice. Establishing a causal relationship between acetylcholine and NE, VAChT KDHOM mice treated with pyridostigmine, a cholinesterase inhibitor, showed reduced cardiac NE content, rescuing the phenotype. Our findings unveil a yet unrecognized role of cholinergic signaling as a modulator of cardiac NE, providing novel insights into the mechanisms that drive autonomic imbalance.


Subject(s)
Cholinergic Agents , Norepinephrine , Adrenergic Agents , Animals , Mice , Myocytes, Cardiac , Vesicular Acetylcholine Transport Proteins/genetics
4.
Neurobiol Aging ; 110: 13-26, 2022 02.
Article in English | MEDLINE | ID: mdl-34844076

ABSTRACT

At the neuromuscular junction (NMJ), changes to the size of the postsynaptic potential induce homeostatic compensation. At the Drosophila NMJ, increased glutamate release causes a compensatory decrease in quantal content, but it is unknown if this mechanism operates at the cholinergic mammalian NMJ. We addressed this question by recording endplate potentials (EPP) and muscle contraction in 3-month and 24-month ChAT-ChR2-EYFP mice that overexpress vesicular acetylcholine transporter and release more acetylcholine per vesicle. At 3 months, the quantal content of EPPs from ChAT-ChR2-EYFP mice were not different from WT controls, however tetanic depression was greater, and quantal size during high-frequency stimulation and the size of the readily releasable pool (RRP) were decreased. At 24 months of age, quantal content was reduced in ChAT-ChR2-EYFP mice, which normalized synaptic depression despite smaller RRP. The effect of pancuronium on indirect evoked muscle twitch was not different between groups. These results indicate that an increase in the amount of acetylcholine per vesicle induces two distinct age-dependent homeostatic mechanisms compensating excessive acetylcholine release.


Subject(s)
Acetylcholine/metabolism , Aging/metabolism , Aging/physiology , Homeostasis/physiology , Neuromuscular Junction/metabolism , Synaptic Transmission/physiology , Animals , Excitatory Postsynaptic Potentials/physiology , Gene Expression , Mice , Muscle Contraction/physiology , Synaptic Potentials/physiology , Vesicular Acetylcholine Transport Proteins/genetics , Vesicular Acetylcholine Transport Proteins/metabolism
5.
Insect Mol Biol ; 31(1): 73-84, 2022 02.
Article in English | MEDLINE | ID: mdl-34549831

ABSTRACT

Genes of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter are encoded in the same gene locus, called the cholinergic gene locus. They are essential in cholinergic neurons to maintain their functional phenotype. The genomic structure of the cholinergic gene locus is conserved among invertebrates to mammals. However, the cholinergic gene expression in a specific subset of neurons is unknown in insects except for Drosophila melanogaster. In this study, we analysed the upstream sequence of cholinergic gene locus in the silkworm Bombyx mori to identify specific cis-regulatory regions. We found multiple enhancer regions that are localized within 1 kb upstream of the cholinergic gene locus. The combination of promoter assays using small deletions and bioinformatic analysis among insect species illuminates two conserved sequences in the cis-regulatory region: TGACGTA and CCAAT, which are known as the cAMP response element and CAAT box, respectively. We found that dibutyryl-cAMP, an analogue of cAMP, influences the expression of ChAT in B. mori. Tissue-specific expression analysis of transcriptional factors identified potential candidates that control the cholinergic gene locus expression. Our investigation provides new insight into the regulation mechanism of cholinergic neuron-specific gene machinery in this lepidopteran insect.


Subject(s)
Bombyx , Animals , Bombyx/genetics , Choline O-Acetyltransferase/genetics , Cholinergic Agents , Drosophila melanogaster/genetics , Mammals/genetics , Regulatory Sequences, Nucleic Acid , Vesicular Acetylcholine Transport Proteins/genetics
6.
Cells ; 10(12)2021 12 09.
Article in English | MEDLINE | ID: mdl-34943989

ABSTRACT

BACKGROUND: Presynaptic forms of congenital myasthenic syndromes (CMS) due to pathogenic variants in SLC18A3 impairing the synthesis and recycling of acetylcholine (ACh) have recently been described. SLC18A3 encodes the vesicular ACh transporter (VAChT), modulating the active transport of ACh at the neuromuscular junction, and homozygous loss of VAChT leads to lethality. METHODS: Exome sequencing (ES) was carried out to identify the molecular genetic cause of the disease in a 5-year-old male patient and histological, immunofluorescence as well as electron- and CARS-microscopic studies were performed to delineate the muscle pathology, which has so far only been studied in VAChT-deficient animal models. RESULTS: ES unraveled compound heterozygous missense and nonsense variants (c.315G>A, p.Trp105* and c.1192G>C, p.Asp398His) in SLC18A3. Comparison with already-published cases suggests a more severe phenotype including impaired motor and cognitive development, possibly related to a more severe effect of the nonsense variant. Therapy with pyridostigmine was only partially effective while 3,4 diaminopyridine showed no effect. Microscopic investigation of the muscle biopsy revealed reduced fibre size and a significant accumulation of lipid droplets. CONCLUSIONS: We suggest that nonsense variants have a more detrimental impact on the clinical manifestation of SLC18A3-associated CMS. The impact of pathogenic SLC18A3 variants on muscle fibre integrity beyond the effect of denervation is suggested by the build-up of lipid aggregates. This in turn implicates the importance of proper VAChT-mediated synthesis and recycling of ACh for lipid homeostasis in muscle cells. This hypothesis is further supported by the pathological observations obtained in previously published VAChT-animal models.


Subject(s)
Myasthenic Syndromes, Congenital/genetics , Neuromuscular Junction/genetics , Vesicular Acetylcholine Transport Proteins/genetics , Acetylcholine/biosynthesis , Acetylcholine/genetics , Animals , Child, Preschool , Codon, Nonsense/genetics , Disease Models, Animal , Humans , Male , Mice , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Mutation, Missense/genetics , Myasthenic Syndromes, Congenital/pathology , Neuromuscular Junction/pathology , Exome Sequencing
7.
Sci Rep ; 11(1): 15918, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354132

ABSTRACT

Acetylcholine (ACh), the neurotransmitter of the cholinergic system, regulates inflammation in several diseases including pulmonary diseases. ACh is also involved in a non-neuronal mechanism that modulates the innate immune response. Because inflammation and release of pro-inflammatory cytokines are involved in pulmonary emphysema, we hypothesized that vesicular acetylcholine transport protein (VAChT) deficiency, which leads to reduction in ACh release, can modulate lung inflammation in an experimental model of emphysema. Mice with genetical reduced expression of VAChT (VAChT KDHOM 70%) and wild-type mice (WT) received nasal instillation of 50 uL of porcine pancreatic elastase (PPE) or saline on day 0. Twenty-eight days after, animals were evaluated. Elastase instilled VAChT KDHOM mice presented an increase in macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage fluid and MAC2-positive macrophages in lung tissue and peribronchovascular area that was comparable to that observed in WT mice. Conversely, elastase instilled VAChT KDHOM mice showed significantly larger number of NF-κB-positive cells and isoprostane staining in the peribronchovascular area when compared to elastase-instilled WT-mice. Moreover, elastase-instilled VAChT-deficient mice showed increased MCP-1 levels in the lungs. Other cytokines, extracellular matrix remodeling, alveolar enlargement, and lung function were not worse in elastase-instilled VAChT deficiency than in elastase-instilled WT-controls. These data suggest that decreased VAChT expression may contribute to the pathogenesis of emphysema, at least in part, through NF-κB activation, MCP-1, and oxidative stress pathways. This study highlights novel pathways involved in lung inflammation that may contribute to the development of chronic obstrutive lung disease (COPD) in cholinergic deficient individuals such as Alzheimer's disease patients.


Subject(s)
Acetylcholine/deficiency , Emphysema/immunology , Pneumonia/etiology , Acetylcholine/metabolism , Animals , Bronchoalveolar Lavage Fluid/cytology , Cytokines/metabolism , Disease Models, Animal , Emphysema/metabolism , Inflammation/pathology , Lung/pathology , Macrophages/metabolism , Male , Mice , NF-kappa B/metabolism , Neutrophils/metabolism , Pancreatic Elastase/adverse effects , Pancreatic Elastase/pharmacology , Pneumonia/physiopathology , Pulmonary Emphysema/metabolism , Signal Transduction , Vesicular Acetylcholine Transport Proteins/deficiency , Vesicular Acetylcholine Transport Proteins/genetics , Vesicular Acetylcholine Transport Proteins/metabolism
8.
Int J Mol Sci ; 22(14)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34299169

ABSTRACT

(1) Background: The lung cholinergic pathway is important for controlling pulmonary inflammation in acute lung injury, a condition that is characterized by a sudden onset and intense inflammation. This study investigated changes in the expression levels of nicotinic and muscarinic acetylcholine receptors (nAChR and mAChR) in the lung during acute lung injury. (2) Methods: acute lung injury (ALI) was induced in wild-type and cholinergic-deficient (VAChT-KDHOM) mice using intratracheal lipopolysaccharide (LPS) instillation with or without concurrent treatment with nicotinic ligands. Bronchoalveolar lavage fluid was collected to evaluate markers of inflammation, and then the lung was removed and processed for isolation of membrane fraction and determination of acetylcholine receptors level using radioligand binding assays. (3) Results: LPS-induced increase in lung inflammatory markers (e.g., neutrophils and IL-1ß) was significantly higher in VAChT-KDHOM than wild-type mice. In contrast, LPS treatment resulted in a significant increase in lung's α7 nicotinic receptor level in wild-type, but not in VAChT-KDHOM mice. However, treatment with PNU 282987, a selective α7 nicotinic receptor agonist, restored VAChT-KDHOM mice's ability to increase α7 nicotinic receptor levels in response to LPS-induced acute lung injury and reduced lung inflammation. LPS also increased muscarinic receptors level in VAChT-KDHOM mice, and PNU 282987 treatment reduced this response. (4) Conclusions: Our data indicate that the anti-inflammatory effects of the lung cholinergic system involve an increase in the level of α7 nicotinic receptors. Pharmacological agents that increase the expression or the function of lung α7 nicotinic receptors have potential clinical uses for treating acute lung injury.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Benzamides/pharmacology , Bridged Bicyclo Compounds/pharmacology , Cholinergic Agents/metabolism , Pneumonia/prevention & control , Vesicular Acetylcholine Transport Proteins/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Cytokines/metabolism , Male , Mice , Nicotinic Agonists/pharmacology , Pneumonia/etiology , Pneumonia/metabolism , Pneumonia/pathology , Vesicular Acetylcholine Transport Proteins/genetics , alpha7 Nicotinic Acetylcholine Receptor/genetics
9.
Int J Mol Sci ; 22(11)2021 May 23.
Article in English | MEDLINE | ID: mdl-34071104

ABSTRACT

Dorsal root ganglia (DRG) neurons synthesize acetylcholine (ACh), in addition to their peptidergic nature. They also release ACh and are cholinoceptive, as they express cholinergic receptors. During gangliogenesis, ACh plays an important role in neuronal differentiation, modulating neuritic outgrowth and neurospecific gene expression. Starting from these data, we studied the expression of choline acetyltransferase (ChAT) and vesicular ACh transporter (VAChT) expression in rat DRG neurons. ChAT and VAChT genes are arranged in a "cholinergic locus", and several splice variants have been described. Using selective primers, we characterized splice variants of these cholinergic markers, demonstrating that rat DRGs express R1, R2, M, and N variants for ChAT and V1, V2, R1, and R2 splice variants for VAChT. Moreover, by RT-PCR analysis, we observed a progressive decrease in ChAT and VAChT transcripts from the late embryonic developmental stage (E18) to postnatal P2 and P15 and in the adult DRG. Interestingly, Western blot analyses and activity assays demonstrated that ChAT levels significantly increased during DRG ontogenesis. The modulated expression of different ChAT and VAChT splice variants during development suggests a possible differential regulation of cholinergic marker expression in sensory neurons and confirms multiple roles for ACh in DRG neurons, both in the embryo stage and postnatally.


Subject(s)
Choline O-Acetyltransferase/biosynthesis , Cholinergic Neurons/metabolism , Ganglia, Spinal/cytology , Nerve Tissue Proteins/biosynthesis , Sensory Receptor Cells/metabolism , Vesicular Acetylcholine Transport Proteins/biosynthesis , Acetylcholine/metabolism , Alternative Splicing , Animals , Choline O-Acetyltransferase/genetics , Cholinergic Neurons/cytology , Ganglia, Spinal/embryology , Ganglia, Spinal/growth & development , Nerve Tissue Proteins/genetics , Neurogenesis , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Sensory Receptor Cells/cytology , Synaptic Vesicles/metabolism , Vesicular Acetylcholine Transport Proteins/genetics
10.
Genetics ; 218(4)2021 08 09.
Article in English | MEDLINE | ID: mdl-33914877

ABSTRACT

A missense mutant, unc-17(e245), which affects the Caenorhabditis elegans vesicular acetylcholine transporter UNC-17, has a severe uncoordinated phenotype, allowing efficient selection of dominant suppressors that revert this phenotype to wild-type. Such selections permitted isolation of numerous suppressors after EMS (ethyl methanesulfonate) mutagenesis, leading to demonstration of delays in mutation fixation after initial EMS treatment, as has been shown in T4 bacteriophage but not previously in eukaryotes. Three strong dominant extragenic suppressor loci have been defined, all of which act specifically on allele e245, which causes a G347R mutation in UNC-17. Two of the suppressors (sup-1 and sup-8/snb-1) have previously been shown to encode synaptic proteins able to interact directly with UNC-17. We found that the remaining suppressor, sup-2, corresponds to a mutation in erd-2.1, which encodes an endoplasmic reticulum retention protein; sup-2 causes a V186E missense mutation in transmembrane helix 7 of ERD-2.1. The same missense change introduced into the redundant paralogous gene erd-2.2 also suppressed unc-17(e245). Suppression presumably occurred by compensatory charge interactions between transmembrane helices of UNC-17 and ERD-2.1 or ERD-2.2, as previously proposed in work on suppression by SUP-1(G84E) or SUP-8(I97D)/synaptobrevin. erd-2.1(V186E) homozygotes were fully viable, but erd-2.1(V186E); erd-2.2(RNAi) exhibited synthetic lethality [like erd-2.1(RNAi); erd-2.2(RNAi)], indicating that the missense change in ERD-2.1 impairs its normal function in the secretory pathway but may allow it to adopt a novel moonlighting function as an unc-17 suppressor.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Genes, Suppressor , Vesicular Acetylcholine Transport Proteins/metabolism , Animals , Binding Sites , Caenorhabditis elegans , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation, Missense , Protein Binding , Synapses/metabolism , Synthetic Lethal Mutations , Vesicular Acetylcholine Transport Proteins/chemistry , Vesicular Acetylcholine Transport Proteins/genetics
11.
FEBS J ; 288(18): 5331-5349, 2021 09.
Article in English | MEDLINE | ID: mdl-33730374

ABSTRACT

Motoneurons (MNs) control muscle activity by releasing the neurotransmitter acetylcholine (ACh) at the level of neuromuscular junctions. ACh is packaged into synaptic vesicles by the vesicular ACh transporter (VAChT), and disruptions in its release can impair muscle contraction, as seen in congenital myasthenic syndromes (CMS). Recently, VAChT gene mutations were identified in humans displaying varying degrees of myasthenia. Moreover, mice with a global deficiency in VAChT expression display several characteristics of CMS. Despite these findings, little is known about how a long-term decrease in VAChT expression in vivo affects MNs structure and function. Using Cre-loxP technology, we generated a mouse model where VAChT is deleted in select groups of MNs (mnVAChT-KD). Molecular analysis revealed that the VAChT deletion was specific to MNs and affected approximately 50% of its population in the brainstem and spinal cord, with alpha-MNs primarily targeted (70% in spinal cord). Within each animal, the cell body area of VAChT-deleted MNs was significantly smaller compared to MNs with VAChT preserved. Likewise, muscles innervated by VAChT-deleted MNs showed atrophy while muscles innervated by VAChT-containing neurons appeared normal. In addition, mnVAChT KD mice had decreased muscle strength, were hypoactive, leaner and exhibited kyphosis. This neuromuscular dysfunction was evident at 2 months of age and became progressively worse by 6 months. Treatment of mutants with a cholinesterase inhibitor was able to improve some of the motor deficits. As these observations mimic what is seen in CMS, this new line could be valuable for assessing the efficacy of potential CMS drugs.


Subject(s)
Acetylcholine/genetics , Motor Neurons/metabolism , Myasthenic Syndromes, Congenital/genetics , Vesicular Acetylcholine Transport Proteins/genetics , Acetylcholine/metabolism , Animals , Disease Models, Animal , Humans , Mice , Motor Neurons/pathology , Muscle Contraction/genetics , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Myasthenic Syndromes, Congenital/metabolism , Myasthenic Syndromes, Congenital/pathology , Neuromuscular Junction/genetics , Neuromuscular Junction/metabolism , Neurotransmitter Agents/genetics , Spinal Cord/metabolism , Spinal Cord/physiology , Synaptic Transmission/genetics , Synaptic Vesicles/metabolism
12.
BMJ Case Rep ; 14(1)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33462016

ABSTRACT

This report describes the variation in presentation of two unrelated patients found to have a rare form of presynaptic congenital myasthenic syndrome. Both patients presented with hypotonia, ptosis, poor weight gain and apneic episodes. Through whole exome sequencing, our patients were found to have the same likely pathogenic biallelic variants in W315X and I200N of SLC18A3, encoding vesicular acetylcholine transporter (VAChT). These specific variants in SLC18A3 have not been previously described in the literature. We illustrate the variety in clinical presentation and course of children with mutations in SLC18A3, leading to presynaptic congenital myasthenic syndrome through VAChT deficiency.


Subject(s)
Mutation , Myasthenic Syndromes, Congenital/diagnosis , Myasthenic Syndromes, Congenital/genetics , Vesicular Acetylcholine Transport Proteins/genetics , Genetic Markers , Humans , Infant , Infant, Newborn , Male
13.
Am J Physiol Cell Physiol ; 320(4): C602-C612, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33296286

ABSTRACT

Cholinesterase inhibitors are used in postmenopausal women for the treatment of neurodegenerative diseases. Despite their widespread use in the clinical practice, little is known about the impact of augmented cholinergic signaling on cardiac function under reduced estrogen conditions. To address this gap, we subjected a genetically engineered murine model of systemic vesicular acetylcholine transporter overexpression (Chat-ChR2) to ovariectomy and evaluated cardiac parameters. Left-ventricular function was similar between Chat-ChR2 and wild-type (WT) mice. Following ovariectomy, WT mice showed signs of cardiac hypertrophy. Conversely, ovariectomized (OVX) Chat-ChR2 mice evolved to cardiac dilation and failure. Transcript levels for cardiac stress markers atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) were similarly upregulated in WT/OVX and Chat-ChR2/OVX mice. 17ß-Estradiol (E2) treatment normalized cardiac parameters in Chat-ChR2/OVX to the Chat-ChR2/SHAM levels, providing a link between E2 status and the aggravated cardiac response in this model. To investigate the cellular basis underlying the cardiac alterations, ventricular myocytes were isolated and their cellular area and contractility were assessed. Myocytes from WT/OVX mice were wider than WT/SHAM, an indicative of concentric hypertrophy, but their fractional shortening was similar. Conversely, Chat-ChR2/OVX myocytes were elongated and presented contractile dysfunction. E2 treatment again prevented the structural and functional changes in Chat-ChR2/OVX myocytes. We conclude that hypercholinergic mice under reduced estrogen conditions do not develop concentric hypertrophy, a critical compensatory adaptation, evolving toward cardiac dilation and failure. This study emphasizes the importance of understanding the consequences of cholinesterase inhibition, used clinically to treat dementia, for cardiac function in postmenopausal women.


Subject(s)
Acetylcholine/metabolism , Cholinergic Fibers/metabolism , Estrogens/deficiency , Heart/innervation , Hypertrophy, Left Ventricular/metabolism , Myocytes, Cardiac/metabolism , Ventricular Dysfunction, Left/metabolism , Ventricular Function, Left , Ventricular Remodeling , Vesicular Acetylcholine Transport Proteins/metabolism , Animals , Estradiol/pharmacology , Estrogen Replacement Therapy , Female , Heart Rate , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/prevention & control , Mice, Inbred C57BL , Mice, Transgenic , Myocardial Contraction , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Ovariectomy , Signal Transduction , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/prevention & control , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects , Vesicular Acetylcholine Transport Proteins/genetics
14.
J Clin Invest ; 130(12): 6616-6630, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33164988

ABSTRACT

Dysregulation of habit formation has been recently proposed as pivotal to eating disorders. Here, we report that a subset of patients suffering from restrictive anorexia nervosa have enhanced habit formation compared with healthy controls. Habit formation is modulated by striatal cholinergic interneurons. These interneurons express vesicular transporters for acetylcholine (VAChT) and glutamate (VGLUT3) and use acetylcholine/glutamate cotransmission to regulate striatal functions. Using mice with genetically silenced VAChT (VAChT conditional KO, VAChTcKO) or VGLUT3 (VGLUT3cKO), we investigated the roles that acetylcholine and glutamate released by cholinergic interneurons play in habit formation and maladaptive eating. Silencing glutamate favored goal-directed behaviors and had no impact on eating behavior. In contrast, VAChTcKO mice were more prone to habits and maladaptive eating. Specific deletion of VAChT in the dorsomedial striatum of adult mice was sufficient to phenocopy maladaptive eating behaviors of VAChTcKO mice. Interestingly, VAChTcKO mice had reduced dopamine release in the dorsomedial striatum but not in the dorsolateral striatum. The dysfunctional eating behavior of VAChTcKO mice was alleviated by donepezil and by l-DOPA, confirming an acetylcholine/dopamine deficit. Our study reveals that loss of acetylcholine leads to a dopamine imbalance in striatal compartments, thereby promoting habits and vulnerability to maladaptive eating in mice.


Subject(s)
Acetylcholine/metabolism , Corpus Striatum , Feeding and Eating Disorders/metabolism , Glutamic Acid/metabolism , Interneurons/metabolism , Adult , Animals , Corpus Striatum/metabolism , Corpus Striatum/physiopathology , Donepezil/pharmacology , Feeding Behavior/drug effects , Feeding and Eating Disorders/drug therapy , Feeding and Eating Disorders/genetics , Feeding and Eating Disorders/physiopathology , Female , Humans , Levodopa/pharmacology , Male , Mice , Mice, Knockout , Middle Aged , Vesicular Acetylcholine Transport Proteins/genetics , Vesicular Acetylcholine Transport Proteins/metabolism
15.
Sci Rep ; 10(1): 16054, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994503

ABSTRACT

Regulatory factors controlling tick salivary glands (SGs) are direct upstream neural signaling pathways arising from the tick's central nervous system. Here we investigated the cholinergic signaling pathway in the SG of two hard tick species. We reconstructed the organization of the cholinergic gene locus, and then used in situ hybridization to localize mRNA encoding choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) in specific neural cells in the Ixodes synganglion. Immunohistochemical staining revealed that cholinergic axonal projections exclusively reached type I acini in the SG of both Ixodes species. In type I acini, the rich network of cholinergic axons terminate within the basolateral infoldings of the lamellate cells. We also characterized two types (A and B) of muscarinic acetylcholine receptors (mAChRs), which were expressed in Ixodes SG. We pharmacologically assessed mAChR-A to monitor intracellular calcium mobilization upon receptor activation. In vivo injection of vesamicol-a VAChT blocker-at the cholinergic synapse, suppressed forced water uptake by desiccated ticks, while injection of atropine, an mAChR-A antagonist, did not show any effect on water volume uptake. This study has uncovered a novel neurotransmitter signaling pathway in Ixodes SG, and suggests its role in water uptake by type I acini in desiccated ticks.


Subject(s)
Acinar Cells/metabolism , Cholinergic Neurons/metabolism , Ixodes/metabolism , Acinar Cells/physiology , Animals , Axons/metabolism , Central Nervous System/metabolism , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Cholinergic Agents/metabolism , Cholinergic Neurons/physiology , Neurons/metabolism , RNA, Messenger/metabolism , Salivary Glands/metabolism , Salivary Glands/physiology , Signal Transduction/genetics , Vesicular Acetylcholine Transport Proteins/genetics , Vesicular Acetylcholine Transport Proteins/metabolism
16.
ASN Neuro ; 12: 1759091420961612, 2020.
Article in English | MEDLINE | ID: mdl-32967452

ABSTRACT

Acetylcholine (ACh) has been suggested to facilitate plasticity and improve functional recovery after different types of brain lesions. Interestingly, numerous studies have shown that striatal cholinergic interneurons are relatively resistant to acute ischemic insults, but whether ACh released by these neurons enhances functional recovery after stroke is unknown. We investigated the role of endogenous striatal ACh in stroke lesion volume and functional outcomes following middle cerebral artery occlusion to induce focal ischemia in striatum-selective vesicular acetylcholine transporter-deficient mice (stVAChT-KO). As transporter expression is almost completely eliminated in the striatum of stVAChT-KO mice, ACh release is nearly abolished in this area. Conversely, in other brain areas, VAChT expression and ACh release are preserved. Our results demonstrate a larger infarct size after ischemic insult in stVAChT-KO mice, with more pronounced functional impairments and increased mortality than in littermate controls. These changes are associated with increased activation of GSK-3, decreased levels of ß-catenin, and a higher permeability of the blood-brain barrier in mice with loss of VAChT in striatum neurons. These results support a framework in which endogenous ACh secretion originating from cholinergic interneurons in the striatum helps to protect brain tissue against ischemia-induced damage and facilitates brain recovery by supporting blood-brain barrier function.


Subject(s)
Acetylcholine/metabolism , Corpus Striatum/metabolism , Infarction, Middle Cerebral Artery/metabolism , Stroke/metabolism , Acetylcholine/genetics , Animals , Corpus Striatum/pathology , Disease Models, Animal , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/pathology , Male , Mice , Mice, Knockout , Mice, Transgenic , Stroke/genetics , Stroke/pathology , Vesicular Acetylcholine Transport Proteins/deficiency , Vesicular Acetylcholine Transport Proteins/genetics
17.
Sci Rep ; 10(1): 15338, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32948826

ABSTRACT

While the role of cholinergic neurotransmission from motoneurons is well established during neuromuscular development, whether it regulates central nervous system development in the spinal cord is unclear. Zebrafish presents a powerful model to investigate how the cholinergic system is set up and evolves during neural circuit formation. In this study, we carried out a detailed spatiotemporal analysis of the cholinergic system in embryonic and larval zebrafish. In 1-day-old embryos, we show that spinal motoneurons express presynaptic cholinergic genes including choline acetyltransferase (chata), vesicular acetylcholine transporters (vachta, vachtb), high-affinity choline transporter (hacta) and acetylcholinesterase (ache), while nicotinic acetylcholine receptor (nAChR) subunits are mainly expressed in interneurons. However, in 3-day-old embryos, we found an unexpected decrease in presynaptic cholinergic transcript expression in a rostral to caudal gradient in the spinal cord, which continued during development. On the contrary, nAChR subunits remained highly expressed throughout the spinal cord. We found that protein and enzymatic activities of presynaptic cholinergic genes were also reduced in the rostral spinal cord. Our work demonstrating that cholinergic genes are initially expressed in the embryonic spinal cord, which is dynamically downregulated during development suggests that cholinergic signaling may play a pivotal role during the formation of intra-spinal locomotor circuit.


Subject(s)
Central Nervous System/embryology , Gene Expression Regulation, Developmental , Spinal Cord/embryology , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Animals, Genetically Modified , Central Nervous System/metabolism , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Embryo, Nonmammalian , Larva/metabolism , Motor Neurons/metabolism , Neurons/physiology , Neurotransmitter Agents/metabolism , Spinal Cord/metabolism , Vesicular Acetylcholine Transport Proteins/genetics , Vesicular Acetylcholine Transport Proteins/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics
18.
Eur J Pharmacol ; 882: 173239, 2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32619677

ABSTRACT

The cholinergic anti-inflammatory pathway has been shown to regulate lung inflammation and cytokine release in acute models of inflammation, mainly via α7 nicotinic receptor (α7nAChR). We aimed to evaluate the role of endogenous acetylcholine in chronic allergic airway inflammation in mice and the effects of therapeutic nAChR stimulation in this model. We first evaluated lung inflammation and remodeling on knock-down mice with 65% of vesicular acetylcholine transport (VAChT) gene reduction (KDVAChT) and wild-type(WT) controls that were subcutaneously sensitized and then inhaled with ovalbumin(OVA). We then evaluated the effects of PNU-282987(0.5-to-2mg/kg),(α7nAChR agonist) treatment in BALB/c male mice intraperitoneal sensitized and then inhaled with OVA. Another OVA-sensitized-group was treated with PNU-282987 plus Methyllycaconitine (MLA,1 mg/kg, α7nAChR antagonist) to confirm that the effects observed by PNU were due to α7nAChR. We showed that KDVAChT-OVA mice exhibit exacerbated airway inflammation when compared to WT-OVA mice. In BALB/c, PNU-282987 treatment reduced the number of eosinophils in the blood, BAL fluid, and around airways, and also decreased pulmonary levels of IL-4,IL-13,IL-17, and IgE in the serum of OVA-exposed mice. MLA pre-treatment abolished all the effects of PNU-282987. Additionally, we showed that PNU-282987 inhibited STAT3-phosphorylation and reduced SOCS3 expression in the lung. These data indicate that endogenous cholinergic tone is important to control allergic airway inflammation in a murine model. Moreover, α7nAChR is involved in the control of eosinophilic inflammation and airway remodeling, possibly via inhibition of STAT3/SOCS3 pathways. Together these data suggest that cholinergic anti-inflammatory system mainly α7nAChR should be further considered as a therapeutic target in asthma.


Subject(s)
Asthma/immunology , Vesicular Acetylcholine Transport Proteins/deficiency , alpha7 Nicotinic Acetylcholine Receptor/immunology , Airway Remodeling , Allergens , Animals , Asthma/etiology , Benzamides/pharmacology , Bridged Bicyclo Compounds/pharmacology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Chronic Disease , Cytokines/immunology , Disease Models, Animal , Inflammation/etiology , Inflammation/immunology , Leukocyte Count , Lung/drug effects , Lung/immunology , Lung/pathology , Male , Mice, Inbred BALB C , Mice, Knockout , Ovalbumin , STAT3 Transcription Factor/antagonists & inhibitors , Suppressor of Cytokine Signaling 3 Protein/antagonists & inhibitors , Vesicular Acetylcholine Transport Proteins/genetics , alpha7 Nicotinic Acetylcholine Receptor/agonists
19.
Genetics ; 215(3): 665-681, 2020 07.
Article in English | MEDLINE | ID: mdl-32444379

ABSTRACT

We explore here the cis-regulatory logic that dictates gene expression in specific cell types in the nervous system. We focus on a set of eight genes involved in the synthesis, transport, and breakdown of three neurotransmitter systems: acetylcholine (unc-17/VAChT, cha-1/ChAT, cho-1/ChT, and ace-2/AChE), glutamate (eat-4/VGluT), and γ-aminobutyric acid (unc-25/GAD, unc-46/LAMP, and unc-47/VGAT). These genes are specifically expressed in defined subsets of cells in the nervous system. Through transgenic reporter gene assays, we find that the cellular specificity of expression of all of these genes is controlled in a modular manner through distinct cis-regulatory elements, corroborating the previously inferred piecemeal nature of specification of neurotransmitter identity. This modularity provides the mechanistic basis for the phenomenon of "phenotypic convergence," in which distinct regulatory pathways can generate similar phenotypic outcomes (i.e., the acquisition of a specific neurotransmitter identity) in different neuron classes. We also identify cases of enhancer pleiotropy, in which the same cis-regulatory element is utilized to control gene expression in distinct neuron types. We engineered a cis-regulatory allele of the vesicular acetylcholine transporter, unc-17/VAChT, to assess the functional contribution of a "shadowed" enhancer. We observed a selective loss of unc-17/VAChT expression in one cholinergic pharyngeal pacemaker motor neuron class and a behavioral phenotype that matches microsurgical removal of this neuron. Our analysis illustrates the value of understanding cis-regulatory information to manipulate gene expression and control animal behavior.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Neurons/metabolism , Neurotransmitter Agents/metabolism , Regulatory Sequences, Nucleic Acid , Vesicular Acetylcholine Transport Proteins/genetics , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Genetic Pleiotropy , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Neurons/classification , Neurotransmitter Agents/genetics , Vesicular Acetylcholine Transport Proteins/metabolism , Vesicular Glutamate Transport Proteins/genetics , Vesicular Glutamate Transport Proteins/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/genetics , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
20.
G3 (Bethesda) ; 10(2): 495-504, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31767639

ABSTRACT

The expression and distribution of a protein can provide critical information about its function in a cell. For some neuronal proteins this information may include neurotransmitter (NT) usage and sites of NT release. However, visualizing the expression of a protein within a given neuron is often challenging because most neurons are intricately intermingled with numerous other neurons, making individual neuronal expression difficult to discern, especially since many neuronal genes are expressed at low levels. To overcome these difficulties for the Drosophila vesicular acetylcholine transporter (vAChT), attempts were made to generate conditional Drosophila vAChT alleles containing two tandem copies of epitope tags. In the course of these attempts, a strategy for multimerizing DNA repeats using the Gibson cloning reaction was serendipitously discovered. Attempts at optimization routinely yielded six or seven copies of MYC and OLLAS epitope tag coding sequences, but occasionally as many as 10 copies, thus potentially enhancing the sensitivity of protein detection up to an order of magnitude. As proof-of-principle of the method, conditionally expressible genome-edited 7XMYC-vAChT and 6XOLLAS-vAChT were developed and characterized for conditionality, synaptic vesicle specificity, and neurotransmitter specific-expression. The utility of these conditional vAChT variants was demonstrated for cholinergic neurotransmitter phenotyping and defining the polarity of cholinergic neurons, important information for understanding the functional role of neurons of interest in neural circuits and behavior. The repeat multimerization method is effective for DNA repeats of at least 56 bp and should be generally applicable to any species.


Subject(s)
Drosophila/genetics , Epitopes , Insect Proteins/genetics , Vesicular Acetylcholine Transport Proteins/genetics , Animals , Animals, Genetically Modified , Drosophila/metabolism , Female , Gene Editing , Insect Proteins/metabolism , Male , Vesicular Acetylcholine Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...