Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Publication year range
1.
An Real Acad Farm ; 84(1): 16-38, ene.-mar. 2018. ilus, graf, tab
Article in Spanish | IBECS | ID: ibc-178047

ABSTRACT

El almacenamiento vesicular de los neurotransmisores, que permite su subsecuente liberación exocitótica, es un proceso esencial para la transmisión química en neuronas y células endocrinas. La acumulación de los neurotransmisores en vesículas de secreción se lleva a cabo por medio de transportadores vesiculares, que utilizan el gradiente electroquímico de protones generado por una ATPasa vacuolar como fuerza impulsora del transporte. El ATP, así como otros nucleótidos y dinucleótidos, son importantes moléculas señalizadoras que intervienen en una gran variedad de procesos biológicos. Aunque el transporte activo de nucleótidos se ha caracterizado desde el punto de vista bioquímico y farmacológico en una variedad de vesículas de secreción, la proteína responsable de esta acumulación vesicular permaneció durante mucho tiempo desconocida. En 2008, se demostró que SLC17A9, el último miembro identificado de la familia de transportadores SLC17, codifica el transportador vesicular de nucleótidos (VNUT). VNUT se expresa en una variedad de células que liberan ATP y ha mostrado ser capaz de transportar varios nucleótidos de manera dependiente del potencial de membrana vesicular. Ratones deficientes en VNUT pierden la capacidad de almacenar y liberar ATP de neuronas y células neuroendocrinas, lo que resulta en un bloqueo de la transmisión química purinérgica. En esta revisión se pretende resumir los estudios llevados a cabo hasta la fecha sobre VNUT y analizar la relevancia del transporte vesicular de nucleótidos en distintos tipos celulares y tejidos. Asimismo, se discute el posible uso de inhibidores de VNUT, así como de ARNs de interferencia que reduzcan su expresión, con fines terapéuticos


Vesicular storage of neurotransmitters, which allows their subsequent exocytotic release, is essential for chemical transmission in neurons and endocrine cells. Neurotransmitter uptake to secretory vesicles is carried out by vesicular transporters, which use the electrochemical gradient of protons generated by a vacuolar proton-ATPase as transport driving force. ATP and other nucleotides and dinucleotides are relevant signaling molecules that participate in a variety of biological process. Although the active transport of nucleotides has been pharmacologically and biochemically characterized in a diversity of secretory vesicles, the protein responsible for such vesicular accumulation remained unidentified for some time. In 2008, SLC17A9, the last identified member of the SLC17 transporter family, was found to encode the vesicular nucleotide transporter (VNUT). VNUT is expressed in various ATP-secreting cells and is able to transport several nucleotides in a vesicular membrane potential- dependent fashion. VNUT knockout mice lack vesicular storage and release of ATP from neurons and neuroendocrine cells, resulting in blockage of the purinergic chemical transmission. This review summarizes the current studies on VNUT and analyzes the relevance of vesicular nucleotide transport in different cells types and tissues. The possible use of VNUT inhibitors and interference RNA to reduce VNUT gene expression for therapeutic purposes is also discussed


Subject(s)
Humans , Vesicular Neurotransmitter Transport Proteins/chemistry , Neurosecretory Systems , Central Nervous System , Vesicular Neurotransmitter Transport Proteins , Photomicrography
2.
Curr Top Membr ; 73: 149-74, 2014.
Article in English | MEDLINE | ID: mdl-24745982

ABSTRACT

Secondary transporters driven by a V-type H⁺-ATPase accumulate nonpeptide neurotransmitters into synaptic vesicles. Distinct transporter families are involved depending on the neurotransmitter. Monoamines and acetylcholine on the one hand, and glutamate and ATP on the other hand, are accumulated by SLC18 and SLC17 transporters, respectively, which belong to the major facilitator superfamily (MFS). GABA and glycine accumulate through a common SLC32 transporter from the amino acid/polyamine/organocation (APC) superfamily. Although crystallographic structures are not yet available for any vesicular transporter, homology modeling studies of MFS-type vesicular transporters based on distantly related bacterial structures recently provided significant advances, such as the characterization of substrate-binding pockets or the identification of spatial clusters acting as hinge points during the alternating-access cycle. However, several basic issues, such as the ion stoichiometry of vesicular amino acid transporters, remain unsettled.


Subject(s)
Vesicular Neurotransmitter Transport Proteins/metabolism , Animals , Biological Transport , Chlorides/metabolism , Humans , Ligands , Vesicular Neurotransmitter Transport Proteins/antagonists & inhibitors , Vesicular Neurotransmitter Transport Proteins/chemistry , Vesicular Neurotransmitter Transport Proteins/classification
3.
Biochemistry ; 50(25): 5558-65, 2011 Jun 28.
Article in English | MEDLINE | ID: mdl-21612282

ABSTRACT

Glutamate plays essential roles in chemical transmission as a major excitatory neurotransmitter. The accumulation of glutamate in secretory vesicles is mediated by vesicular glutamate transporters (VGLUTs) that together with the driving electrochemical gradient of proteins influence the subsequent quantum release of glutamate and the function of higher-order neurons. The vesicular content of glutamate is well correlated with membrane potential (Δψ), which suggests that Δψ determines the vesicular glutamate concentration. The transport of glutamate into secretory vesicles is highly dependent on Cl(-). This anion stimulates glutamate transport but is inhibitory at higher concentrations. Accumulating evidence indicates that Cl(-) regulates glutamate transport through control of VGLUT activity and the H(+) electrochemical gradient. Recently, a comprehensive study demonstrated that Cl(-) regulation of VGLUT is competitively inhibited by metabolic intermediates such as ketone bodies. It also showed that ketone bodies are effective in controlling epilepsy. These results suggest a correlation between metabolic state and higher-order brain function. We propose a novel function for Cl(-) as a fundamental regulator for signal transmission.


Subject(s)
Energy Metabolism , Glutamic Acid/chemistry , Glutamic Acid/metabolism , Vesicular Neurotransmitter Transport Proteins/chemistry , Vesicular Neurotransmitter Transport Proteins/metabolism , Amino Acid Sequence , Humans , Molecular Sequence Data , Protein Transport , Signal Transduction , Vesicular Glutamate Transport Proteins/chemistry , Vesicular Glutamate Transport Proteins/metabolism , Vesicular Glutamate Transport Proteins/physiology , Vesicular Neurotransmitter Transport Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL