Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.328
Filter
1.
Food Res Int ; 195: 114981, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39277246

ABSTRACT

Cultured meat has been proposed as a promising alternative to conventional meat products. Five different plant protein blends made from soy (from two different manufacturers), wheat, mung bean, and faba bean, were extruded to form low-moisture meat analogs (LMMA) and were used to assess LMMA scaffold potential for cultured meat application. Extruded LMMAs were characterized using scanning electron microscopy, water-holding capacity, total soluble matter, and mechanical properties. Two-dimensional LMMA scaffolds were seeded with C2C12 skeletal myoblast cells and cultured for 14 days, and cell attachment and morphology were evaluated. All five extrudates exhibited directionality of their fibrous protein structures but to varying degrees. Soy, wheat, mung bean, and faba bean-based LMMA scaffolds initially supported myoblast cell growth. However, after 14 days of culture, the extruded wheat LMMA exhibited superior myoblast cell growth. This may be attributed to the highly aligned fibrous structure of the extruded wheat LMMA as well as its elastic modulus, which closely approximated that of native skeletal muscle. Overall, two-dimensional structures of the extruded plant proteins support cell growth and advance the development of cultured meat.


Subject(s)
Cell Proliferation , Myoblasts , Plant Proteins , Triticum , Animals , Triticum/chemistry , Plant Proteins/chemistry , Cell Line , Mice , Tissue Scaffolds/chemistry , Vigna/chemistry , Vicia faba/chemistry , Meat Products/analysis , Glycine max/chemistry , In Vitro Meat
2.
Ultrason Sonochem ; 110: 107030, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39153419

ABSTRACT

Environmental concerns linked to animal-based protein production have intensified interest in sustainable alternatives, with a focus on underutilized plant proteins. Faba beans, primarily used for animal feed, offer a high-quality protein source with promising bioactive compounds for food applications. This study explores the efficacy of ultrasound-assisted extraction under optimal conditions (123 W power, 1:15 g/mL solute/solvent ratio, 41 min sonication, 623 mL total volume) to isolate faba bean protein (U-FBPI). The ultrasound-assisted method achieved a protein extraction yield of 19.75 % and a protein content of 92.87 %, outperforming the control method's yield of 16.41 % and protein content of 89.88 %. Electrophoretic analysis confirmed no significant changes in the primary structure of U-FBPI compared to the control. However, Fourier-transform infrared spectroscopy revealed modifications in the secondary structure due to ultrasound treatment. The U-FBPI demonstrated superior water and oil holding capacities compared to the control protein isolate, although its foaming capacity was reduced by ultrasound. Thermal analysis indicated minimal impact on the protein's thermal properties under the applied ultrasound conditions. This research highlights the potential of ultrasound-assisted extraction for improving the functional properties of faba bean protein isolates, presenting a viable approach for advancing plant-based food production and contributing to sustainable protein consumption.


Subject(s)
Plant Proteins , Temperature , Vicia faba , Vicia faba/chemistry , Plant Proteins/isolation & purification , Plant Proteins/chemistry , Chemical Fractionation/methods , Ultrasonic Waves , Sonication/methods , Water/chemistry
3.
Ultrason Sonochem ; 110: 107040, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39191131

ABSTRACT

Drying process extends the shelf-life of fresh faba beans and makes them available all year round. Dried and cooked faba beans are used to make a variety of traditional food products. Ultrasonic pretreatment, as a modern food processing technology, can shorten the drying time of fresh legumes and improve the quality and sensory properties of products. So, the present study aimed to analyze the impact of the ultrasonic treatment process (0, 5, 10, and 15 min, 40  kHz, and 150 W) on the mass transfer rate, drying time, and effective moisture diffusivity (Deff) of fresh faba beans. Also, the effect of ultrasonic treatment on textural properties and sensory attributes of cooked faba beans was studied. By using the ultrasonic process, the rate of water extraction from fresh faba beans, and thus their dehydration rate, can be increased. With increasing the duration of ultrasonic pretreatment from 0 to 15 min, the drying time of fresh faba beans decreased from 250 min to 150 min (p < 0.05). The Deff was calculated by Fick's second law, and it significantly increased from 0.70 × 10-9 m2 s-1 to 1.05 × 10-9 m2 s-1 when the sonication duration was extended from 0 to 15 min (p < 0.05). The Page model best fitted the drying kinetic of fresh faba beans with a coefficient of determination (r) > 0.9968, and the sum of squared error (SSE) and root mean squared error (RMSE) were also closer to zero compared to other models. The rehydration ratio of dried faba beans (after cooking) significantly increased from 308.4 % to 327.1 % with the extension of processing time from 0 to 15 min (p < 0.05). The maximum and minimum crust hardness and texture firmness values were for the untreated and sonicated samples for 15 min, respectively. The sonication increased the sensory acceptance of the cooked faba beans and the highest appearance, odor, texture, flavor, and overall acceptance were for the 10 min sonicated faba beans.


Subject(s)
Cooking , Vicia faba , Ultrasonic Waves , Food Handling/methods , Taste , Sonication/methods , Water/chemistry
4.
Plant Physiol Biochem ; 215: 108959, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111222

ABSTRACT

Mitigating the negative impacts of polycyclic aromatic hydrocarbons (PAHs) is an urgent need due to their toxicity and persistence in the environment. This study investigated the use of Pseudomonas aeruginosa ASU-B6 to detoxify pyrene (PY). The bacterium P. aeruginosa ASU-B6 is capable of degrading PY by 92% as a sole carbon source after 15 days of incubation with phthalate being the major metabolic product. In this regard, the impact of pyrene (PY), P. aeruginosa ASU-B6 (ASU-B6), the bacterial strain combined with pyrene (ASU-B6/PY) and the metabolites produced after pyrene degradation (PY-metabolites) on the germination and physiological attributes of Hordeum vulgare and Vicia faba seedlings were studied. A single application of PY or ASU-B6 showed a toxic effect on the germination of both tested seeds. Interestingly, broad bean seedlings exhibited less sensitivity to PY stress in terms of growth and metabolism compared to barley. Notably, ASU-B6 inhibited fresh and dry weight of shoots and roots of barley and, to a lesser extent, reduced the germination of broad beans compared to the control. However, the combined PY-metabolites and ASU-B6/PY showed a mutual ameliorative effect on seedlings growth, alleviating the phytotoxic impact of each component. Pyrene reduced the virulence of ASU-B6 by inhibiting the production of pyocyanin pigment, while bacteria ameliorated pyrene toxicity through its degradation. Heatmap and principal component analyses highlighted that increasing the contents of hydrogen peroxide, superoxide anion, hydroxyl radical, and lipid peroxidation positively correlated to the toxicity of PY or ASU-B6. However, improving the antioxidant system which buffers the oxidative stress induced by different combinations of PY and ASU-B6 enhanced the growth of germinated seedlings corresponding to PY or ASU-B6. This study reflected the role of ASU-B6 in ameliorating PY-phytotoxicity. In addition, the application of ASU-B6 strain is recommended as a prospective candidate for remediation of PAHs-contaminated environment with a positive impact on the plant growth and metabolic products.


Subject(s)
Germination , Hordeum , Pseudomonas aeruginosa , Pyrenes , Vicia faba , Hordeum/drug effects , Hordeum/microbiology , Hordeum/metabolism , Hordeum/growth & development , Vicia faba/drug effects , Vicia faba/microbiology , Vicia faba/metabolism , Vicia faba/growth & development , Pyrenes/toxicity , Pyrenes/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Germination/drug effects , Seedlings/drug effects , Seedlings/microbiology , Seedlings/growth & development , Seedlings/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/metabolism , Biodegradation, Environmental
5.
Food Chem ; 460(Pt 2): 140700, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39094337

ABSTRACT

Faba beans, rich in protein and ideal for Swedish cultivation, are limited in food industry use due to anti-nutritional factors (ANFs) that hinder nutrient absorption. An extraction method was developed in our study to mitigate ANFs in faba beans, using aqueous alkaline methods and isoelectric precipitation with differential salt concentration. This method yielded 15.8 g of protein per 100 g of flour, with a protein concentration exceeding 83% of the total extract. It reduced ANFs like phytic acid (28.0%), lectins (87.5%), vicine (98.5%), and convicine (99.7%). Extraction conditions were optimized using response surface methodology, identifying pH 6, 2 h, and 20 °C as the most effective parameters, achieving an 86% reduction in phytic acid, closely matched the model's predictions (R2 = 0.945). This method effectively reduced ANFs, offering a sustainable approach for producing proteins suitable for diverse food products, including plant-based alternatives.


Subject(s)
Nutritive Value , Plant Proteins , Vicia faba , Vicia faba/chemistry , Sweden , Hydrogen-Ion Concentration , Temperature , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Solubility , Phytic Acid/chemistry
6.
J Agric Food Chem ; 72(32): 17953-17963, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39086319

ABSTRACT

In this study, the transepithelial transport of bioactive peptides derived from faba bean flour gastrointestinal digestates was investigated, in vitro, using a Caco-2 and HT29-MTX-E12 coculture monolayer, in comparison to those of pea and soy. The profile of transported peptides was determined by mass spectrometry, and the residual antioxidant activity was assessed. The ORAC value significantly (p < 0.05) decreased after transepithelial transport (24-36% reduction) for all legumes, while the antioxidant activity in ABTS assay significantly (p < 0.05) increased, as shown by the EC50 decrease of 26-44%. Five of the nine faba bean peptides that crossed the intestinal cell monolayer exhibited antioxidant activity. Two of these peptides, TETWNPNHPEL and TETWNPNHPE, were further hydrolyzed by the cells' brush border peptidases to smaller fragments TETWNPNHP and TWNPNHPE. These metabolized peptides were synthesized, and both maintained high antioxidant activity in both ABTS (EC50 of 1.2 ± 0.2 and 0.4 ± 0.1 mM, respectively) and ORAC (2.5 ± 0.1 and 3.4 ± 0.2 mM of Trolox equivalent/mM, respectively) assays. These results demonstrated for the first time the bioaccessibility of faba bean peptides produced after in vitro gastrointestinal digestion and how their bioactive properties can be modulated during transepithelial transport.


Subject(s)
Antioxidants , Digestion , Glycine max , Peptides , Pisum sativum , Vicia faba , Humans , Caco-2 Cells , Antioxidants/metabolism , Antioxidants/chemistry , Peptides/metabolism , Peptides/chemistry , HT29 Cells , Vicia faba/metabolism , Vicia faba/chemistry , Biological Transport , Glycine max/chemistry , Glycine max/metabolism , Pisum sativum/chemistry , Pisum sativum/metabolism , Gastrointestinal Tract/metabolism , Plant Proteins/metabolism , Plant Proteins/chemistry , Biological Availability , Models, Biological
7.
Poult Sci ; 103(9): 103880, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094436

ABSTRACT

Antibiotic overuse in poultry feeds has disastrous implications; consequently, long-term alternatives must be developed. As a result, the current study aims to assess the impact of Aspergillus niger filtrate (ANF) high in organic acids grown on agro-industrial residue of faba bean (AIRFB) on quail diet, as well as their influence on bird productivity, digestion, carcass yield, blood chemistry, and intestinal microbiota. A total of 240 Japanese quails (aged 7 d) were used in this study, divided equally among 5 experimental groups with 48 quails each. Group 1 (G1) received a basal diet without any ANF, group 2 (G2) received a basal diet supplemented with 0.5 mL ANF/kg diet, group 3 (G3) received a basal diet supplemented with 1.0 mL ANF/kg diet, group 4 (G4) received a basal diet supplemented with 1.5 mL ANF/kg diet, and group 5 (G5) received a basal diet supplemented with 2 mL ANF/kg diet. The performance parameters were monitored at 1 to 3, 3 to 5, and 1 to 5 wk. Adding ANF increased body weight at 3 and 5 wk, as well as body weight gain at 1 to 3, 3 to 5, and 1 to 5 wk, compared to the control diet. The ANF fed quails had the highest feed conversion ratio compared to the control group. The addition of ANF to the quail diet had no effect on the weight of the carcass, gizzard, heart, liver, giblets, or dressing; however, it did lower triglycerides, low-density lipoprotein, and very low-density lipoprotein while increasing high-density lipoprotein levels. The quail groups that received ANF had enhanced immunological indices such as IgG, IgM, IgA, and lysozymes. It also increased the levels of superoxide dismutase and total antioxidant contents, as well as catalase, and digestive enzymes such as protease, amylase, and lipase. However, it lowered the blood MDA levels compared to control. It has been demonstrated that the total gut microbiota, Escherichia coli, total coliforms, and the population of Salmonella are all reduced in ANF-fed quails. Histological examination of ANF quails' liver and intestinal sections revealed normal hepatic parenchyma, typical leaf-like intestinal villi, and comparatively short and frequently free lumina. In conclusion, Japanese quail showed improvements in performance, digestive enzymes, antioxidant indices, immunity, and capacity to reduce intestinal pathogenic bacteria after consuming diet supplemented with ANF.


Subject(s)
Animal Feed , Antioxidants , Coturnix , Diet , Dietary Supplements , Gastrointestinal Microbiome , Vicia faba , Animals , Coturnix/physiology , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Vicia faba/chemistry , Antioxidants/metabolism , Fermentation , Animal Nutritional Physiological Phenomena/drug effects , Aspergillus niger , Blood Chemical Analysis/veterinary , Male , Random Allocation
8.
Ultrason Sonochem ; 109: 107012, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098098

ABSTRACT

Ultrasound-assisted extraction (UAE) was evaluated as a green procedure to produce faba beans protein isolates from faba beans. Magnetic stirring was performed as conventional extraction. A three-level five-factor Box-Behnken Design (BBD) was applied to obtain the optimal UAE conditions to concurrently maximize extraction yield and protein content. The response surface methodology (RSM) showed a quadratic curvature for extraction yield and protein. The optimal extraction conditions were determined as: Power of 123 W, solute/solvent ratio of 0.06 (1:15 g/mL), sonication time of 41 min, and total volume of 623 mL with a desirability value of 0.82. Under these conditions, the extraction yield of 19. 75 ± 0.87 % (Protein yield of 67.84 %) and protein content of 92.87 ± 0.53 % were obtained for optimum ultrasound extraction. Control samples using magnetic stirring under similar conditions without ultrasound treatment showed an extraction yield of 16.41 ± 0.02 % (Protein yield of 54.65 %) and a protein content of 89. 88 ± 0.40 %. This shows that BBD can effectively be used to optimize the extraction of proteins from faba beans using optimal extraction conditions, resulting in a higher extraction yield and protein purity.


Subject(s)
Chemical Fractionation , Plant Proteins , Vicia faba , Vicia faba/chemistry , Plant Proteins/isolation & purification , Plant Proteins/chemistry , Chemical Fractionation/methods , Sonication/methods
9.
Food Res Int ; 192: 114814, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147510

ABSTRACT

Peruvian fava beans (PFB) are used in traditional cuisine as a nutrient-rich, flavorful, and textural ingredient; however, little is known about their industrial properties. This study evaluated the physicochemical, nutritional, and techno-functional characteristics of PFB varieties: Verde, Quelcao, and Peruanita. PFB exhibited distinct physical characteristics, quality parameters, and morphology. The color patterns of the seed coat and the hardness were the main parameters for distinguishing them. Nutritionally, all three samples exhibited high protein (23.88-24.88 g/100 g), with high proportion of essential amino acids, high dietary fiber (21.74-25.28 g/100 g), and mineral content. They also contain polyphenols (0.79-1.25 mg GAE/g) and flavonoids (0.91-1.06 mg CE/g) with antioxidant potential (16.60-21.01 and 4.68-5.17 µmol TE/g for ABTS and DPPH assays, respectively). Through XRD measurements, the semi-crystalline nature of samples was identified, belonging to the C-type crystalline form. Regarding techno-functionality, PFB flours displayed great foaming capacity, with Verde variety being the most stable. Emulsifying capacity was similar among samples, although Peruanita was more stable during heating. Upon heating with water, PFB flours reached peak viscosities between 175 and 272 cP, and final viscosities between 242 and 384 cP. Quelcao and Verde formed firmer gels after refrigeration. Based on these results, PFB would be useful to developing innovative, nutritious, and healthy products that meet market needs.


Subject(s)
Antioxidants , Nutritive Value , Polyphenols , Seeds , Vicia faba , Antioxidants/analysis , Seeds/chemistry , Polyphenols/analysis , Vicia faba/chemistry , Dietary Fiber/analysis , Flavonoids/analysis , Peru , Color , Flour/analysis , Food Handling/methods , Minerals/analysis
10.
Int J Mol Sci ; 25(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39201560

ABSTRACT

Faba bean is an important pulse. It provides proteins for the human diet and is used in industrial foodstuffs, such as flours. Drought stress severely reduces the yield of faba bean, and this can be efficiently overcome through the identification and application of key genes in response to drought. In this study, PacBio and Illumina RNA sequencing techniques were used to identify the key pathways and candidate genes involved in drought stress response. During seed germination, a total of 17,927 full-length transcripts and 12,760 protein-coding genes were obtained. There were 1676 and 811 differentially expressed genes (DEGs) between the varieties E1 and C105 at 16 h and 64 h under drought stress, respectively. Six and nine KEGG pathways were significantly enriched at 16 h and 64 h under drought stress, which produced 40 and 184 nodes through protein-protein interaction (PPI) analysis, respectively. The DEGs of the PPI nodes were involved in the ABA (abscisic acid) and MAPK (mitogen-activated protein kinase) pathways, N-glycosylation, sulfur metabolism, and sugar metabolism. Furthermore, the ectopic overexpression of a key gene, AAT, encoding aspartate aminotransferase (AAT), in tobacco, enhanced drought tolerance. The activities of AAT and peroxidase (POD), the contents of cysteine and isoleucine, were increased, and the contents of malonaldehyde (MDA) and water loss decreased in the overexpressed plants. This study provides a novel insight into genetic response to drought stress and some candidate genes for drought tolerance genetic improvements in this plant.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Germination , Seeds , Stress, Physiological , Vicia faba , Vicia faba/genetics , Vicia faba/growth & development , Germination/genetics , Stress, Physiological/genetics , Seeds/genetics , Seeds/growth & development , Sequence Analysis, RNA/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling/methods , Protein Interaction Maps/genetics , Transcriptome/genetics
11.
Molecules ; 29(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39203021

ABSTRACT

Vicia faba L. is a leguminous plant with seeds rich in nutritional compounds, such as polyphenols and L-dopa, a dopamine precursor and first-line treatment for Parkinson's symptoms. Recently, its by-products have been revalued as a sustainable source of bioactive compounds. In this study, aqueous extracts of Lucan broad bean pod valves (BPs) were characterized to evaluate their potential use as adjuvants in severe Parkinson's disease. L-dopa content, quantified by LC-UV, was much higher in BPs than in seeds (28.65 mg/g dw compared to 0.76 mg/g dw). In addition, vicine and convicine, the metabolites responsible for favism, were not detected in pods. LC-ESI/LTQ-Orbitrap/MS2 allowed the identification of the major polyphenolic compounds, including quercetin and catechin equivalents, that could ensure neuroprotection in Parkinson's disease. ESI(±)-FT-ICR MS was used to build 2D van Krevelen diagrams; polyphenolic compounds and carbohydrates were the most representative classes. The neuroprotective activity of the extracts after MPP+-induced neurotoxicity in SH-SY5Y cells was also investigated. BP extracts were more effective than synthetic L-dopa, even at concentrations up to 100 µg/mL, due to the occurrence of antioxidants able to prevent oxidative stress. The stability and antioxidant component of the extracts were then emphasized by using naturally acidic solutions of Punica granatum L., Ribes rubrum L., and gooseberry (Phyllanthus emblica L.) as extraction solvents.


Subject(s)
Parkinson Disease , Plant Extracts , Seeds , Vicia faba , Vicia faba/chemistry , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Seeds/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Cell Line, Tumor , Polyphenols/pharmacology , Polyphenols/chemistry , Levodopa/pharmacology
12.
Environ Sci Pollut Res Int ; 31(31): 44361-44373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949734

ABSTRACT

An experiment was conducted in the greenhouse to investigate the feasibility of Vicia faba grown on different fly ash concentrations (0-30%) and dual inoculation with Rhizobium and arbuscular mycorrhizal fungi (AMF). Sampling was done 45 days after sowing to analyse the plant growth parameters, photosynthetic attributes (total chlorophyll and carotenoids content), protein content, nitrogen (N) and phosphorus (P) content, defensive factors (antioxidant activity and proline content) and damage markers (lipid peroxidation, reactive oxygen species and cell viability). The results revealed that the application of fly ash (FA) alone did not result in any significant improvement in growth, biochemical and physiological parameters. However, dual inoculation showed a synergistic impact on legume growth, photosynthetic pigments, protein, proline, and cell viability. Rhizobium, AMF and 10% FA showed maximum enhancement in all attributes mentioned. 20% and 30% fly doses showed a reduction in growth, photosynthesis and antioxidants and caused oxidative stress via lipid peroxidation. The results showed that the synergistic or combined interactions between all three variables of the symbiotic relationship (Rhizobium-legume-AMF) boosted plant productivity.


Subject(s)
Coal Ash , Mycorrhizae , Rhizobium leguminosarum , Vicia faba , Mycorrhizae/physiology , Soil/chemistry , Photosynthesis , Symbiosis , Lipid Peroxidation
13.
BMC Plant Biol ; 24(1): 650, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977959

ABSTRACT

Modern intensive cropping systems often contribute to the accumulation of phenolic acids in the soil, which promotes the development of soilborne diseases. This can be suppressed by intercropping. This study analyzed the effects of intercropping on Fusarium wilt based on its effect on photosynthesis under stress by the combination of Fusarium commune and cinnamic acid. The control was not inoculated with F. commune, while the faba bean plants (Vicia faba L.) were inoculated with this pathogen in the other treatments. The infected plants were also treated with cinnamic acid. This study examined the development of Fusarium wilt together with its effects on the leaves, absorption of nutrients, chlorophyll fluorescence parameters, contents of photosynthetic pigments, activities of photosynthetic enzymes, gas exchange parameters, and the photosynthetic assimilates of faba bean from monocropping and intercropping systems. Under monocropping conditions, the leaves of the plants inoculated with F. commune grew significantly less, and there was enhanced occurrence of the Fusarium wilt compared with the control. Compared with the plants solely inoculated with F. commune, the exogenous addition of cinnamic acid to the infected plants significantly further reduced the growth of faba bean leaves and increased the occurrence of Fusarium wilt. A comparison of the combination of F. commune and cinnamic acid in intercropped wheat and faba bean compared with monocropping showed that intercropping improved the absorption of nutrients, increased photosynthetic pigments and its contents, electron transport, photosynthetic enzymes, and photosynthetic assimilates. The combination of these factors reduced the occurrence of Fusarium wilt in faba bean and increased the growth of its leaves. These results showed that intercropping improved the photosynthesis, which promoted the growth of faba bean, thus, reducing the development of Fusarium wilt following the stress of infection by F. commune and cinnamic acid. This research should provide more information to enhance sustainable agriculture.


Subject(s)
Cinnamates , Fusarium , Photosynthesis , Plant Diseases , Vicia faba , Fusarium/physiology , Vicia faba/microbiology , Vicia faba/physiology , Cinnamates/metabolism , Cinnamates/pharmacology , Plant Diseases/microbiology , Stress, Physiological , Plant Leaves/microbiology , Crop Production/methods , Chlorophyll/metabolism , Crops, Agricultural/microbiology
14.
Food Chem ; 458: 140177, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38964100

ABSTRACT

Faba bean (high- and low-tannin) protein isolates were water extracted followed by dialysis or micellization in comparison to concentrates from conventional alkali extraction + acid precipitation, and salt-based extraction (1% NaCl) + dialysis. Protein fractions were characterised for secondary structure conformational changes, crystalline structure, particle size distribution in aqueous suspension and thermal properties. Mild water or salt extraction did not influence particle size distribution. Based on XRD, FTIR and CD, ß-sheet structures were the most abundant secondary structures and water extraction + dialysis had minimal impact on their native conformation. DSC results showed an association between protein purity, glass transition temperature and endothermic enthalpy. High melting temperature above glass transition confirms the suitability of faba bean proteins for thermal/extrusion processing. Fractionation method was a more significant determinant of physicochemical characteristics compared to the cultivar. Further exploration of the techno-functional characteristics of faba bean proteins is essential for value-added food applications.


Subject(s)
Plant Proteins , Vicia faba , Vicia faba/chemistry , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Hot Temperature , Protein Structure, Secondary , Chemical Fractionation/methods
15.
Sci Rep ; 14(1): 16419, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39014045

ABSTRACT

In 2005-2007, a field study was conducted into intercropping of maize with faba bean at Pawlowice research station, Wroclaw University of Environmental and Life Sciences. The main aim of the multi-year field research was an investigation into the reactions of differing maize hybrid earliness to intercropping cultivation with faba bean. The field research evaluated the effect of three maize hybrids-Wilga (early-E), Blask (medium-M) and Iman (late-L)-and the sowing rate of faba bean-18 (Fb1), 27 (Fb2) and 36 (Fb3) seeds per 1 m2-on growth dynamics and yield structure, and biomass, protein, and energy yield. Cultivation of faba bean in maize inter-rows led to significant competition with maize and affected yields, causing a decrease in maize dry matter yield from 14.1 (Fb1) to 20.6% (FB3) compared with maize sown alone. In terms of total biomass yield from maize and faba beans, no significant differences were found, but a slight increase in yield of 1.1-4.2% (repective to Fb1 and Fb3) was noted compared to maize sown alone. The early maize hybrid had a significantly lower yield but was most suitable for intercropping with faba bean. The dry biomass yield of early hybrids increased in intercropping by 25% compared to pure maize cultivation. Total protein yield from both intercropping components was higher than in the pure sowing of maize: from 24 (Fb1) to 39% (Fb3). The increase in protein production resulted in an improvement in the energy-protein ratio. The number of UFL per kg of total protein decreased from 13.2 in pure maize cultivation (M-P) to 9.3 (Fb3). A more balanced forage biomass was produced from intercropping maize with faba bean, especially when an early maize hybrid was sown with faba beans.


Subject(s)
Biomass , Plant Proteins , Vicia faba , Zea mays , Zea mays/metabolism , Zea mays/growth & development , Vicia faba/metabolism , Vicia faba/growth & development , Plant Proteins/metabolism , Agriculture/methods , Crop Production/methods
16.
Sci Rep ; 14(1): 16737, 2024 07 20.
Article in English | MEDLINE | ID: mdl-39033227

ABSTRACT

In this comprehensive investigation, we successfully isolated and characterized 40 distinct plant-associated halotolerant bacteria strains obtained from three halophytic plant species: Tamarix nilotica, Suaeda pruinosa, and Arthrocnemum macrostachyum. From this diverse pool of isolates, we meticulously selected five exceptional plant-associated halotolerant bacteria strains through a judiciously designed seed biopriming experiment and then identified molecularly. Bacillus amyloliquefaciens DW6 was isolated from A. macrostachyum. Three bacteria (Providencia rettgeri DW3, Bacillus licheniformis DW4, and Salinicoccus sesuvii DW5) were isolated for the first time from T. nilotica, S. pruinosa and S. pruinosa, respectively. Paenalcaligenes suwonensis DW7 was isolated for the first time from A. macrostachyum. These plant-associated halotolerant bacteria exhibited growth-promoting activities, including phosphate solubilization, nitrogen fixation, and production of bioactive compounds, i.e., ammonia, phytohormones, hydrogen cyanide, siderophores, and exopolysaccharides. A controlled laboratory experiment was conducted to reduce the detrimental impact of soil salinity. Vicia faba seedlings were inoculated individually or in mixtures by the five most effective plant-associated halotolerant bacteria to reduce the impact of salt stress and improve growth parameters. The growth parameters were significantly reduced due to the salinity stress in the control samples, compared to the experimental ones. The unprecedented novelty of our findings is underscored by the demonstrable efficacy of co-inoculation with these five distinct bacterial types as a pioneering bio-approach for countering the deleterious effects of soil salinity on plant growth. This study thus presents a remarkable contribution to the field of plant science and offers a promising avenue for sustainable agriculture in saline environments.


Subject(s)
Salinity , Vicia faba , Vicia faba/growth & development , Vicia faba/microbiology , Salt-Tolerant Plants/microbiology , Salt-Tolerant Plants/growth & development , Nitrogen Fixation , Bacteria/growth & development , Bacteria/metabolism , Bacteria/classification , Tamaricaceae/microbiology , Tamaricaceae/growth & development , Chenopodiaceae/microbiology , Chenopodiaceae/growth & development , Soil Microbiology , Salt Tolerance , Phosphates/metabolism
17.
Food Chem ; 458: 140176, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38959801

ABSTRACT

Faba bean ingredients are rich in proteins and good sources of calcium (Ca), although containing phytic acid (PA) molecules. PA, a polyphosphate compound, can affect the bioavailability of minerals/proteins through complex formation. This study evaluates the impact of two extraction processes, Alkaline Extraction-IsoElectric Precipitation (AE-IEP) and Sequential Extraction (SE), on the ability of faba bean globulin systems to bind added calcium ions. Increasing concentrations of CaCl2 were introduced into 2.5% (w/v) protein dispersions at pHs 4.5, 5.5, 6.5, and 7.5, and free Ca monitored. Near the isoelectric point of globulin (pH âˆ¼ 4-5), Ca binding capacity was found to be low. At higher pHs, significant Ca chelation occurred, initially attributed to free PA binding sites, resulting in the formation of insoluble complexes and subsequent protein precipitation. The AE-IEP globulin fraction exhibited a higher Ca binding capacity than the SE globulin, attributed to its higher PA and lower initial Ca concentrations.


Subject(s)
Calcium , Globulins , Plant Proteins , Vicia faba , Calcium/chemistry , Calcium/metabolism , Vicia faba/chemistry , Vicia faba/metabolism , Hydrogen-Ion Concentration , Globulins/chemistry , Globulins/metabolism , Globulins/isolation & purification , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Proteins/isolation & purification , Protein Binding , Chemical Fractionation/methods
18.
BMC Genomics ; 25(1): 644, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943067

ABSTRACT

Faba bean is an important legume crop. The genetic diversity among faba bean genotypes is very important for the genetic improvement of target traits. A set of 128 fab bean genotypes that are originally from Egypt were used in this study to investigate the genetic diversity and population structure. The 128 genotypes were genotyped using the Single Primer Enrichment Technology (SPET) by which a set of 6759 SNP markers were generated after filtration. The SNP markers were distributed on all chromosomes with a range extending from 822 (Chr. 6) to 1872 (Chr.1). The SNP markers had wide ranges of polymorphic information content (PIC), gene diversity (GD), and minor allele frequency. The analysis of population structure divided the Egyptian faba bean population into five subpopulations. Considerable genetic distance was found among all genotypes, ranging from 0.1 to 0.4. The highly divergent genotype was highlighted in this study and the genetic distance among genotypes ranged from 0.1 and 0.6. Moreover, the structure of linkage disequilibrium was studied, and the analysis revealed a low level of LD in the Egyptian faba bean population. A slow LD decay at the genomic and chromosomal levels was observed. Interestingly, the distribution of haplotype blocks was presented in each chromosome and the number of haplotype block ranged from 65 (Chr. 4) to 156 (Chr. 1). Migration and genetic drift are the main reasons for the low LD in the Egyptian faba bean population. The results of this study shed light on the possibility of the genetic improvement of faba bean crop in Egypt and conducting genetic association analyses to identify candidate genes associated with target traits (e.g. protein content, grain yield, etc.) in this panel.


Subject(s)
Linkage Disequilibrium , Polymorphism, Single Nucleotide , Vicia faba , Vicia faba/genetics , Egypt , Genetic Variation , Genotype , Haplotypes , Chromosomes, Plant/genetics
19.
BMC Plant Biol ; 24(1): 607, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926889

ABSTRACT

BACKGROUND: Salinity is a major abiotic stress, and the use of saline water in the agricultural sector will incur greater demand under the current and future climate changing scenarios. The objective of this study was to develop a dual-functional nanofertilizer capable of releasing a micronutrient that nourishes plant growth while enhancing salt stress resilience in faba bean (Vicia faba L.). RESULTS: Moringa oleifera leaf extract was used to synthesize sulfur nanoparticles (SNPs), which were applied as a foliar spray at different concentrations (0, 25, 50, and 100 mg/l) to mitigate the negative effects of salt stress (150 mM NaCl) on faba bean plants. The SNPs were characterized and found to be spherical in shape with an average size of 10.98 ± 2.91 nm. The results showed that salt stress had detrimental effects on the growth and photosynthetic performance (Fv/Fm) of faba bean compared with control, while foliar spraying with SNPs improved these parameters under salinity stress. SNPs application also increased the levels of osmolytes (soluble sugars, amino acids, proline, and glycine betaine) and nonenzymatic antioxidants, while reducing the levels of oxidative stress biomarkers (MDA and H2O2). Moreover, SNPs treatment under salinity stress stimulated the activity of antioxidant enzymes (ascorbate peroxidase (APX), and peroxidase (POD), polyphenol oxidase (PPO)) and upregulated the expression of stress-responsive genes: chlorophyll a-b binding protein of LHCII type 1-like (Lhcb1), ribulose bisphosphate carboxylase large chain-like (RbcL), cell wall invertase I (CWINV1), ornithine aminotransferase (OAT), and ethylene-responsive transcription factor 1 (ERF1), with the greatest upregulation observed at 50 mg/l SNPs. CONCLUSION: Overall, foliar application of sulfur nanofertilizers in agriculture could improve productivity while minimizing the deleterious effects of salt stress on plants. Therefore, this study provides a strong foundation for future research focused on evaluating the replacement of conventional sulfur-containing fertilizers with their nanoforms to reduce the harmful effects of salinity stress and enhance the productivity of faba beans.


Subject(s)
Fertilizers , Nanoparticles , Salt Stress , Sulfur , Vicia faba , Vicia faba/physiology , Vicia faba/drug effects , Vicia faba/growth & development , Vicia faba/genetics , Sulfur/metabolism , Antioxidants/metabolism , Plant Leaves/drug effects , Photosynthesis/drug effects
20.
Physiol Plant ; 176(3): e14404, 2024.
Article in English | MEDLINE | ID: mdl-38922894

ABSTRACT

Soil acidity is a global issue; soils with pH <4.5 are widespread in Europe. This acidity adversely affects nutrient availability to plants; pH levels <5.0 lead to aluminum (Al3+) toxicity, a significant problem that hinders root growth and nutrient uptake in faba bean (Vicia faba L.) and its symbiotic relationship with Rhizobium. However, little is known about the specific traits and tolerant genotypes among the European faba beans. This study aimed to identify response traits associated with tolerance to root zone acidity and Al3+ toxicity and potentially tolerant genotypes for future breeding efforts. Germplasm survey was conducted using 165 genotypes in a greenhouse aquaponics system. Data on the root and shoot systems were collected. Subsequently, 12 genotypes were selected for further phenotyping in peat medium, where data on physiological and morphological parameters were recorded along with biochemical responses in four selected genotypes. In the germplasm survey, about 30% of genotypes showed tolerance to acidity and approximately 10% exhibited tolerance to Al3+, while 7% showed tolerance to both. The phenotyping experiment indicated diverse morphological and physiological responses among treatments and genotypes. Acid and Al3+ increased proline concentration. Interaction between genotype and environment was observed for ascorbate peroxidase activity, malondialdehyde, and proline concentrations. Genomic markers associated with acidity and acid+Al3+-toxicity tolerances were identified using GWAS analysis. Four faba bean genotypes with varying levels of tolerance to acidity and Al3+ toxicity were identified.


Subject(s)
Aluminum , Genotype , Phenotype , Vicia faba , Vicia faba/genetics , Vicia faba/drug effects , Vicia faba/growth & development , Vicia faba/metabolism , Aluminum/toxicity , Soil/chemistry , Hydrogen-Ion Concentration , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Proline/metabolism , Adaptation, Physiological/genetics , Adaptation, Physiological/drug effects , Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL