Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
J Agric Food Chem ; 72(32): 17953-17963, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39086319

ABSTRACT

In this study, the transepithelial transport of bioactive peptides derived from faba bean flour gastrointestinal digestates was investigated, in vitro, using a Caco-2 and HT29-MTX-E12 coculture monolayer, in comparison to those of pea and soy. The profile of transported peptides was determined by mass spectrometry, and the residual antioxidant activity was assessed. The ORAC value significantly (p < 0.05) decreased after transepithelial transport (24-36% reduction) for all legumes, while the antioxidant activity in ABTS assay significantly (p < 0.05) increased, as shown by the EC50 decrease of 26-44%. Five of the nine faba bean peptides that crossed the intestinal cell monolayer exhibited antioxidant activity. Two of these peptides, TETWNPNHPEL and TETWNPNHPE, were further hydrolyzed by the cells' brush border peptidases to smaller fragments TETWNPNHP and TWNPNHPE. These metabolized peptides were synthesized, and both maintained high antioxidant activity in both ABTS (EC50 of 1.2 ± 0.2 and 0.4 ± 0.1 mM, respectively) and ORAC (2.5 ± 0.1 and 3.4 ± 0.2 mM of Trolox equivalent/mM, respectively) assays. These results demonstrated for the first time the bioaccessibility of faba bean peptides produced after in vitro gastrointestinal digestion and how their bioactive properties can be modulated during transepithelial transport.


Subject(s)
Antioxidants , Digestion , Glycine max , Peptides , Pisum sativum , Vicia faba , Humans , Caco-2 Cells , Antioxidants/metabolism , Antioxidants/chemistry , Peptides/metabolism , Peptides/chemistry , HT29 Cells , Vicia faba/metabolism , Vicia faba/chemistry , Biological Transport , Glycine max/chemistry , Glycine max/metabolism , Pisum sativum/chemistry , Pisum sativum/metabolism , Gastrointestinal Tract/metabolism , Plant Proteins/metabolism , Plant Proteins/chemistry , Biological Availability , Models, Biological
2.
Poult Sci ; 103(9): 103880, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094436

ABSTRACT

Antibiotic overuse in poultry feeds has disastrous implications; consequently, long-term alternatives must be developed. As a result, the current study aims to assess the impact of Aspergillus niger filtrate (ANF) high in organic acids grown on agro-industrial residue of faba bean (AIRFB) on quail diet, as well as their influence on bird productivity, digestion, carcass yield, blood chemistry, and intestinal microbiota. A total of 240 Japanese quails (aged 7 d) were used in this study, divided equally among 5 experimental groups with 48 quails each. Group 1 (G1) received a basal diet without any ANF, group 2 (G2) received a basal diet supplemented with 0.5 mL ANF/kg diet, group 3 (G3) received a basal diet supplemented with 1.0 mL ANF/kg diet, group 4 (G4) received a basal diet supplemented with 1.5 mL ANF/kg diet, and group 5 (G5) received a basal diet supplemented with 2 mL ANF/kg diet. The performance parameters were monitored at 1 to 3, 3 to 5, and 1 to 5 wk. Adding ANF increased body weight at 3 and 5 wk, as well as body weight gain at 1 to 3, 3 to 5, and 1 to 5 wk, compared to the control diet. The ANF fed quails had the highest feed conversion ratio compared to the control group. The addition of ANF to the quail diet had no effect on the weight of the carcass, gizzard, heart, liver, giblets, or dressing; however, it did lower triglycerides, low-density lipoprotein, and very low-density lipoprotein while increasing high-density lipoprotein levels. The quail groups that received ANF had enhanced immunological indices such as IgG, IgM, IgA, and lysozymes. It also increased the levels of superoxide dismutase and total antioxidant contents, as well as catalase, and digestive enzymes such as protease, amylase, and lipase. However, it lowered the blood MDA levels compared to control. It has been demonstrated that the total gut microbiota, Escherichia coli, total coliforms, and the population of Salmonella are all reduced in ANF-fed quails. Histological examination of ANF quails' liver and intestinal sections revealed normal hepatic parenchyma, typical leaf-like intestinal villi, and comparatively short and frequently free lumina. In conclusion, Japanese quail showed improvements in performance, digestive enzymes, antioxidant indices, immunity, and capacity to reduce intestinal pathogenic bacteria after consuming diet supplemented with ANF.


Subject(s)
Animal Feed , Antioxidants , Coturnix , Diet , Dietary Supplements , Gastrointestinal Microbiome , Vicia faba , Animals , Coturnix/physiology , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Vicia faba/chemistry , Antioxidants/metabolism , Fermentation , Animal Nutritional Physiological Phenomena/drug effects , Aspergillus niger , Blood Chemical Analysis/veterinary , Male , Random Allocation
3.
Ultrason Sonochem ; 109: 107012, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098098

ABSTRACT

Ultrasound-assisted extraction (UAE) was evaluated as a green procedure to produce faba beans protein isolates from faba beans. Magnetic stirring was performed as conventional extraction. A three-level five-factor Box-Behnken Design (BBD) was applied to obtain the optimal UAE conditions to concurrently maximize extraction yield and protein content. The response surface methodology (RSM) showed a quadratic curvature for extraction yield and protein. The optimal extraction conditions were determined as: Power of 123 W, solute/solvent ratio of 0.06 (1:15 g/mL), sonication time of 41 min, and total volume of 623 mL with a desirability value of 0.82. Under these conditions, the extraction yield of 19. 75 ± 0.87 % (Protein yield of 67.84 %) and protein content of 92.87 ± 0.53 % were obtained for optimum ultrasound extraction. Control samples using magnetic stirring under similar conditions without ultrasound treatment showed an extraction yield of 16.41 ± 0.02 % (Protein yield of 54.65 %) and a protein content of 89. 88 ± 0.40 %. This shows that BBD can effectively be used to optimize the extraction of proteins from faba beans using optimal extraction conditions, resulting in a higher extraction yield and protein purity.


Subject(s)
Chemical Fractionation , Plant Proteins , Vicia faba , Vicia faba/chemistry , Plant Proteins/isolation & purification , Plant Proteins/chemistry , Chemical Fractionation/methods , Sonication/methods
4.
Food Res Int ; 192: 114814, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147510

ABSTRACT

Peruvian fava beans (PFB) are used in traditional cuisine as a nutrient-rich, flavorful, and textural ingredient; however, little is known about their industrial properties. This study evaluated the physicochemical, nutritional, and techno-functional characteristics of PFB varieties: Verde, Quelcao, and Peruanita. PFB exhibited distinct physical characteristics, quality parameters, and morphology. The color patterns of the seed coat and the hardness were the main parameters for distinguishing them. Nutritionally, all three samples exhibited high protein (23.88-24.88 g/100 g), with high proportion of essential amino acids, high dietary fiber (21.74-25.28 g/100 g), and mineral content. They also contain polyphenols (0.79-1.25 mg GAE/g) and flavonoids (0.91-1.06 mg CE/g) with antioxidant potential (16.60-21.01 and 4.68-5.17 µmol TE/g for ABTS and DPPH assays, respectively). Through XRD measurements, the semi-crystalline nature of samples was identified, belonging to the C-type crystalline form. Regarding techno-functionality, PFB flours displayed great foaming capacity, with Verde variety being the most stable. Emulsifying capacity was similar among samples, although Peruanita was more stable during heating. Upon heating with water, PFB flours reached peak viscosities between 175 and 272 cP, and final viscosities between 242 and 384 cP. Quelcao and Verde formed firmer gels after refrigeration. Based on these results, PFB would be useful to developing innovative, nutritious, and healthy products that meet market needs.


Subject(s)
Antioxidants , Nutritive Value , Polyphenols , Seeds , Vicia faba , Antioxidants/analysis , Seeds/chemistry , Polyphenols/analysis , Vicia faba/chemistry , Dietary Fiber/analysis , Flavonoids/analysis , Peru , Color , Flour/analysis , Food Handling/methods , Minerals/analysis
5.
Food Chem ; 458: 140176, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38959801

ABSTRACT

Faba bean ingredients are rich in proteins and good sources of calcium (Ca), although containing phytic acid (PA) molecules. PA, a polyphosphate compound, can affect the bioavailability of minerals/proteins through complex formation. This study evaluates the impact of two extraction processes, Alkaline Extraction-IsoElectric Precipitation (AE-IEP) and Sequential Extraction (SE), on the ability of faba bean globulin systems to bind added calcium ions. Increasing concentrations of CaCl2 were introduced into 2.5% (w/v) protein dispersions at pHs 4.5, 5.5, 6.5, and 7.5, and free Ca monitored. Near the isoelectric point of globulin (pH âˆ¼ 4-5), Ca binding capacity was found to be low. At higher pHs, significant Ca chelation occurred, initially attributed to free PA binding sites, resulting in the formation of insoluble complexes and subsequent protein precipitation. The AE-IEP globulin fraction exhibited a higher Ca binding capacity than the SE globulin, attributed to its higher PA and lower initial Ca concentrations.


Subject(s)
Calcium , Globulins , Plant Proteins , Vicia faba , Calcium/chemistry , Calcium/metabolism , Vicia faba/chemistry , Vicia faba/metabolism , Hydrogen-Ion Concentration , Globulins/chemistry , Globulins/metabolism , Globulins/isolation & purification , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Proteins/isolation & purification , Protein Binding , Chemical Fractionation/methods
6.
Food Chem ; 458: 140177, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38964100

ABSTRACT

Faba bean (high- and low-tannin) protein isolates were water extracted followed by dialysis or micellization in comparison to concentrates from conventional alkali extraction + acid precipitation, and salt-based extraction (1% NaCl) + dialysis. Protein fractions were characterised for secondary structure conformational changes, crystalline structure, particle size distribution in aqueous suspension and thermal properties. Mild water or salt extraction did not influence particle size distribution. Based on XRD, FTIR and CD, ß-sheet structures were the most abundant secondary structures and water extraction + dialysis had minimal impact on their native conformation. DSC results showed an association between protein purity, glass transition temperature and endothermic enthalpy. High melting temperature above glass transition confirms the suitability of faba bean proteins for thermal/extrusion processing. Fractionation method was a more significant determinant of physicochemical characteristics compared to the cultivar. Further exploration of the techno-functional characteristics of faba bean proteins is essential for value-added food applications.


Subject(s)
Plant Proteins , Vicia faba , Vicia faba/chemistry , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Hot Temperature , Protein Structure, Secondary , Chemical Fractionation/methods
7.
Food Chem ; 455: 139867, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823127

ABSTRACT

Reducing the content of quickly absorbed carbohydrates and saturated fats in snack formulations while increasing the consumption of high-quality proteins are effective strategies to prevent obesity in childhood. Thus, the nutritional value, digestibility, and functionality of fava beans (Vicia faba L.) fermented with Pleurotus ostreatus were examined as potential ingredients for food design. Solid-state fermentation enhanced the protein content by 16% with a rise in essential (25%) and non-essential (15%) amino acids while decreasing total carbohydrate content and tannin levels. Moreover, fermentation modified the amino acid profile released during digestion, increasing amino acids such as valine, isoleucine, and threonine, which are vital for health and development in childhood. Furthermore, the bioaccessible fraction of the fermented bean showed a 60% of ACE inhibition and improved magnesium bioaccessibility. Consequently, fava beans fermented with Pleurotus ostreatus emerged as a new ingredient in the development of new protein-rich snacks tailored for children and adolescents.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Digestion , Fermentation , Vicia faba , Humans , Amino Acids/metabolism , Amino Acids/analysis , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/chemistry , Models, Biological , Nutritive Value , Pleurotus/metabolism , Pleurotus/chemistry , Pleurotus/growth & development , Vicia faba/chemistry , Vicia faba/metabolism , Vicia faba/microbiology
8.
Int J Biol Macromol ; 274(Pt 2): 133235, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901514

ABSTRACT

With its capability for automated production of high-resolution structures, 3D printing can develop plant-based seafood mimics with comparable protein content. However, the challenge lies in solidifying 3D printed products to achieve the firmness of seafood. Targeting prawn, texturisation of its 3D printed mimic by curdlan gum was compared against incubation with a protein cross-linking enzyme, microbial transglutaminase. Faba bean protein extract (FBP) was selected for its lightest colour. To confer structural stability to the FBP-based ink without hindering extrudability, adding 1 % xanthan gum was optimal. Printed curdlan-containing mimics were steamed for 9 min, while printed transglutaminase-containing mimics were incubated at 55 °C before steaming. Either adding 0.0625 % or 0.125 % w/w curdlan or, incubating the transglutaminase-containing mimics for an hour achieved chewiness of 818.8-940.6 g, comparable to that of steamed prawn (953.13 g). Curdlan hydrogel penetrated and reinforced the FBP network as observed under confocal imaging. Whereas incubation of transglutaminase-containing mimics enhanced microstructural connectivity, attributable to transglutaminase-catalysed isopeptide cross-linkages, and the consequent increase in disulfide bonding and ß-sheet. Ultimately, transglutaminase treatment appeared more suitable than curdlan, as it yielded mimics with cutting strength comparable to steamed prawn. Both demonstrated promising potential to broaden the variety of 3D printed seafood mimics.


Subject(s)
Printing, Three-Dimensional , Transglutaminases , Vicia faba , beta-Glucans , Transglutaminases/metabolism , Transglutaminases/chemistry , beta-Glucans/chemistry , Animals , Vicia faba/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Seafood/analysis
9.
Molecules ; 29(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731509

ABSTRACT

The aim of this study was to develop microcapsules containing juniper or black pepper essential oils, using a combination of faba bean protein and chia seed polysaccharides (in ratios of 1:1, 1:2, 2:1). By synergizing these two polymers, our goal was to enhance the efficiency of essential oil microencapsulation, opening up various applications in the food industry. Additionally, we aimed to investigate the influence of different polymer mixing ratios on the properties of the resulting microcapsules and the course of the complex coacervation process. To dissolve the essential oils and limit their evaporation, soybean and rapeseed oils were used. The powders resulting from the freeze-drying of coacervates underwent testing to assess microencapsulation efficiency (65.64-87.85%), density, flowability, water content, solubility, and hygroscopicity. Additionally, FT-IR and DSC analyses were conducted. FT-IR analysis confirmed the interactions between the components of the microcapsules, and these interactions were reflected in their high thermal resistance, especially at a protein-to-polysaccharide ratio of 2:1 (177.2 °C). The water content in the obtained powders was low (3.72-7.65%), but it contributed to their hygroscopicity (40.40-76.98%).


Subject(s)
Capsules , Drug Compounding , Oils, Volatile , Plant Proteins , Polysaccharides , Salvia , Seeds , Vicia faba , Polysaccharides/chemistry , Seeds/chemistry , Vicia faba/chemistry , Drug Compounding/methods , Oils, Volatile/chemistry , Plant Proteins/chemistry , Salvia/chemistry , Capsules/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , Water/chemistry
10.
Poult Sci ; 103(7): 103822, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820969

ABSTRACT

A lean meat batter system was mixed with four plant proteins at 3, 6, 9, and 12% (w/w): pea protein A (PA), pea protein B (PB), brown rice protein (BR) and faba bean protein (FB). Texture profile analysis (TPA) revealed that increasing plant protein levels hardened the hybrid meat batters, with PA and PB leading to the hardest gels. TPA results were supported by micrographs, demonstrating that the two pea proteins formed large aggregates, contributing to a firmer hybrid meat gel. Dynamic rheology showed that the incorporation of plant proteins lowered the storage modulus (G') during the heating stage (20 to 72°C), yet the 6% PA treatment produced a final G' (after cooling) closest to the control (CL). Nuclear Magnetic Resonance (NMR) T2 relaxometry also demonstrated that plant proteins reduced the water mobility in hybrid meat batters. Results were in line with the cooking loss, except for a higher cooking loss in the BR formulation compared to the CL. Color measurement showed that increasing plant protein levels led to darker and yellower meat batters; however, the effect on redness varied among treatments. Overall, the findings suggest that pea proteins have superior functionality and compatibility within a lean poultry meat protein system, compared to BR and FB tested here.


Subject(s)
Color , Oryza , Rheology , Vicia faba , Oryza/chemistry , Vicia faba/chemistry , Animals , Food Handling/methods , Plant Proteins/metabolism , Plant Proteins/chemistry , Cooking , Meat Products/analysis , Pisum sativum/chemistry , Water/chemistry , Pea Proteins/chemistry , Chickens
11.
Food Res Int ; 183: 114231, 2024 May.
Article in English | MEDLINE | ID: mdl-38760148

ABSTRACT

This research assessed how three preprocessing techniques [soaking (S), soaking and reconstitution (SR), and soaking and dehulling (SD)] impact the protein digestibility and bioactivity of faba bean flours when combined with thermoplastic extrusion. Samples were compared against a control (C) of extruded faba bean flour without preprocessing. Applying preprocessing techniques followed by extrusion diminished antinutrient levels while enhancing protein hydrolysis and in vitro bioactivity in higher extent compared to C. Specifically, SD combined with extrusion was the most effective, achieving an 80% rate of protein hydrolysis and uniquely promoting the release of gastric digestion-resistant proteins (50-70 kDa). It also resulted in the highest release of small peptides (<3kDa, 22.51%) and free amino acids (15.50%) during intestinal digestion. Moreover, while all preprocessing techniques increased antioxidant (ABTS radical-scavenging), antidiabetic, and anti-hypertensive activities, SD extruded flour displayed the highest levels of dipeptidyl peptidase inhibition (DPP-IVi, IC50=13.20 µg/mL), pancreatic α-amylase inhibition (IC50=8.59 mg/mL), and angiotensin I-converting enzyme inhibition (ACEi, IC50=1.71 mg protein/mL). As a result, it was selected for further peptide and in silico bioactive analysis. A total of 24 bioactive peptides were identified in intestinal digests from SD extruded flour, all with potential DPP-IVi and ACEi activities, and six were also predicted as antioxidant peptides. VIPAGYPVAIK and GLTETWNPNHPEL were highlighted as resistant bioactive peptides with the highest antidiabetic and antioxidant potential. Our findings demonstrated that combining preprocessing (particularly SD) and thermoplastic extrusion enhances protein digestibility in faba beans and promotes the release of beneficial bioactive peptides in the intestine.


Subject(s)
Digestion , Flour , Food Handling , Peptides , Vicia faba , Vicia faba/chemistry , Flour/analysis , Food Handling/methods , Antioxidants/analysis , Nutritive Value , Hydrolysis , Amino Acids/analysis , Amino Acids/metabolism , Plant Proteins/metabolism
12.
Food Chem ; 449: 139321, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38615637

ABSTRACT

This study investigated the effect of low-intensity pulsed electric field (PEF) (0.3-0.7 kV/cm) and/or germination (0-72 h, 20 °C) on faba beans prior to flour- and breadmaking. PEF (0.5 and 0.7 kV/cm) had no significant effect on the germination performance of faba bean but had a positive effect on in vitro starch and protein hydrolysis of PEF-treated beans germinated for 72 h. The incorporation of flour from soaked, germinated, PEF-treated, and PEF-treated+germinated faba beans into wheat bread, at 30% mass level, improved the nutritional composition (total starch and protein contents) and protein digestibility but it reduced the specific volume and increased the density, brownness, and hardness of the bread. This finding shows for the first time that PEF-treatment (<0.7 kV/cm) of faba beans followed by germination (72 h) improved in vitro starch and protein hydrolysis of its flour and the protein digestibility at gastric phase of its enriched wheat bread.


Subject(s)
Bread , Digestion , Flour , Food Handling , Germination , Triticum , Vicia faba , Vicia faba/chemistry , Vicia faba/metabolism , Vicia faba/growth & development , Flour/analysis , Bread/analysis , Triticum/chemistry , Triticum/metabolism , Triticum/growth & development , Seeds/chemistry , Seeds/metabolism , Seeds/growth & development , Starch/metabolism , Starch/chemistry , Electricity , Plant Proteins/metabolism , Hydrolysis
13.
J Sci Food Agric ; 104(10): 6322-6329, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38520300

ABSTRACT

BACKGROUND: This study aimed to assess the effect of faba bean (Vicia faba L.) protein isolate (FBPI) on the rheological properties of pork myofibrillar protein gels (MPGs) and the quality characteristics of pork low-fat model sausages (LFMSs). RESULTS: Pork MPGs with 5 or 10 g kg-1 FBPI had higher cooking yield, gel strength, and viscosity than controls. The addition of FBPI to MPGs increased the protein surface hydrophobicity and decreased sulfhydryl groups. Adding FBPI to MPGs changed the protein profile and microstructure. The cooking loss and expressible moisture of LFMSs with 5, 10, or 15 g kg-1 FBPI were lower than those of controls and showed similar results to those with 15 g kg-1 soy protein isolate (SPI). Hardness values of LFMSs with FBPI and SPI were no different, and were higher than those of controls. CONCLUSION: The addition of FBPI potentially improves rheological properties of MPGs and the functional properties of LFMSs, including water-holding capacity and textural properties. © 2024 Society of Chemical Industry.


Subject(s)
Cooking , Gels , Meat Products , Plant Proteins , Rheology , Vicia faba , Animals , Meat Products/analysis , Vicia faba/chemistry , Swine , Gels/chemistry , Plant Proteins/chemistry , Viscosity , Muscle Proteins/chemistry , Myofibrils/chemistry
14.
J Sci Food Agric ; 104(11): 6483-6493, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38507329

ABSTRACT

BACKGROUND: Plant proteins are being increasingly utilized as functional ingredients in foods because of their potential health, sustainability, and environmental benefits. However, their functionality is often worse than the synthetic or animal-derived ingredients they are meant to replace. The functional performance of plant proteins can be improved by conjugating them with polyphenols. In this study, the formation and stability of oil-in-water emulsions prepared using faba bean protein-grape leaf polyphenol (FP-GLP) conjugates as emulsifiers. Initially, FP-GLP conjugates were formed using an ultrasound-assisted alkali treatment. Then, corn oil-in-water emulsions were prepared using high-intensity sonication (60% amplitude, 10 min) and the impacts of conjugate concentration, pH, ionic strength, freezing-thawing, and heating on their physicochemical properties and stability were determined. RESULTS: Microscopy and light scattering analysis showed that oil-in-water emulsions containing small oil droplets could be formed at conjugate concentrations of 2% and higher. The addition of salt reduced the electrostatic repulsion between the droplets, which increased their susceptibility to aggregation. Indeed, appreciable droplet aggregation was observed at ≥ 50 mmol/L sodium chloride. The freeze-thaw stability of emulsions prepared with protein-polyphenol conjugates was better than those prepared using the proteins alone. In addition, the emulsions stabilized by the conjugates had a higher viscosity than those prepared by proteins alone. CONCLUSION: This study showed that FP-GLP conjugates are effective plant-based emulsifiers for forming and stabilizing oil-in-water emulsions. Indeed, emulsions formed using these conjugates showed improved resistance to pH changes, heating, freezing, and salt addition. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Emulsions , Freezing , Hot Temperature , Plant Leaves , Plant Proteins , Polyphenols , Vicia faba , Emulsions/chemistry , Hydrogen-Ion Concentration , Polyphenols/chemistry , Plant Proteins/chemistry , Plant Leaves/chemistry , Vicia faba/chemistry , Water/chemistry , Sodium Chloride/chemistry , Emulsifying Agents/chemistry , Plant Extracts/chemistry
15.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474577

ABSTRACT

While numerous Fabaceae seeds are a good nutritional source of high-quality protein, the use of some species is hampered by toxic effects caused by exposure to metabolites that accumulate in the seeds. One such species is the faba or broad bean (Vicia faba L.), which accumulates vicine and convicine. These two glycoalkaloids cause favism, the breakdown of red blood cells in persons with a glucose-6-phosphate dehydrogenase deficiency. Because this is the most common enzyme deficiency worldwide, faba bean breeding efforts have focused on developing cultivars with low levels of these alkaloids. Consequently, quantification methods have been developed; however, they quantify vicine and convicine only and not the derivatives of these compounds that potentially generate the same bio-active molecules. Based on the recognition of previously unknown (con)vicine-containing compounds, we screened the fragmentation spectra of LC-MS/MS data from five faba bean cultivars using the characteristic fragments generated by (con)vicine. This resulted in the recognition of more than a hundred derivatives, of which 89 were tentatively identified. (Con)vicine was mainly derivatized through the addition of sugars, hydroxycinnamic acids, and dicarboxylic acids, with a group of compounds composed of two (con)vicine residues linked by dicarboxyl fatty acids. In general, the abundance profiles of the different derivatives in the five cultivars mimicked that of vicine and convicine, but some showed a derivative-specific profile. The description of the (con)vicine diversity will impact the interpretation of future studies on the biosynthesis of (con)vicine, and the content in potentially bio-active alkaloids in faba beans may be higher than that represented by the quantification of vicine and convicine alone.


Subject(s)
Alkaloids , Fabaceae , Glucosides , Pyrimidinones , Uridine/analogs & derivatives , Vicia faba , Vicia faba/chemistry , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid , Tandem Mass Spectrometry , Plant Breeding
16.
Fish Physiol Biochem ; 50(3): 1157-1169, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38418771

ABSTRACT

Faba bean has gained attention as a cost-effective protein source with the potential to enhance product quality (texture properties, collagen content, etc.) in fish. However, its anti-nutrition factor, high feed conversion ratio, poor growth performance, etc. limit the widely application as a dietary source, especially in carnivorous fish. The water or alcohol extract of faba bean might resolve the problem. In this study, the juvenile Nibea coibor, known for their high-protein, large-sized, and high-grade swim bladder, were fed with seven isoproteic and isolipid experimental diets with the additive of faba bean water extract (1.25%, 2.5%, and 5%) or faba bean alcohol extract (0.9%, 1.8%, and 3.6%), with a control group without faba bean extract. After the 10-week feeding trail, the growth, antioxidant capacity, textural properties, and collagen deposition of the swim bladder were analyzed. Results showed that the 1.25% faba bean water extract group could significantly promote growth, textural quality of the swim bladder, and have beneficial effects on antioxidant response of fish. Conversely, dietary supplementation of faba bean alcohol extract resulted in reduced growth performance in a dose-dependent manner. Furthermore, fish fed diet with 1.25% faba bean water extract exhibited increased collagen content and upregulated collagen-related gene expression in the swim bladder, which was consistent with the Masson stain analysis for collagen fiber. Our results suggested that the anti-nutrient factor and bioactive component of faba bean may mainly be enriched in alcohol extract and water extract of faba bean, respectively. Besides, the appropriate addition of water extract of faba bean may improve the texture quality of the swim bladder by promoting collagen deposition. This study would provide a theoretical basis for the formulated diets with faba bean extract to promote product quality of marine fish.


Subject(s)
Air Sacs , Antioxidants , Collagen , Diet , Plant Extracts , Vicia faba , Vicia faba/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Collagen/metabolism , Antioxidants/metabolism , Diet/veterinary , Animal Feed/analysis , Dietary Supplements
17.
Food Res Int ; 177: 113916, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225150

ABSTRACT

The influence of partial replacement of animal protein by plant-based ingredients on the protein digestibility of beef burgers was investigated. Beef burgers were supplemented with fava bean protein concentrate (FB) or a mixture of FB and flaxseed flour (FBFS), both processed by extrusion, at different levels: 0 (control), 10, 15, and 20 % (w/w). A pilot sensory analysis was conducted to select the percentage of flour inclusion for further assays: control, 10 % FB, and 10 % FBFS. Protein digestibility, amino acid profile, and protein secondary structure of these burgers after in vitro oral and gastrointestinal digestion were studied. In vitro boluses were prepared with the AM2 masticator, simulating normal mastication, and static in vitro digestion of boluses was performed according to the INFOGEST method. Inclusion of 10 % FB in beef burgers did not alter their flavour or tenderness compared to the control, whereas tenderness and juiciness scored slightly higher for the 10 % FBFS burgers compared to 15 % and 20 % FBFS ones. Poor lipid oxidative stability during storage was observed with 10 % FBFS burgers. Total protein content was significantly higher (p < 0.05) in 10 % FB burgers than in control burgers after in vitro oral digestion. Additionally, 10 % FB burgers presented higher amounts of free essential amino acids like isoleucine, leucine, phenylalanine, and valine at the end of digestion, as well as methionine, tyrosine, and histidine. Partial substitution of meat protein by 10 % FB improves the nutritional profile of beef burgers, without altering their sensory qualities.


Subject(s)
Vicia faba , Animals , Cattle , Vicia faba/chemistry , Amino Acids, Essential , Digestion , Animal Feed , Food Handling/methods
18.
Chem Biodivers ; 20(12): e202301095, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37878681

ABSTRACT

By-products from plant sources are recently regarded as a valuable source of bioactive compounds. In this regard, the present study aims to assess the bioactivities of the 70 % MeOH extract obtained from Vicia faba peels and analyze its metabolomic profile. Acetylcholinesterase and carbohydrate metabolizing enzymes inhibitory activities of the plant extract were assayed using quantitative colorimetric tests. Antioxidant activity was estimated by DPPH assay, and cytotoxic activity was evaluated against normal fibroblast skin cells (1-BJ1). Ninety-one metabolites were tentatively identified using ultra-high-performance liquid chromatography (UHPLC) hyphenated with quadrupole-time-of-flight tandem mass spectrometry (QTOF-MS). Most of these compounds were described for the first time in the plant. In addition, catechin, rutin, quercitrin, and rhamnetin were isolated from the plant extract. The plant extract and the isolated compounds possessed no cytotoxic activity on (1-BJ1), while they exhibited anticholinesterase with the highest activity for 70 % MeOH extract (IC50 =120.11 mg/L), antioxidant potential with the highest activity for rutin (90.54±0.73 %), and carbohydrate metabolizing inhibitory activities with the highest activity for rutin. These discoveries imply that V. faba peels might serve as an efficient antioxidant, exhibit anticholinesterase properties, and have the potential for use in managing diabetes, all while avoiding cytotoxicity in normal cells.


Subject(s)
Fabaceae , Vicia faba , Vicia faba/chemistry , Antioxidants/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rutin/pharmacology , Carbohydrates
19.
Food Res Int ; 173(Pt 1): 113264, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37803577

ABSTRACT

Faba bean is an ancient legume that is regaining interest due to its environmental and nutritional benefits. Very little is known on the protein quality of the new faba bean varieties. In this study, the digestibility and the Digestible Indispensable Amino Acid Score (DIAAS) of the protein quality of three Canadian faba bean varieties (Fabelle, Malik and Snowbird) were compared to pea and soy using the harmonized in vitro digestion procedure developed by the International Network of Excellence on the Fate of Food in the Gastrointestinal Tract (INFOGEST). The impact of boiling on the nutritional quality of faba bean flours was also ascertained. Protein content in faba bean (28.7-32.5%) was lower than defatted soy (56.6%) but higher than pea (24.2%). Total phenolics and phytate content were higher (p < 0.05) in faba bean (2.1-2.4 mg/g and 11.5-16.4 mg/g respectively) and soy (2.4 mg/g and 19.8 mg/g respectively) comparatively to pea (1.3 mg/g and 8.9 mg/g). Trypsin inhibitor activity was significantly higher (p < 0.05) in soy (15.4 mg/g) comparatively to pea (0.7 mg/g) and faba bean (0.8-1.1 mg/g). The digestibility of free amino acids of raw faba bean flours ranged from 31 to 39% while the digestibility of total amino acids ranged from 38 to 39%. The in vitro Digestible Indispensable Amino Acid Score (IV-DIAAS) of raw faba bean flours ranged from 13 to 16 (when calculated based on free amino acid digestibility) to 32-38 (when calculated based on total amino acid digestibility) and was in a similar range to pea (13-31) and soy (11-40). Boiling modified the protein electrophoretic profile and decreased trypsin inhibitor activity (30-86% reduction), while total phenolics and phytate content were unaffected. The IV-DIAAS significantly decreased in all boiled legumes, possibly due to an increased protein aggregation leading into a lower protein digestibility (18-32% reduction). After boiling, the nutritional quality of faba bean was significantly lower (p < 0.05) than soy, but higher than pea. Our results demonstrate that faba bean has a comparable protein quality than other legumes and could be used in similar food applications.


Subject(s)
Fabaceae , Vicia faba , Humans , Vicia faba/chemistry , Pisum sativum/chemistry , Trypsin Inhibitors , Phytic Acid , Digestion , Canada , Fabaceae/chemistry , Amino Acids/metabolism , Nutritive Value
20.
Molecules ; 28(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37513301

ABSTRACT

The food industry, academia, food technologists, and consumers have become more interested in using faba bean seeds in the formulation of new products because of their nutritional content, accessibility, low costs, environmental advantages, and beneficial impacts on health. In this review, a systematic and up-to-date report on faba bean seeds' antinutrients and bioactive and processing techniques is comprehensively presented. The chemical composition, including the oil composition and carbohydrate constituents, is discussed. Factors influencing the reduction of antinutrients and improvement of bioactive compounds, including processing techniques, are discussed. Thermal treatments (cooking, autoclaving, extrusion, microwaving, high-pressure processing, irradiation) and non-thermal treatments (soaking, germination, extraction, fermentation, and enzymatic treatment) are identified as methods to reduce the levels of antinutrients in faba bean seeds. Appropriate processing methods can reduce the antinutritional factors and enrich the bioactive components, which is useful for the seeds' efficient utilization in developing functional foods. As a result, this evaluation focuses on the technologies that are employed to reduce the amounts of toxins in faba bean seeds. Additionally, a comparison of these methods is performed in terms of their advantages, disadvantages, viability, pharmacological activity, and potential for improvement using emerging technologies. Future research is expected in this area to fill the knowledge gap in exploiting the nutritional and health benefits of faba bean seeds and increase the utilization of faba bean seeds for different applications.


Subject(s)
Vicia faba , Vicia faba/chemistry , Cooking , Seeds/chemistry , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL