Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 364
Filter
1.
J Agric Food Chem ; 72(32): 17953-17963, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39086319

ABSTRACT

In this study, the transepithelial transport of bioactive peptides derived from faba bean flour gastrointestinal digestates was investigated, in vitro, using a Caco-2 and HT29-MTX-E12 coculture monolayer, in comparison to those of pea and soy. The profile of transported peptides was determined by mass spectrometry, and the residual antioxidant activity was assessed. The ORAC value significantly (p < 0.05) decreased after transepithelial transport (24-36% reduction) for all legumes, while the antioxidant activity in ABTS assay significantly (p < 0.05) increased, as shown by the EC50 decrease of 26-44%. Five of the nine faba bean peptides that crossed the intestinal cell monolayer exhibited antioxidant activity. Two of these peptides, TETWNPNHPEL and TETWNPNHPE, were further hydrolyzed by the cells' brush border peptidases to smaller fragments TETWNPNHP and TWNPNHPE. These metabolized peptides were synthesized, and both maintained high antioxidant activity in both ABTS (EC50 of 1.2 ± 0.2 and 0.4 ± 0.1 mM, respectively) and ORAC (2.5 ± 0.1 and 3.4 ± 0.2 mM of Trolox equivalent/mM, respectively) assays. These results demonstrated for the first time the bioaccessibility of faba bean peptides produced after in vitro gastrointestinal digestion and how their bioactive properties can be modulated during transepithelial transport.


Subject(s)
Antioxidants , Digestion , Glycine max , Peptides , Pisum sativum , Vicia faba , Humans , Caco-2 Cells , Antioxidants/metabolism , Antioxidants/chemistry , Peptides/metabolism , Peptides/chemistry , HT29 Cells , Vicia faba/metabolism , Vicia faba/chemistry , Biological Transport , Glycine max/chemistry , Glycine max/metabolism , Pisum sativum/chemistry , Pisum sativum/metabolism , Gastrointestinal Tract/metabolism , Plant Proteins/metabolism , Plant Proteins/chemistry , Biological Availability , Models, Biological
2.
Sci Rep ; 14(1): 16419, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39014045

ABSTRACT

In 2005-2007, a field study was conducted into intercropping of maize with faba bean at Pawlowice research station, Wroclaw University of Environmental and Life Sciences. The main aim of the multi-year field research was an investigation into the reactions of differing maize hybrid earliness to intercropping cultivation with faba bean. The field research evaluated the effect of three maize hybrids-Wilga (early-E), Blask (medium-M) and Iman (late-L)-and the sowing rate of faba bean-18 (Fb1), 27 (Fb2) and 36 (Fb3) seeds per 1 m2-on growth dynamics and yield structure, and biomass, protein, and energy yield. Cultivation of faba bean in maize inter-rows led to significant competition with maize and affected yields, causing a decrease in maize dry matter yield from 14.1 (Fb1) to 20.6% (FB3) compared with maize sown alone. In terms of total biomass yield from maize and faba beans, no significant differences were found, but a slight increase in yield of 1.1-4.2% (repective to Fb1 and Fb3) was noted compared to maize sown alone. The early maize hybrid had a significantly lower yield but was most suitable for intercropping with faba bean. The dry biomass yield of early hybrids increased in intercropping by 25% compared to pure maize cultivation. Total protein yield from both intercropping components was higher than in the pure sowing of maize: from 24 (Fb1) to 39% (Fb3). The increase in protein production resulted in an improvement in the energy-protein ratio. The number of UFL per kg of total protein decreased from 13.2 in pure maize cultivation (M-P) to 9.3 (Fb3). A more balanced forage biomass was produced from intercropping maize with faba bean, especially when an early maize hybrid was sown with faba beans.


Subject(s)
Biomass , Plant Proteins , Vicia faba , Zea mays , Zea mays/metabolism , Zea mays/growth & development , Vicia faba/metabolism , Vicia faba/growth & development , Plant Proteins/metabolism , Agriculture/methods , Crop Production/methods
3.
Food Chem ; 455: 139867, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823127

ABSTRACT

Reducing the content of quickly absorbed carbohydrates and saturated fats in snack formulations while increasing the consumption of high-quality proteins are effective strategies to prevent obesity in childhood. Thus, the nutritional value, digestibility, and functionality of fava beans (Vicia faba L.) fermented with Pleurotus ostreatus were examined as potential ingredients for food design. Solid-state fermentation enhanced the protein content by 16% with a rise in essential (25%) and non-essential (15%) amino acids while decreasing total carbohydrate content and tannin levels. Moreover, fermentation modified the amino acid profile released during digestion, increasing amino acids such as valine, isoleucine, and threonine, which are vital for health and development in childhood. Furthermore, the bioaccessible fraction of the fermented bean showed a 60% of ACE inhibition and improved magnesium bioaccessibility. Consequently, fava beans fermented with Pleurotus ostreatus emerged as a new ingredient in the development of new protein-rich snacks tailored for children and adolescents.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Digestion , Fermentation , Vicia faba , Humans , Amino Acids/metabolism , Amino Acids/analysis , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/chemistry , Models, Biological , Nutritive Value , Pleurotus/metabolism , Pleurotus/chemistry , Pleurotus/growth & development , Vicia faba/chemistry , Vicia faba/metabolism , Vicia faba/microbiology
4.
BMC Plant Biol ; 24(1): 557, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877427

ABSTRACT

In the course of their life, plants face a multitude of environmental anomaly that affects their growth and production. In recent decades, lead (Pb) gained an increasing attention as it is among the most significant contaminants in the environment. Therefore, in this study the effects of Pb concentrations (0, 50 and 100 ppm) on Vicia faba plants and attempts to alleviate this stress using chitosan (Chs; 0 and 0.1%) were performed. The results validated that with increasing Pb concentrations, a decline in growth, pigments and protein contents was observed. In the same time, a significant upsurge in the stress markers, both malondialdehyde (MDA) and H2O2, was observed under Pb stress. Nonetheless, foliar spraying with Chs improves the faba bean growth, pigment fractions, protein, carbohydrates, reduces MDA and H2O2 contents and decreases Pb concentrations under Pb stress. Pb mitigation effects by Chs are probably related with the activity of antioxidant enzymes, phenylalanine ammonia lyase (PAL) and proline. The application of Chs enhanced the activities of peroxidase, catalase and PAL by 25.77, 17.71 and 20.07%, respectively at 100 ppm Pb compared to their control. Plant genomic material exhibits significant molecular polymorphism, with an average polymorphism of 91.66% across all primers. To assess the genetic distance created among treatments, the dendrogram was constructed and the results of the similarity index ranged from 0.75 to 0.95, indicating genetic divergence. Our research offers a thorough comprehension of the role of Chs in lessening the oxidative stress, which will encourage the use of Chs in agricultural plant protection.


Subject(s)
Chitosan , Lead , Oxidative Stress , Vicia faba , Vicia faba/drug effects , Vicia faba/genetics , Vicia faba/metabolism , Lead/metabolism , Lead/toxicity , Oxidative Stress/drug effects , Chitosan/pharmacology , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Antioxidants/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics
5.
Physiol Plant ; 176(3): e14404, 2024.
Article in English | MEDLINE | ID: mdl-38922894

ABSTRACT

Soil acidity is a global issue; soils with pH <4.5 are widespread in Europe. This acidity adversely affects nutrient availability to plants; pH levels <5.0 lead to aluminum (Al3+) toxicity, a significant problem that hinders root growth and nutrient uptake in faba bean (Vicia faba L.) and its symbiotic relationship with Rhizobium. However, little is known about the specific traits and tolerant genotypes among the European faba beans. This study aimed to identify response traits associated with tolerance to root zone acidity and Al3+ toxicity and potentially tolerant genotypes for future breeding efforts. Germplasm survey was conducted using 165 genotypes in a greenhouse aquaponics system. Data on the root and shoot systems were collected. Subsequently, 12 genotypes were selected for further phenotyping in peat medium, where data on physiological and morphological parameters were recorded along with biochemical responses in four selected genotypes. In the germplasm survey, about 30% of genotypes showed tolerance to acidity and approximately 10% exhibited tolerance to Al3+, while 7% showed tolerance to both. The phenotyping experiment indicated diverse morphological and physiological responses among treatments and genotypes. Acid and Al3+ increased proline concentration. Interaction between genotype and environment was observed for ascorbate peroxidase activity, malondialdehyde, and proline concentrations. Genomic markers associated with acidity and acid+Al3+-toxicity tolerances were identified using GWAS analysis. Four faba bean genotypes with varying levels of tolerance to acidity and Al3+ toxicity were identified.


Subject(s)
Aluminum , Genotype , Phenotype , Vicia faba , Vicia faba/genetics , Vicia faba/drug effects , Vicia faba/growth & development , Vicia faba/metabolism , Aluminum/toxicity , Soil/chemistry , Hydrogen-Ion Concentration , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Proline/metabolism , Adaptation, Physiological/genetics , Adaptation, Physiological/drug effects , Acids/metabolism
6.
Chemosphere ; 360: 142429, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797206

ABSTRACT

Heavy metal pollution threatens human and ecological health. Heavy metals can exist in the soil for a long time and migrate to organisms along the food chain. However, only a few studies have investigated the effects of a single stress on broad beans. Here, we aimed to characterize Cd and Pb bioaccumulation, at varying concentrations, in the broad bean, Vicia faba L. We also determined how the bioaccumulated metals are impacted by aphids that consume the plant. No significant difference was noted in the germination rates of broad beans at the early stage of planting (after 8 days), but eventually, the germination rates of broad beans at all time points first decreased and then increased, and the highest inhibition efficiency was observed in the T3 group (12.5 mg/L Cd2+ + 50 mg/L Pb2+). Fourteen days after planting, there was no significant difference in seedling height between the T5 (50 mg/L Cd2+ + 200 mg/L Pb2+) and control groups; however, that in the other groups decreased significantly and there was no dependence between stress concentration and inhibition efficiency. In addition, both Cd and Pb in the soil could be transferred to broad beans, and the concentration of Pb in the roots of broad beans was greater than that of Cd, whereas the opposite was observed in the stems and leaves. Notably, under mixed stress, aphids could significantly reduce the content of Cd in broad beans; similarly, the Pb content in the roots and stems of broad beans decreased significantly after being infested with aphids but increased significantly in the leaves. Further, the aphid infestation decreased the Pb content in the soil and the soil Cd content in the highest concentration group (T5 group) (50 mg/L Cd2+ + 200 mg/L Pb2+). These results highlight the necessity of focusing on the effect of insects on heavy metal remediation in plants and provide a new perspective for reducing plant Cd toxicity.


Subject(s)
Aphids , Bioaccumulation , Cadmium , Lead , Metals, Heavy , Soil Pollutants , Vicia faba , Vicia faba/metabolism , Animals , Soil Pollutants/metabolism , Soil Pollutants/analysis , Aphids/physiology , Cadmium/metabolism , Lead/metabolism , Metals, Heavy/metabolism , Soil/chemistry , Germination/drug effects
7.
PLoS One ; 19(5): e0304673, 2024.
Article in English | MEDLINE | ID: mdl-38820398

ABSTRACT

In Tunisia, Orobanche foetida Poir. is considered an important agricultural biotic constraint on faba bean (Vicia faba L.) production. An innovative control method for managing this weed in faba bean is induced resistance through inoculation by rhizobia strains. In this study, we explored the biochemical dynamics in V. faba L. minor inoculated by rhizobia in response to O. foetida parasitism. A systemic induced resistant reaction was evaluated through an assay of peroxidase (POX), polyphenol oxidase (PPO) and phenyl alanine ammonialyase (PAL) activity and phenolic compound and hydrogen peroxide (H2O2) accumulation in faba bean plants infested with O. foetida and inoculated with rhizobia. Two rhizobia strains (Mat, Bj1) and a susceptible variety of cultivar Badi were used in a co-culture Petri dish experiment. We found that Mat inoculation significantly decreased O. foetida germination and the number of tubercles on the faba bean roots by 87% and 88%, respectively. Following Bj1 inoculation, significant decreases were only observed in O. foetida germination (62%). In addition, Mat and Bj1 inoculation induced a delay in tubercle formation (two weeks) and necrosis in the attached tubercles (12.50% and 4.16%, respectively) compared to the infested control. The resistance of V. faba to O. foetida following Mat strain inoculation was mainly associated with a relatively more efficient enzymatic antioxidative response. The antioxidant enzyme activity was enhanced following Mat inoculation of the infected faba bean plant. Indeed, increases of 45%, 67% and 86% were recorded in the POX, PPO and PAL activity, respectively. Improvements of 56% and 12% were also observed in the soluble phenolic and H2O2 contents. Regarding inoculation with the Bj1 strain, significant increases were only observed in soluble phenolic and H2O2 contents and PPO activity (especially at 45 days after inoculation) compared to the infested control. These results imply that inoculation with the rhizobia strains (especially Mat) induced resistance and could bio-protect V. faba against O. foetida parasitism by inducing systemic resistance, although complete protectionwas not achieved by rhizobia inoculation. The Mat strain could be used as a potential candidate for the development of an integrated method for controlling O. foetida parasitism in faba bean.


Subject(s)
Hydrogen Peroxide , Orobanche , Vicia faba , Vicia faba/microbiology , Vicia faba/parasitology , Vicia faba/metabolism , Hydrogen Peroxide/metabolism , Catechol Oxidase/metabolism , Plant Roots/microbiology , Plant Roots/parasitology , Plant Roots/metabolism , Rhizobium/physiology , Peroxidase/metabolism , Plant Diseases/parasitology , Plant Diseases/microbiology , Phenylalanine Ammonia-Lyase/metabolism
8.
BMC Plant Biol ; 24(1): 474, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811913

ABSTRACT

BACKGROUND: The biosynthesis of zinc oxide nanoparticles (ZnO NPs) using Enterobacter sp. and the evaluation of their antimicrobial and copper stress (Cu+ 2)-reducing capabilities in Vicia faba (L.) plants. The green-synthesized ZnO NPs were validated using X-ray powder diffraction (XRD); Fourier transformed infrared (FTIR), Ultraviolet-Visible spectroscopy (UV-Vis), Transmission electron microscope (TEM) and scanning electron microscopy (SEM) techniques. ZnO NPs could serve as an improved bactericidal agent for various biological applications. as well as these nanoparticles used in alleviating the hazardous effects of copper stress on the morphological and physiological traits of 21-day-old Vicia faba (L.) plants. RESULTS: The results revealed that different concentrations of ZnO NPs (250, 500, or 1000 mg L-1) significantly alleviated the toxic effects of copper stress (100 mM CuSO4) and increased the growth parameters, photosynthetic efficiency (Fv/Fm), and pigments (Chlorophyll a and b) contents in Cu-stressed Vicia faba (L.) seedlings. Furthermore, applying high concentration of ZnO NPs (1000 mg L-1) was the best dose in maintaining the levels of antioxidant enzymes (CAT, SOD, and POX), total soluble carbohydrates, total soluble proteins, phenolic and flavonoid in all Cu-stressed Vicia faba (L.) seedlings. Additionally, contents of Malondialdehyde (MDA) and hydrogen peroxide (H2O2) were significantly suppressed in response to high concentrations of ZnO NPs (1000 mg L-1) in all Cu-stressed Vicia faba (L.) seedlings. Also, it demonstrates strong antibacterial action (0.9 mg/ml) against various pathogenic microorganisms. CONCLUSIONS: The ZnO NPs produced in this study demonstrated the potential to enhance plant detoxification and tolerance mechanisms, enabling plants to better cope with environmental stress. Furthermore, these nanoparticles could serve as an improved bactericidal agent for various biological applications.


Subject(s)
Copper , Enterobacter , Metal Nanoparticles , Vicia faba , Zinc Oxide , Vicia faba/drug effects , Vicia faba/metabolism , Zinc Oxide/pharmacology , Enterobacter/drug effects , Enterobacter/metabolism , Metal Nanoparticles/chemistry , Green Chemistry Technology , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Stress, Physiological/drug effects , Antioxidants/metabolism , Seedlings/drug effects
9.
Food Chem ; 449: 139321, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38615637

ABSTRACT

This study investigated the effect of low-intensity pulsed electric field (PEF) (0.3-0.7 kV/cm) and/or germination (0-72 h, 20 °C) on faba beans prior to flour- and breadmaking. PEF (0.5 and 0.7 kV/cm) had no significant effect on the germination performance of faba bean but had a positive effect on in vitro starch and protein hydrolysis of PEF-treated beans germinated for 72 h. The incorporation of flour from soaked, germinated, PEF-treated, and PEF-treated+germinated faba beans into wheat bread, at 30% mass level, improved the nutritional composition (total starch and protein contents) and protein digestibility but it reduced the specific volume and increased the density, brownness, and hardness of the bread. This finding shows for the first time that PEF-treatment (<0.7 kV/cm) of faba beans followed by germination (72 h) improved in vitro starch and protein hydrolysis of its flour and the protein digestibility at gastric phase of its enriched wheat bread.


Subject(s)
Bread , Digestion , Flour , Food Handling , Germination , Triticum , Vicia faba , Vicia faba/chemistry , Vicia faba/metabolism , Vicia faba/growth & development , Flour/analysis , Bread/analysis , Triticum/chemistry , Triticum/metabolism , Triticum/growth & development , Seeds/chemistry , Seeds/metabolism , Seeds/growth & development , Starch/metabolism , Starch/chemistry , Electricity , Plant Proteins/metabolism , Hydrolysis
10.
PLoS One ; 19(3): e0299810, 2024.
Article in English | MEDLINE | ID: mdl-38513160

ABSTRACT

Stomatal movement, initiated by specialized epidermal cells known as guard cells (GCs), plays a pivotal role in plant gas exchange and water use efficiency. Despite protocols existing for isolating GCs through proplasting for carrying out biochemical, physiological, and molecular studies, protocals for isolating GCs with their cell walls still intact have been lacking in the literature. In this paper, we introduce a method for the isolation of complete GCs from Vicia faba and show their membrane to remain impermeable through propidium iodide staining. This methodology enables further in-depth analyses into the cell wall composition of GCs, facilitating our understanding of structure-function relationship governing reversible actuation within cells.


Subject(s)
Fabaceae , Vicia faba , Vicia faba/metabolism , Cell Wall , Microtubules/metabolism
11.
J Agric Food Chem ; 72(12): 6432-6443, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38470110

ABSTRACT

Faba bean flour, after in vitro gastrointestinal digestion, showed important antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities. In the present study, 11 faba bean- derived peptides were synthesized to confirm their bioactivities and provide a deeper understanding of their mechanisms of action. The results revealed that 7 peptides were potent antioxidants, namely, NYDEGSEPR, TETWNPNHPEL, TETWNPNHPE, VIPTEPPH, VIPTEPPHA, VVIPTEPPHA, and VVIPTEPPH. Among them, TETWNPNHPEL had the highest activity in the ABTS (EC50 = 0.5 ± 0.2 mM) and DPPH (EC50 = 2.1 ± 0.1 mM) assays (p < 0.05), whereas TETWNPNHPE had the highest activity (p < 0.05) in the ORAC assay (2.84 ± 0.08 mM Trolox equivalent/mM). Synergistic and/or additive effects were found when selected peptides (TETWNPNHPEL, NYDEGSEPR, and VVIPTEPPHA) were combined. Four peptides were potent ACE inhibitors, where VVIPTEPPH (IC50 = 43 ± 1 µM) and VVIPTEPPHA (IC50 = 50 ± 5 µM) had the highest activity (p < 0.05), followed by VIPTEPPH (IC50 = 90 ± 10 µM) and then VIPTEPPHA (IC50 = 123 ± 5 µM) (p < 0.05). These peptides were noncompetitive inhibitors, as supported by kinetic studies and a molecular docking investigation. This study demonstrated that peptides derived from faba beans have multifunctional bioactivities, making them a promising food-functional and nutraceutical ingredient.


Subject(s)
Antioxidants , Vicia faba , Antioxidants/chemistry , Vicia faba/metabolism , Molecular Docking Simulation , Kinetics , Peptides/chemistry , Digestion , Angiotensins , Peptidyl-Dipeptidase A/chemistry
12.
Planta ; 259(3): 69, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340188

ABSTRACT

MAIN CONCLUSION: The Na+/Ca2+ ratio of 1/5 ameliorated the inhibitory action of NaCl and improved the germination and growth of Vicia faba. Addition of Rhizobium also enhanced nodulation and nitrogen fixation. Casting light upon the impact of salinity stress on growth and nitrogen fixation of Vicia faba supplemented with Rhizobium has been traced in this work. How Ca2+ antagonizes Na+ toxicity and osmotic stress of NaCl was also targeted in isosmotic combinations of NaCl and CaCl2 having various Na+:Ca2+ ratios. Growth of Vicia faba (cultivar Giza 3) was studied at two stages: germination and seedling. At both experiments, seeds or seedlings were exposed to successively increasing salinity levels (0, 50, 100, 150, and 200 mM NaCl) as well as isosmotic combinations of NaCl and CaCl2 (Na+:Ca2+ of 1:1, 1:5, 1:10, 1:15, 1:18, and 1: 20), equivalent to 150 mM NaCl. Inocula of the local nitrogen-fixing bacteria, Rhizobium leguminosarum (OP715892) were supplemented at both stages. NaCl salinity exerted a negative impact on growth and metabolism of Vicia faba; inhibition was proportional with increasing salinity level up to the highest level of 200 mM. Seed germination, shoot and root lengths, fresh and dry weights, chlorophyll content, and nodules (number, weight, leghemoglobin, respiration, and nitrogenase activity) were inhibited by salinity. Ca2+ substitution for Na+, particularly at a Na/Ca ratio of 1:5, was stimulatory to almost all parameters at both stages. Statistical correlations between salinity levels and Na/Ca combinations proved one of the four levels (strong- or weak positive, strong- or weak negative) with most of the investigated parameters, depending on the parameter.


Subject(s)
Rhizobium , Vicia faba , Vicia faba/metabolism , Nitrogen Fixation , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Germination , Calcium Chloride/metabolism , Sodium/metabolism , Seedlings
13.
J Nutr ; 154(4): 1165-1174, 2024 04.
Article in English | MEDLINE | ID: mdl-38311065

ABSTRACT

BACKGROUND: The recommended transition toward more plant-based diets, particularly containing legumes, requires a wider knowledge of plant protein bioavailability. Faba beans are cultivated at different latitudes and are used increasingly in human nutrition. OBJECTIVES: We aimed to assess the nutritional quality of faba bean protein in healthy volunteers equipped with an intestinal tube to implement the ileal 15N balance method. METHODS: Nine volunteers completed the study (7 males, 2 females, aged 33 ± 10 y, BMI: 24.7 ± 2.6 kg/m2). They were equipped with a nasoileal tube. After fasting overnight, they ingested a test meal consisting of cooked mash of dehulled faba bean seeds (20 g protein per serving of approximately 250 g) intrinsically labeled with 15N. Samples of ileal contents, plasma, and urine were collected over an 8-h postprandial period. Undigested nitrogen (N) and amino acids (AAs) were determined using isotopic MS, and subsequently, ileal digestibility and digestible indispensable amino acid score (DIAAS) were calculated. The measurement of postprandial deamination allowed calculation of the net postprandial protein utilization (NPPU). RESULTS: The ileal N digestibility was 84.1% ± 7.7%. Postprandial deamination represented 19.2% ± 3.6% of ingested N, and the NPPU was 64.7% ± 9.7%. The ileal digestibility of individual AAs varied from 85.1% ± 13.7% for histidine to 94.2% ± 3.6% for glutamine + glutamate. The mean AA digestibility was ∼6 percentage points higher than the digestibility of N, reaching 89.8% ± 5.9%, whereas indispensable AA digestibility was 88.0% ± 7.3%. Histidine and tryptophan were the first limiting AAs [DIAAS = 0.77 (calculated by legume-specific N-to-protein conversion factor 5.4); 0.67 (by default factor 6.25)]. Sulfur AAs were limiting to a lesser extent [DIAA ratio = 0.94 (N × 5.4); 0.81 (N × 6.25)]. CONCLUSIONS: Protein ileal digestibility of cooked, dehulled faba beans in humans was moderate (<85%), but that of AAs was close to 90%. Overall protein quality was restricted by the limited histidine and tryptophan content. This trial was registered at clinicaltrials.gov as NCT05047757.


Subject(s)
Fabaceae , Vicia faba , Female , Humans , Male , Amino Acids/metabolism , Animal Feed , Diet , Dietary Proteins/metabolism , Digestion , Fabaceae/chemistry , Histidine/metabolism , Ileum/metabolism , Tryptophan/metabolism , Vicia faba/metabolism
14.
Plant Physiol Biochem ; 206: 108243, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38048701

ABSTRACT

Thaumatin-like proteins (TLPs) are a diverse family of pathogenesis-related proteins (PR-5) found in various plant species. Faba bean is an economically important crop known for its nutritional value and resilience to harsh environmental conditions, including drought. In this study, we conducted a comprehensive analysis of the gene structure, phylogenetics, and expression patterns of TLP genes in faba bean, with a specific focus on their response to drought stress. A total of 10 TLP genes were identified and characterized from the faba bean transcriptome, which could be classified into four distinct groups based on their evolutionary relationships. Conserved cysteine residues and REDDD motifs, which are characteristic features of TLPs, were found in most of the identified VfTLP members, and these proteins were likely to reside in the cytoplasm. Two genes, VfTLP4-3 and VfTLP5, exhibited significant upregulation under drought conditions. Additionally, ectopically expressing VfTLP4-3 and VfTLP5 in tobacco leaves resulted in enhanced drought tolerance and increased peroxidase (POD) activity. Moreover, the protein VfTLP4-3 was hypothesized to interact with glycoside hydrolase family 18 (GH18), endochitinase, dehydrin, Barwin, and aldolase, all of which are implicated in chitin metabolism. Conversely, VfTLP5 was anticipated to associate with peptidyl-prolyl cis-trans isomerase-like 3, a molecule linked to the synthesis of proline. These findings suggest that these genes may play crucial roles in mediating the drought response in faba bean through the regulation of these metabolic pathways, and serve as a foundation for future genetic improvement strategies targeting enhanced drought resilience in this economically important crop.


Subject(s)
Seedlings , Vicia faba , Seedlings/genetics , Vicia faba/genetics , Vicia faba/metabolism , Droughts , Plants/genetics , Transcriptome
15.
Nutrients ; 15(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836496

ABSTRACT

An increase in the intake of legumes is recommended in the promotion of plant-sourced (PSP) rather than animal-sourced (ASP) protein intake to produce a more sustainable diet. This study evaluated the quality of novel PSP isolates from pea (PEA) and fava bean (FAVA) and an ASP isolate of whey (WHEY) and compared the magnitude and temporal pattern of peripheral arterial aminoacidemia following ingestion of 0.33 g·kg-1 body mass of protein isolate in healthy young adult men (n = 9). Total indispensable amino acids (IAA) comprised 58% (WHEY), 46% (PEA), and 42% (FAVA) of the total amino acid (AA) composition, with the ingested protein providing 108% (WHEY), 77% (PEA), and 67% (FAVA) of the recommended per diem requirement of IAA. Reflecting the AA composition, the area under the curve (∆AUC0-180), post-ingestion increase in total IAA for WHEY was 41% (p < 0.001) and 57% (p < 0.001) greater than PEA and FAVA, respectively, with PEA exceeding FAVA by 28% (p = 0.003). As a sole-source, single-dose meal-size serving, the lower total IAA for PEA and FAVA would likely evoke a reduced post-prandial anabolic capacity compared to WHEY. Incorporated into a food matrix, the promotion of PSP isolates contributes to a more sustainable diet.


Subject(s)
Vicia faba , Whey , Humans , Young Adult , Male , Animals , Whey/metabolism , Vicia faba/metabolism , Pisum sativum/metabolism , Whey Proteins/metabolism , Amino Acids , Eating
16.
Planta ; 258(5): 95, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37814174

ABSTRACT

MAIN CONCLUSION: By implementation of the iPOND technique for plant material, changes in posttranslational modifications of histones were identified in hydroxyurea-treated root meristem cells of Vicia. Replication stress (RS) disrupts or inhibits replication forks and by altering epigenetic information of the newly formed chromatin can affect gene regulation and/or spatial organisation of DNA. Experiments on Vicia faba root meristem cells exposed to short-term treatment with 3 mM hydroxyurea (HU, an inhibitor of DNA replication) were aimed to understand epigenetic changes related to RS. To achieve this, the following histone modifications were studied using isolation of proteins on nascent DNA (iPOND) technique (for the first time on plant material) combined with immunofluorescence labeling: (i) acetylation of histone H3 at lysine 56 (H3K56Ac), (ii) acetylation of histone H4 at Lys 5 (H4K5Ac), and (iii) phosphorylation of histone H3 at threonine 45 (H3T45Ph). Certainly, the implementation of the iPOND method for plants may prove to be a key step for a more in-depth understanding of the cell's response to RS at the chromatin level.


Subject(s)
Hydroxyurea , Vicia faba , Hydroxyurea/pharmacology , Hydroxyurea/metabolism , Histones/metabolism , Vicia faba/genetics , Vicia faba/metabolism , Meristem/genetics , Chromatin , Epigenesis, Genetic , Fluorescent Antibody Technique , Acetylation , DNA Replication
17.
Food Res Int ; 173(Pt 2): 113394, 2023 11.
Article in English | MEDLINE | ID: mdl-37803732

ABSTRACT

The search for plant-based superfoods has shown that many regional populations already have these foods in their diet, with significant potential for production and marketing. This critical review intends to show the history, diversity, characteristics, and uses, emphasizing their significance in traditional diets and potential in the food industry of Peruvian fava beans. As a valuable plant-based protein source, fava beans offer essential micronutrients and have diverse culinary applications. Innovative food industry applications include plant-based meat alternatives, fortified gluten-free products, and a natural color, protein, and fiber source in extruded foods. Key studies have highlighted the successful incorporation of fava beans into various food products, improving their nutritional properties, though some studies also point to limitations in their sensory acceptance. Further research is needed to understand the bioactive components, health effects, and techno-functional characteristics of beans. Challenges facing cultivating and consuming fava beans in Peru include adapting to climate change, enhancing productivity and quality, and promoting consumption and added value. Addressing these challenges involves developing climate-resilient varieties, optimizing agricultural practices, and providing access to resources and financing. In conclusion, this review highlights the promising prospects of Peruvian fava beans as a sustainable, nutritionally rich, and versatile ingredient in the food industry. By harnessing their potential and overcoming challenges, Peruvian fava beans can transition from an ancient crop to a modern superfood, inspiring a global shift towards sustainable and nutritionally balanced diets, aiding the fight against malnutrition, and enriching culinary traditions worldwide.


Subject(s)
Fabaceae , Vicia faba , Vicia faba/metabolism , Peru , Meat , Diet, Gluten-Free
18.
Sci Rep ; 13(1): 11661, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468550

ABSTRACT

Studies of vitality/mortality of cortex cells, as well as of the concentrations of ethylene (ETH), gibberellins (GAs), indolic compounds/auxins (ICs/AUXs) and cytokinins (CKs), were undertaken to explain the hormonal background of kinetin (Kin)-regulated cell death (RCD), which is induced in the cortex of the apical parts of roots of faba bean (Vicia faba ssp. minor) seedlings. Quantification was carried out with fluorescence microscopy, ETH sensors, spectrophotometry and ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC‒MS/MS). The results indicated that Kin was metabolized to the transport form, i.e., kinetin-9-glucoside (Kin9G) and kinetin riboside (KinR). KinR was then converted to cis-zeatin (cZ) in apical parts of roots with meristems, to cis-zeatin riboside (cZR) in apical parts of roots without meristems and finally to cis-zeatin riboside 5'-monophosphate (cZR5'MP), which is indicated to be a ligand of cytokinin-dependent receptors inducing CD. The process may be enhanced by an increase in the amount of dihydrozeatin riboside (DHZR) as a byproduct of the pathway of zeatin metabolism. It seems that crosstalk of ETH, ICs/AUXs, GAs and CKs with the cZR5'MP, the cis-zeatin-dependent pathway, but not the trans-zeatin-dependent pathway, is responsible for Kin-RCD, indicating that the process is very specific and offers a useful model for studies of CD hallmarks in plants.


Subject(s)
Vicia faba , Kinetin/pharmacology , Vicia faba/metabolism , Zeatin/metabolism , Seedlings/metabolism , Tandem Mass Spectrometry , Cytokinins/metabolism , Cell Death , Indoleacetic Acids
19.
Food Funct ; 14(16): 7361-7374, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37489569

ABSTRACT

Plant proteins have low protein nutritional quality due to their unbalanced indispensable amino acid (IAA) profile and the presence of antinutritional factors (ANFs) that limit protein digestibility. The blending of pulses with cereals/pseudocereals can ensure a complete protein source of IAA. In addition, extrusion may be an effective way to reduce ANFs and improve protein digestibility. Thereby, we aimed to improve the protein nutritional quality of plant protein ingredients by blending different protein sources and applying extrusion processing. Protein blends were prepared with pea, faba bean, quinoa, hemp, and/or oat concentrates or flours, and extrudates were prepared either rich in pulses (texturized vegetable proteins, TVPs) or rich in cereals (referred to here as Snacks). After extrusion, all samples showed a reduction in trypsin inhibitor activity (TIA) greater than 71%. Extrusion caused an increase in the total in vitro protein digestibility (IVPD) of TVPs, whereas no significant effect was shown for the snacks. According to the molecular weight distribution, TVPs presented protein aggregation. The results suggest that the positive effect of decreased TIA on IVPD is partially counteracted by the formation of aggregates during extrusion which restricts enzyme accessibility. After extrusion, all snacks retained a balanced amino acid score whereas a small loss of methionine + cysteine was observed in the TVPs, resulting in a small reduction in IAA content. Thus, extrusion has the potential to improve the nutritional quality of TVPs by reducing TIA and increasing protein digestibility.


Subject(s)
Plant Proteins , Vicia faba , Amino Acids/metabolism , Nutritive Value , Vicia faba/metabolism , Flour
20.
Food Chem ; 427: 136690, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37364318

ABSTRACT

To investigate the synergistic effect of electron beam irradiation (EBI) on the ultra-high pressure (UHP) modification of broad bean starch, various pressures (200, 400, 600 MPa) combined with different irradiation doses (3, 6, 12 kGy) were used to modify the structure-properties of broad bean starch in this study. The results showed that both UHP and EBI induced a reduction of amylopectin molecular weight (Mw) and depolymerization of long chains, caused the loss of short-range ordered structure and imperfection of crystal structure, and improved starch viscosity, solubility and enzyme sensitivity. Furthermore, the applied pressure causes changes in starch granule structure, upon which EBI promotes further degradation and depolymerization of starch by affecting the crystalline and amorphous regions. Hence, appropriate doses of EBI treatment can impart more desirable processing properties to UHP-modified starches, and EBI can be used as a promising way to promote starch modification further.


Subject(s)
Fabaceae , Vicia faba , Starch/chemistry , Electrons , Fabaceae/chemistry , Amylopectin , Viscosity , Vicia faba/metabolism , Amylose
SELECTION OF CITATIONS
SEARCH DETAIL