Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.038
Filter
1.
AAPS J ; 26(5): 89, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39150583

ABSTRACT

A non-invasive capacitance instrument was embedded in the base of a vacuum-drying tray to monitor continuously the residual amount of solvent left in a pharmaceutical powder. Proof of concept was validated with Microcrystalline Cellulose laced with water, as well as water/acetone mixtures absorbed in a spray-dried Copovidone powder. To illustrate the role of impermeability of the base, we derive a model of vapor sorption that reveals the existence of a kinetic limit when solids are thinly spread, and a diffusion limit with greatly diminished effective diffusivity at large powder thickness. By monitoring the residual solvent content of powders, this new in situ technique offers advantages over indirect methods like mass spectrometry of vapor effluents, but without complications associated with probe fouling. To prescribe design guidelines and interpret signals, we model the electric field shed by the probe when a powder holds variable solvent mass fraction in the vertical direction.


Subject(s)
Cellulose , Powders , Solvents , Solvents/chemistry , Vacuum , Cellulose/chemistry , Cellulose/analysis , Pyrrolidines/chemistry , Pyrrolidines/analysis , Vinyl Compounds/chemistry , Water/chemistry , Desiccation/methods , Acetone/analysis , Acetone/chemistry , Diffusion , Kinetics
2.
Ann Med ; 56(1): 2380798, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39061117

ABSTRACT

PURPOSE: This study aimed to evaluate the pressure distribution and comfort of transtibial prosthesis wearers using an affordable ethyl-vinyl acetate (EVA) roll-on (AERO) liner. METHOD: Fifteen unilateral transtibial prosthesis users wore patella tendon bearing (PTB) sockets with a polyethylene foam (PE-lite) liner were enrolled this study. AERO liners were provided to all participants. Six force sensors were applied to the residual limb to evaluate pressure distribution during treadmill walking, and the socket comfort score (SCS) was used to evaluate comfortability. Fourier transform infrared (FT-IR) spectroscopy was performed on the EVA and PE-lite liners. RESULTS: Eleven participants used prefabricated AERO liners and four participants used custom-made AERO liners. The pressure distribution was analysed by the coefficient of variation (CV): PE-lite was 75.7 ± 6.0 and AERO liner 83.3 ± 4.1. Residual limb pressure was significantly decreased when using the AERO liner (p = .0007), with a large effect size (r = 0.87). Mean SCS was 7.5 ± 1.3 and 8.9 ± 1.1 for PE-lite and AERO liner respectively. CONCLUSION: Better pressure distribution and comfort were observed when the participants used the AERO liner. AERO had a greater proportion of calcium carbonate (CaCO3). These findings suggest that the AERO liner is a better off-the-shelf option for persons using traditional prosthetic sockets and liners.


Subject(s)
Artificial Limbs , Pressure , Prosthesis Design , Humans , Male , Middle Aged , Female , Aged , Vinyl Compounds/chemistry , Adult , Polyethylene , Spectroscopy, Fourier Transform Infrared/methods , Patient Comfort , Walking/physiology , Tibia/surgery
3.
Int J Pharm ; 661: 124438, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38972518

ABSTRACT

Drug-polymer intermolecular interactions, and H-bonds specifically, play an important role in the stabilization process of a compound in an amorphous solid dispersion (ASD). However, it is still difficult to predict whether or not interactions will form and what the strength of those interactions would be, based on the structure of drug and polymer. Therefore, in this study, structural analogues of diflunisal (DIF) were synthesized and incorporated in ASDs with poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) as a stabilizing polymer. The respective DIF derivatives contained different types and numbers of H-bond donor groups, which allowed to assess the influence of these structural differences on the phase behavior and the actual interactions formed in the ASDs. The highest possible drug loading of these derivatives in PVPVA were evaluated through film casting. Subsequently, a lower drug loading of each compound was spray dried. These spray dried ASDs were subjected to an in-depth solid-state nuclear magnetic resonance (ssNMR) study, including 1D spectroscopy and relaxometry, as well as 2D dipolar HETCOR experiments. The drug loading study revealed the highest possible loading of 50 wt% for the native DIF in PVPVA. The methoxy DIF derivative reached the second highest drug loading of 35 wt%, while methylation of the carboxyl group of DIF led to a sharp decrease in the maximum loading, to around 10 wt% only. Unexpectedly, the maximum loading increased again when both the COOH and OH groups of diflunisal were methylated in the dimethyl DIF derivative, to around 30 wt%. The ssNMR study on the spray dried ASD samples confirmed intermolecular H-bonding with PVPVA for native DIF and methoxy DIF. Studies of the proton relaxation decay times and 2D 1H-13C dipolar HETCOR experiments indicated that the ASDs with native DIF and methoxy DIF were homogenously mixed, while the ASDs containing DIF methyl ester and dimethyl DIF were phase separated at the nm level. It was established that, for these systems, the availability of the carboxyl group was imperative in the formation of intermolecular H-bonds with PVPVA and in the generation of homogenously mixed ASDs.


Subject(s)
Diflunisal , Hydrogen Bonding , Diflunisal/chemistry , Magnetic Resonance Spectroscopy , Vinyl Compounds/chemistry , Polymers/chemistry , Pyrrolidines/chemistry , Excipients/chemistry
4.
J Chromatogr A ; 1730: 465124, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38959657

ABSTRACT

Polymer monoliths can be polymerised within different molds, but limited options are available for the preparation of free-standing polymer monoliths for analytical sample preparation, and in particular, solid-phase extraction (SPE). Commercial melamine-formaldehyde sponges can be used as supports for the preparation of polymer monoliths, due its flexibility, giving various shapes to monoliths. Herein, the crosslinker/porogen ratio of highly porous sponge-nested divinylbenzene (DVB) polymer monoliths has been evaluated. Monoliths prepared using different crosslinker/porogen ratios were applied to the extraction of bisphenol F, bisphenol A, bisphenol AF, and bisphenol B. Monoliths containing 50 wt % DVB and 50 wt % porogens presented the highest recovery of bisphenols. Under the optimised conditions, the developed method showed a linear range between 2.5 µg L-1 and 150 µg L-1 for BPA and BPAF, and between 5 µg L-1 and 150 µg L-1 for BPB and BPF. The limits of detection (LOD, S/N = 3) and limits of quantification (LOQ, S/N = 10) ranged from 0.36 µg L-1 to 1.09 µg L-1, and from 1.20 µg L-1 to 3.65 µg L-1, respectively. The recoveries for spiked bisphenols (10 µg L-1) in tap water and water contained in a polycarbonate containers were between 82 % and 114 %.


Subject(s)
Benzhydryl Compounds , Limit of Detection , Phenols , Solid Phase Extraction , Triazines , Solid Phase Extraction/methods , Benzhydryl Compounds/analysis , Benzhydryl Compounds/isolation & purification , Phenols/analysis , Phenols/isolation & purification , Triazines/analysis , Triazines/isolation & purification , Triazines/chemistry , Polymers/chemistry , Porosity , Cross-Linking Reagents/chemistry , Vinyl Compounds/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Reproducibility of Results , Chromatography, High Pressure Liquid/methods
5.
Eur J Pharm Sci ; 200: 106850, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38996850

ABSTRACT

Additive manufacturing (AM) enables the production of complex, lightweight, and customized components with superior quality. Selecting the right materials considering their thermal properties, printability, and layer adhesion is crucial in melting-based AM techniques. This study investigates Droplet Deposition Modelling (DDM), an innovative material extrusion process that utilizes thermoplastic granules. DDM is distinguished by its shorter manufacturing times and a wider range of materials, setting it apart from traditional material extrusion methods such as fused filament fabrication. We investigated the printability and part quality in DDM using two common pharmaceutical excipients: Polyvinylpyrrolidone/vinyl acetate 6:4 (PVP/VA), which is highly brittle, and Polycaprolactone (PCL), known for its low solubility and role in controlled drug release. Different ratios of PVP/VA and PCL were compounded via hot melt extrusion (HME) and used in DDM to study the impact of ingredient content on printability and part quality, employing geometrical models to assess material compatibility and printability. The study revealed that increasing PVP/VA content leads to higher viscosity, reduced flowability, and uneven deposition, with formulations of 80 % and 100 % PVP/VA showing poor processability. In contrast, formulations with 60 % and 40 % PVP/VA exhibited smooth processing and compatibility with DDM. We identified processing temperature and Drop Aspect Ratio (DAR) as key factors influencing material printability and part quality. Elevated processing temperatures and reduced DAR were found to increase interface temperatures, reduce diffusion, and potentially cause the 'elephant feet' issue. Additionally, smaller droplet sizes and material characteristics, such as higher interfacial tension in PCL, could lead to coalescence. Our findings highlight the complexities in optimizing DDM processing parameters and material blends, underscoring the need for careful formulation design to achieve high-quality 3D printed products.


Subject(s)
Excipients , Polyesters , Povidone , Polyesters/chemistry , Excipients/chemistry , Povidone/chemistry , Vinyl Compounds/chemistry , Drug Compounding/methods
6.
Macromol Rapid Commun ; 45(15): e2400147, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875713

ABSTRACT

Hydrophilicity is one important drawback of bio-based aerogels. To overcome this issue, a novel approach for the preparation of mesoporous, water repellent aerogels is introduced, which combines synthesis of cross-linked bio-based copolymers from methacrylate copolymerizations, followed by solvent exchange and supercritical drying steps. The influence of monomers with different nonpolar ester groups (methyl, vanillin, tetrahydrofurfuryl) on textural properties and water contact angles of the dry products is assessed. Final aerogels show generally high overall porosities (≈96%), low densities (0.07-0.11 g cm-3) as well as fine, mainly mesoporous networks, and specific surface areas in the range of 120-240 m2 g-1. Hereby, choice of the methacrylate ester groups results in differences of the resulting pore-size distributions. Water repellency tests show stable static water contact angles in the hydrophobic range (≈100°) achieved for the substrate containing the vanillin ester group. On the contrary the other substrates absorb water quickly, which indicates a decisive role of the ester group. The presented approach opens up a new pathway to bio-based aerogels with intrinsic hydrophobicity. It is suggested that the properties are tailored by the choice of the monomer structure, hence enabling further adaption and optimization of the products.


Subject(s)
Gels , Hydrophobic and Hydrophilic Interactions , Polymerization , Polymers , Gels/chemistry , Gels/chemical synthesis , Polymers/chemistry , Polymers/chemical synthesis , Porosity , Water/chemistry , Vinyl Compounds/chemistry , Molecular Structure , Benzaldehydes/chemistry
7.
Bioorg Med Chem Lett ; 109: 129855, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38908766

ABSTRACT

The role of G-quadruplex (G4) in cellular processes can be investigated by the covalent modification of G4-DNA using alkylating reagents. Controllable alkylating reagents activated by external stimuli can react elegantly and selectively. Herein, we report a chemical activation system that can significantly boost the reaction rate of methylamine-protected vinyl-quinazolinone (VQ) derivative for the alkylation of G4-DNA. The two screened activators can transform low-reactive VQ-NHR' to highly reactive intermediates following the Michael addition mechanism. This approach expands the toolbox of activable G4 alkylating reagents.


Subject(s)
G-Quadruplexes , Methylamines , Quinazolinones , Alkylation , G-Quadruplexes/drug effects , Methylamines/chemistry , Methylamines/pharmacology , Methylamines/chemical synthesis , Quinazolinones/chemistry , Quinazolinones/pharmacology , Quinazolinones/chemical synthesis , Humans , Molecular Structure , DNA/chemistry , Vinyl Compounds/chemistry , Vinyl Compounds/pharmacology
8.
Pharm Res ; 41(6): 1233-1245, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744732

ABSTRACT

PURPOSE: This study was designed to develop ibuprofen (IBU) sustained-release amorphous solid dispersion (ASD) using polymer composites matrix with drug release plateaus for stable release and to further reveal intrinsic links between polymer' matrix ratios and drug release behaviors. METHODS: Hydrophilic polymers and hydrophobic polymers were combined to form different composite matrices in developing IBU ASD formulations by hot melt extrusion technique. The intrinsic links between the mixed polymer matrix ratio and drug dissolution behaviors was deeply clarified from the dissolution curves of hydrophilic polymers and swelling curves of composite matrices, and intermolecular forces among the components in ASDs. RESULTS: IBU + ammonio methacrylate copolymer type B (RSPO) + poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP VA64) physical mixtures presented unstable release behaviors with large error bars due to inhomogeneities at the micrometer level. However, IBU-RSPO-PVP VA64 ASDs showed a "dissolution plateau phenomenon", i.e., release behaviors of IBU in ASDs were unaffected by polymer ratios when PVP VA64 content was 35% ~ 50%, which could reduce risks of variations in release behaviors due to fluctuations in prescriptions/processes. The release of IBU in ASDs was simultaneously regulated by the PVP VA64-mediated "dissolution" and RSPO-PVP VA64 assembly-mediated "swelling". Radial distribution function suggested that similar intermolecular forces between RSPO and PVP VA64 were key mechanisms for the "dissolution plateau phenomenon" in ASDs at 35% ~ 50% of PVP VA64. CONCLUSIONS: This study provided ideas for developing ASD sustained-release formulations with stable release plateau modulated by polymer combinations, taking full advantages of simple process/prescription, ease of scale-up and favorable release behavior of ASD formulations.


Subject(s)
Delayed-Action Preparations , Drug Compounding , Drug Liberation , Ibuprofen , Polymers , Delayed-Action Preparations/chemistry , Ibuprofen/chemistry , Ibuprofen/administration & dosage , Polymers/chemistry , Drug Compounding/methods , Hydrophobic and Hydrophilic Interactions , Solubility , Hot Melt Extrusion Technology/methods , Vinyl Compounds/chemistry , Pyrrolidines/chemistry , Chemistry, Pharmaceutical/methods , Povidone/chemistry
9.
Biomacromolecules ; 25(6): 3823-3830, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38773865

ABSTRACT

Sustainability and circularity are key issues facing the global polymer industry. The search for biodegradable and environmentally-friendly polymers that can replace conventional materials is a difficult challenge that has been met with limited success. Alternatives must be cost-effective, scalable, and provide equivalent performance. We report that latexes made by the conventional emulsion polymerization of vinyl acetate and functional vinyl ester monomers are efficient thickeners for consumer products and biodegrade in wastewater. This approach uses readily-available starting materials and polymerization is carried out in water at room temperature, in one pot, and generates negligible waste. Moreover, the knowledge that poly(vinyl ester)s are biodegradable will lead to the design of new green polymer materials.


Subject(s)
Emulsions , Emulsions/chemistry , Polymerization , Polymers/chemistry , Alkalies/chemistry , Biodegradation, Environmental , Latex/chemistry , Vinyl Compounds/chemistry , Wastewater/chemistry
10.
J Pharm Biomed Anal ; 246: 116228, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38781726

ABSTRACT

Patiromer (Veltassa®) is a crosslinked, insoluble co-polymer drug used as a nonabsorbent potassium binder, approved for treatment of hyperkalemia. Quantitative solid-state 13C nuclear magnetic resonance (NMR) analysis with comprehensive peak assignment, component quantification, and calculation of mole and weight fractions of monomer units was performed on three doses of patiromer. The workflow is documented in detail. Spectrally edited solid-state 13C NMR spectra of patiromer show =CHn peaks of matching intensity at 116 and 141 ppm, characteristic of -CH=CH2 vinyl groups. Similar spectral features can be observed in earlier studies but were previously ignored. In this study, the vinyl signals are well-resolved in a 2-s direct polarization (DP) spectrum without and with dipolar dephasing, which confirms that these sp2-hybridized carbons are bonded to hydrogen and partially mobile, consistent with vinyl side groups from incompletely reacted divinyl crosslinkers. The vinyl groups account for 1.6% of all carbon, 3% of the monomer units, and nearly 1/3 of the crosslinkers. Furthermore, an unexpected OCH3 moiety accounting for ∼1.2% of all carbons was identified by spectral editing; its chemical shift of 54 ppm is more consistent with a methyl ester than with a methyl ether. It can originate from incomplete hydrolysis of ∼6% of methyl-2-fluoroacrylate, the main monomer of patiromer. Characteristic cross peaks in two-dimensional 1H-13C heteronuclear correlation NMR confirm the presence of the vinyl and OCH3 groups. Trace amounts of xanthan gum are also detected. The quantitative 13C NMR spectrum of patiromer has been matched in a simulation using a model with five monomer units.


Subject(s)
Esters , Magnetic Resonance Spectroscopy , Polymers , Polymers/chemistry , Esters/chemistry , Magnetic Resonance Spectroscopy/methods , Vinyl Compounds/chemistry , Solubility , Carbon-13 Magnetic Resonance Spectroscopy/methods
11.
Mol Pharm ; 21(6): 3017-3026, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38758116

ABSTRACT

Sucrose and trehalose pharmaceutical excipients are employed to stabilize protein therapeutics in a dried state. The mechanism of therapeutic protein stabilization is dependent on the sugars being present in an amorphous solid-state. Colyophilization of sugars with high glass transition polymers, polyvinylpyrrolidone (PVP), and poly(vinylpyrrolidone vinyl acetate) (PVPVA), enhances amorphous sugar stability. This study investigates the stability of colyophilized sugar-polymer systems in the frozen solution state, dried state postlyophilization, and upon exposure to elevated humidity. Binary systems of sucrose or trehalose with PVP or PVPVA were lyophilized with sugar/polymer ratios ranging from 2:8 to 8:2. Frozen sugar-PVPVA solutions exhibited a higher glass transition temperature of the maximally freeze-concentrated amorphous phase (Tg') compared to sugar-PVP solutions, despite the glass transition temperature (Tg) of PVPVA being lower than PVP. Tg values of all colyophilized systems were in a similar temperature range irrespective of polymer type. Greater hydrogen bonding between sugars and PVP and the lower hygroscopicity of PVPVA influenced polymer antiplasticization effects and the plasticization effects of residual water. Plasticization due to water sorption was investigated in a dynamic vapor sorption humidity ramping experiment. Lyophilized sucrose systems exhibited increased amorphous stability compared to trehalose upon exposure to the humidity. Recrystallization of trehalose was observed and stabilized by polymer addition. Lower concentrations of PVP inhibited trehalose recrystallization compared to PVPVA. These stabilizing effects were attributed to the increased hydrogen bonding between trehalose and PVP compared to trehalose and PVPVA. Overall, the study demonstrated how differences in polymer hygroscopicity and hydrogen bonding with sugars influence the stability of colyophilized amorphous dispersions. These insights into excipient solid-state stability are relevant to the development of stabilized biopharmaceutical solid-state formulations.


Subject(s)
Drug Stability , Excipients , Freeze Drying , Polymers , Povidone , Transition Temperature , Trehalose , Freeze Drying/methods , Povidone/chemistry , Trehalose/chemistry , Excipients/chemistry , Polymers/chemistry , Sucrose/chemistry , Sugars/chemistry , Hydrogen Bonding , Drug Storage , Chemistry, Pharmaceutical/methods , Calorimetry, Differential Scanning , Humidity , Pyrrolidines/chemistry , Vinyl Compounds/chemistry
12.
Mol Pharm ; 21(6): 2908-2921, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38743928

ABSTRACT

The physical stability of amorphous solid dispersions (ASDs) is a major topic in the formulation research of oral dosage forms. To minimize the effort of investigating the long-term stability using cost- and time-consuming experiments, we developed a thermodynamic and kinetic modeling framework to predict and understand the crystallization kinetics of ASDs during long-term storage below the glass transition. Since crystallization of the active phrarmaceutical ingredients (APIs) in ASDs largely depends on the amount of water absorbed by the ASDs, water-sorption kinetics and API-crystallization kinetics were considered simultaneously. The developed modeling approach allows prediction of the time evolution of viscosity, supersaturation, and crystallinity as a function of drug load, relative humidity, and temperature. It was applied and evaluated against two-year-lasting crystallization experiments of ASDs containing nifedipine and copovidone or HPMCAS measured in part I of this work. We could show that the proposed modeling approach is able to describe the interplay between water sorption and API crystallization and to predict long-term stabilities of ASDs just based on short-term measurements. Most importantly, it enables explaining and understanding the reasons for different and sometimes even unexpected crystallization behaviors of ASDs.


Subject(s)
Crystallization , Water , Crystallization/methods , Water/chemistry , Kinetics , Drug Stability , Nifedipine/chemistry , Vinyl Compounds/chemistry , Thermodynamics , Pyrrolidines/chemistry , Viscosity , Chemistry, Pharmaceutical/methods , Humidity , Temperature , Solubility , Methylcellulose/chemistry , Methylcellulose/analogs & derivatives
13.
Arch Pharm (Weinheim) ; 357(7): e2300651, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38570819

ABSTRACT

A series of D-ring modified steroids bearing a vinyl ketone pendant were synthesized and evaluated for antiproliferative activity against breast cancer cell line and cytochromes P450. The lead compound, 21-vinyl 20-keto-pregnene (2f) (IC50 = 2.4 µM), was shown to be a promising candidate for future anticancer drug design, particularly against estrogen receptor α (ERα)-positive breast cancer. The lead compound was found to have a significant effect on the signaling pathways in parental and 4-hydroxytamoxifen-resistant cells. Compound 2f modulated the ERK, cyclin D1, and CDK4 pathways and blocked the expression of ERα, the main driver of breast cancer growth. Compound 2f significantly reduced 17ß-estradiol-induced progesterone receptor expression. Accumulation of cleaved poly(ADP-ribose) polymerase in cells treated with compound 2f indicated induction of apoptosis. The selectivity analysis showed that lead compound 2f produces no significant effects on cytochromes P450, CYP19A1, CYP21A2, and CYP7B1.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Cell Proliferation , Estrogen Receptor alpha , Signal Transduction , Humans , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/antagonists & inhibitors , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , Pregnenes/pharmacology , Pregnenes/chemical synthesis , Pregnenes/chemistry , Cell Line, Tumor , Apoptosis/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Drug Resistance, Neoplasm/drug effects , Vinyl Compounds/pharmacology , Vinyl Compounds/chemical synthesis , Vinyl Compounds/chemistry
14.
Dent Mater J ; 43(3): 367-374, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583997

ABSTRACT

There is a growing need for a mouthguard sheet material with higher shock absorption and dispersion capacity than those obtained by conventional materials. A five-layer mouthguard sheet material was previously developed using laminated ethylene vinyl acetate and polyolefin copolymer resin. In this study, the shock absorption capacity and dispersion capability of the new sheet material were investigated and compared with those of other materials. Impact testing for the new sheet material showed that the force required to displace the sheet by 1 mm was significantly higher at all thicknesses (p<0.001), whereas the puncture energy and displacement were significantly lower than those for ethylene vinyl acetate (p<0.05). The five-layer mouthguard sheet material successfully absorbed and resisted shock. Therefore, the sheet material potentially increases resistance to applied deformation in teeth and alveolar bone and maintains structure. The five-layer sheet material could expand the range of mouthguard products and help prevent oral trauma.


Subject(s)
Materials Testing , Mouth Protectors , Polyenes/chemistry , Vinyl Compounds/chemistry , Equipment Design , Polyvinyls/chemistry , Stress, Mechanical , Dental Stress Analysis
15.
Org Biomol Chem ; 22(16): 3273-3278, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38572769

ABSTRACT

Arylsulfonyl group-bearing α,ß-unsaturated enol esters were readily assembled via the Cs2CO3-mediated union of 2-bromoallyl sulfones and cinnamic acids. The overall transformation is equivalent to an sp2 carbon-oxygen coupling reaction, and therefore constitutes a formal vinylic substitution. Several of the products display promising levels of antiproliferative activities higher than that of the anticancer drug carboplatin. Thiophenol reacted with 2-bromoallyl sulfones under identical conditions to afford α-thiophenyl-α'-tosyl acetone via an apparent aerial oxidation.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Esters , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Esters/chemistry , Esters/pharmacology , Esters/chemical synthesis , Humans , Cell Proliferation/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Molecular Structure , Sulfones/chemistry , Sulfones/pharmacology , Sulfones/chemical synthesis , Structure-Activity Relationship , Vinyl Compounds/chemistry , Vinyl Compounds/pharmacology , Vinyl Compounds/chemical synthesis
16.
Sci Rep ; 14(1): 2203, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38272939

ABSTRACT

Diseases and diagnoses are predominant in the human population. Early diagnosis of etiological agents plays a vital role in the treatment of bacterial infections. Existing standard diagnostic platforms are laborious, time-consuming, and require trained personnel and cost-effective procedure, though they are producing promising results. These shortcomings have led to a thirst for rapid diagnostic procedures. Fluorescence-based diagnosis is one of the efficient rapid diagnostic methods that rely on specific and sensitive bacterial detection. Emerging bio-sensing studies on conducting polymers (CPs) are gaining popularity in medical diagnostics due to their promising properties of high fluorescence efficiency, good light stability, and low cytotoxicity. Poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), is the first identified soluble polymer and model material for understanding the fundamental photophysics of conventional CPs. In this present study, MEH-PPV is used as a fluorescent dye for direct pathogen detection applications by interacting with the microbial cell surface. An optimized concentration of MEH-PPV solution used to confirm the presence of selective bacterial structures. The present study endeavours towards bacterial detection based on the emission from bacteria due to interfacial interaction between polymer and bacterial surface.


Subject(s)
Polymers , Vinyl Compounds , Humans , Vinyl Compounds/chemistry , Polymers/chemistry , Fluorescent Dyes/chemistry
17.
Mol Pharm ; 21(2): 770-780, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38181202

ABSTRACT

The R3m molecular descriptor (R-GETAWAY third-order autocorrelation index weighted by the atomic mass) has previously been shown to encode molecular attributes that appear to be physically and chemically relevant to grouping diverse active pharmaceutical ingredients (API) according to their potential to form persistent amorphous solid dispersions (ASDs) with polyvinylpyrrolidone-vinyl acetate copolymer (PVPVA). The initial R3m dispersibility model was built by using a single three-dimensional (3D) conformation for each drug molecule. Since molecules in the amorphous state will adopt a distribution of conformations, molecular dynamics simulations were performed to sample conformations that are probable in the amorphous form, which resulted in a distribution of R3m values for each API. Although different conformations displayed R3m values that differed by as much as 0.4, the median of each R3m distribution and the value predicted from the single 3D conformation were very similar for most structures studied. The variability in R3m resulting from the distribution of conformations was incorporated into a logistic regression model for the prediction of ASD formation in PVPVA, which resulted in a refinement of the classification boundary relative to the model that only incorporated a single conformation of each API.


Subject(s)
Polymers , Povidone , Polymers/chemistry , Povidone/chemistry , Vinyl Compounds/chemistry , Drug Liberation , Solubility , Drug Compounding/methods
18.
Mol Pharm ; 20(4): 2217-2234, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36926898

ABSTRACT

Despite the recent success of amorphous solid dispersions (ASDs) at enabling the delivery of poorly soluble small molecule drugs, ASD-based dosage forms are limited by low drug loading. This is partially due to a sharp decline in drug release from the ASD at drug loadings surpassing the 'limit of congruency' (LoC). In some cases, the LoC is as low as 5% drug loading, significantly increasing the risk of pill burden. Despite efforts to understand the mechanism responsible for the LoC, a clear picture of the molecular processes occurring at the ASD/solution interface remains elusive. In this study, the ASD/solution interface was studied for two model compounds formulated as ASDs with copovidone. The evolution of a gel layer and its phase behavior was captured in situ with fluorescence confocal microscopy, where fluorescent probes were added to label the hydrophobic and hydrophilic phases. Phase separation was detected in the gel layer for most of the ASDs. The morphology of the hydrophobic phase was found to correlate with the release behavior, where a discrete phase resulted in good release and a continuous phase formed a barrier leading to poor release. The continuous phase formed at a lower drug loading for the system with stronger drug-polymer interactions. This was due to incorporation of the polymer into the hydrophobic phase. The study highlights the complex molecular and phase behavior at the ASD/solution interface of copovidone-based ASDs and provides a thermodynamic argument for qualitatively predicting the release behavior based on drug-polymer interactions.


Subject(s)
Polymers , Vinyl Compounds , Solubility , Drug Liberation , Vinyl Compounds/chemistry , Pharmaceutical Preparations , Polymers/chemistry , Drug Compounding/methods
19.
J Chromatogr A ; 1690: 463804, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36689803

ABSTRACT

Monolithic poly(2-vinylnaphthalene-co-divinylbenzene) columns were introduced, for the first time, and were evaluated as the separation media for nano-liquid chromatography (nano-LC). These columns were prepared by in-situ polymerization of 2-vinylnaphthalene (2-VNA) as the functional monomer and divinylbenzene (DVB) as the crosslinker in a fused silica capillary column of 50 µm i.d. Various porogenic solvents, including tetrahydrofuran (THF), dodecanol and toluene were used for morphology optimization. Final monolithic column (referred to as VNA column) was characterized by using scanning electron microscopy (SEM) and chromatographic analyses. Alkylbenzenes (ABs), and polyaromatic hydrocarbons (PAHs) were separated using the VNA column while the column offered excellent hydrophobic and π-π interactions under reversed-phase conditions. Theoretical plates number up to 41,200 plates/m in isocratic mode for ethylbenzene could be achieved. The potential of the final VNA column was demonstrated with a gradient elution in the  separation of six intact proteins, including ribonuclease A (RNase A), cytochrome C (Cyt C), lysozyme (Lys), ß-lactoglobulin (ß-lac), myoglobin (My) and α-chymotrypsinogen (α-chym) in nano LC system. The column was then applied to the peptide analysis of trypsin digested cytochrome C, allowing a high peak capacity up to 1440 and the further proteomics analysis of COS-7 cell line was attempted applying the final monolithic column in nano-LC UV system.


Subject(s)
Cytochromes c , Proteomics , Chromatography, Liquid/methods , Vinyl Compounds/chemistry
20.
Int J Pharm ; 630: 122455, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36460129

ABSTRACT

Inhibiting surface crystallization is an interesting strategy to enhance the physical stability of amorphous solid dispersions (ASDs), still preserving high drug loads. The aim of this study was to investigate the potential surface crystallization inhibitory effect of an additional polymer coating onto ASDs, comprising high drug loads of a fast crystallizing drug, layered onto pellets. For this purpose, bilayer coated pellets were generated with fluid-bed coating, of which the first layer constitutes a solid dispersion of naproxen (NAP) in poly(vinylpyrrolidone-co-vinyl acetate) (PVP-VA) in a 40:60 or 35:65 (w/w) ratio, and ethyl cellulose (EC) composes the second layer. The physical stability of these double-layered pellets, in comparison to pellets with an ASD layer only, was assessed under accelerated conditions by monitoring with X-ray powder diffraction (XRPD) at regular time intervals. Bilayer coated pellets were however found to be physically less stable than pellets with an ASD layer only. Applying the supplementary EC coating layer induced crystallization and heterogeneity in the 40:60 and 35:65 (w/w) NAP-PVP-VA ASDs, respectively, attributed to the initial contact with the solvent. Caution is thus required when applying an additional coating layer on top of an ASD layer with fluid-bed coating, for instance for controlled release purposes, especially if the ASD consists of high loads of a fast crystallizing drug.


Subject(s)
Polymers , Vinyl Compounds , Polymers/chemistry , Solubility , Vinyl Compounds/chemistry , Pyrrolidines/chemistry , Drug Implants
SELECTION OF CITATIONS
SEARCH DETAIL