Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.961
1.
Proc Natl Acad Sci U S A ; 121(24): e2400145121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38833465

Microalgae are promising production platforms for the cost-effective production of recombinant proteins. We have recently established that the red alga Porphyridium purpureum provides superior transgene expression properties, due to the episomal maintenance of transformation vectors as multicopy plasmids in the nucleus. Here, we have explored the potential of Porphyridium to synthesize complex pharmaceutical proteins to high levels. Testing expression constructs for a candidate subunit vaccine against the hepatitis C virus (HCV), we show that the soluble HCV E2 glycoprotein can be produced in transgenic algal cultures to high levels. The antigen undergoes faithful posttranslational modification by N-glycosylation and is recognized by conformationally selective antibodies, suggesting that it adopts a proper antigenic conformation in the endoplasmic reticulum of red algal cells. We also report the experimental determination of the structure of the N-glycan moiety that is attached to glycosylated proteins in Porphyridium. Finally, we demonstrate the immunogenicity of the HCV antigen produced in red algae when administered by injection as pure protein or by feeding of algal biomass.


Hepacivirus , Porphyridium , Porphyridium/metabolism , Porphyridium/immunology , Porphyridium/genetics , Hepacivirus/immunology , Hepacivirus/genetics , Glycosylation , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Animals
2.
Sci Rep ; 14(1): 13130, 2024 06 07.
Article En | MEDLINE | ID: mdl-38849372

Dengue virus is a single positive-strand RNA virus that is composed of three structural proteins including capsid, envelope, and precursor membrane while seven non-structural proteins (NS1, NS2A, NS2B, NS3A, NS3B, NS4, and NS5). Dengue is a viral infection caused by the dengue virus (DENV). DENV infections are asymptomatic or produce only mild illness. However, DENV can occasionally cause more severe cases and even death. There is no specific treatment for dengue virus infections. Therapeutic peptides have several important advantages over proteins or antibodies: they are small in size, easy to synthesize, and have the ability to penetrate the cell membranes. They also have high activity, specificity, affinity, and less toxicity. Based on the known peptide inhibitor, the current study designs peptide inhibitors for dengue virus envelope protein using an alanine and residue scanning technique. By replacing I21 with Q21, L14 with H14, and V28 with K28, the binding affinity of the peptide inhibitors was increased. The newly designed peptide inhibitors with single residue mutation improved the binding affinity of the peptide inhibitors. The inhibitory capability of the new promising peptide inhibitors was further confirmed by the utilization of MD simulation and free binding energy calculations. The molecular dynamics simulation demonstrated that the newly engineered peptide inhibitors exhibited greater stability compared to the wild-type peptide inhibitors. According to the binding free energies MM(GB)SA of these developed peptides, the first peptide inhibitor was the most effective against the dengue virus envelope protein. All peptide derivatives had higher binding affinities for the envelope protein and have the potential to treat dengue virus-associated infections. In this study, new peptide inhibitors were developed for the dengue virus envelope protein based on the already reported peptide inhibitor.


Antiviral Agents , Dengue Virus , Dengue , Peptides , Dengue Virus/drug effects , Peptides/chemistry , Peptides/pharmacology , Dengue/drug therapy , Dengue/virology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Humans , Drug Design , Molecular Dynamics Simulation , Viral Envelope Proteins/antagonists & inhibitors , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/chemistry , Computer Simulation , Protein Binding
3.
Virol J ; 21(1): 128, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840203

The envelope (E) protein of the Japanese encephalitis virus (JEV) is a key protein for virus infection and adsorption of host cells, which determines the virulence of the virus and regulates the intensity of inflammatory response. The mutation of multiple aa residues in the E protein plays a critical role in the attenuated strain of JEV. This study demonstrated that the Asp to Gly, Ser, and His mutation of the E389 site, respectively, the replication ability of the viruses in cells was significantly reduced, and the viral neuroinvasiveness was attenuated to different degrees. Among them, the mutation at E389 site enhanced the E protein flexibility contributed to the attenuation of neuroinvasiveness. In contrast, less flexibility of E protein enhanced the neuroinvasiveness of the strain. Our results indicate that the mechanism of attenuation of E389 aa mutation attenuates neuroinvasiveness is related to increased flexibility of the E protein. In addition, the increased flexibility of E protein enhanced the viral sensitivity to heparin inhibition in vitro, which may lead to a decrease in the viral load entering brain. These results suggest that E389 residue is a potential site affecting JEV virulence, and the flexibility of the E protein of aa at this site plays an important role in the determination of neuroinvasiveness.


Encephalitis Virus, Japanese , Viral Envelope Proteins , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/physiology , Encephalitis Virus, Japanese/drug effects , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/chemistry , Animals , Cell Line , Virulence , Virus Replication , Encephalitis, Japanese/virology , Humans , Heparin/pharmacology , Amino Acid Substitution , Mutation, Missense , Mice , Mutation , Virulence Factors/genetics , Membrane Glycoproteins
4.
Front Immunol ; 15: 1352404, 2024.
Article En | MEDLINE | ID: mdl-38846950

Background: CD2v, a critical outer envelope glycoprotein of the African swine fever virus (ASFV), plays a central role in the hemadsorption phenomenon during ASFV infection and is recognized as an essential immunoprotective protein. Monoclonal antibodies (mAbs) targeting CD2v have demonstrated promise in both diagnosing and combating African swine fever (ASF). The objective of this study was to develop specific monoclonal antibodies against CD2v. Methods: In this investigation, Recombinant CD2v was expressed in eukaryotic cells, and murine mAbs were generated through meticulous screening and hybridoma cloning. Various techniques, including indirect enzyme-linked immunosorbent assay (ELISA), western blotting, immunofluorescence assay (IFA), and bio-layer interferometry (BLI), were employed to characterize the mAbs. Epitope mapping was conducted using truncation mutants and epitope peptide mapping. Results: An optimal antibody pair for a highly sensitive sandwich ELISA was identified, and the antigenic structures recognized by the mAbs were elucidated. Two linear epitopes highly conserved in ASFV genotype II strains, particularly in Chinese endemic strains, were identified, along with a unique glycosylated epitope. Three mAbs, 2B25, 3G25, and 8G1, effectively blocked CD2v-induced NF-κB activation. Conclusions: This study provides valuable insights into the antigenic structure of ASFV CD2v. The mAbs obtained in this study hold great potential for use in the development of ASF diagnostic strategies, and the identified epitopes may contribute to vaccine development against ASFV.


African Swine Fever Virus , African Swine Fever , Antibodies, Monoclonal , Epitope Mapping , NF-kappa B , Animals , African Swine Fever Virus/immunology , NF-kappa B/metabolism , NF-kappa B/immunology , Swine , Mice , African Swine Fever/immunology , African Swine Fever/virology , Antibodies, Monoclonal/immunology , Viral Envelope Proteins/immunology , Epitopes/immunology , Antibodies, Viral/immunology , Mice, Inbred BALB C
5.
PLoS Negl Trop Dis ; 18(6): e0012216, 2024 Jun.
Article En | MEDLINE | ID: mdl-38848311

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel tick-borne viral pathogen that causes severe fever with thrombocytopenia syndrome (SFTS). The disease was initially reported in central and eastern China, then later in Japan and South Korea, with a mortality rate of 13-30%. Currently, no vaccines or effective therapeutics are available for SFTS treatment. In this study, three monoclonal antibodies (mAbs) targeting the SFTSV envelope glycoprotein Gn were obtained using the hybridoma technique. Two mAbs recognized linear epitopes and did not neutralize SFTSV, while the mAb 40C10 can effectively neutralized SFTSV of different genotypes and also the SFTSV-related Guertu virus (GTV) and Heartland virus (HRTV) by targeting a spatial epitope of Gn. Additionally, the mAb 40C10 showed therapeutic effect in mice infected with different genotypes of SFTSV strains against death by preventing the development of lesions and by promoting virus clearance in tissues. The therapeutic effect could still be observed in mice infected with SFTSV which were administered with mAb 40C10 after infection even up to 4 days. These findings enhance our understanding of SFTSV immunogenicity and provide valuable information for designing detection methods and strategies targeting SFTSV antigens. The neutralizing mAb 40C10 possesses the potential to be further developed as a therapeutic monoclonal antibody against SFTSV and SFTSV-related viruses.


Antibodies, Monoclonal , Antibodies, Viral , Mice, Inbred BALB C , Phlebovirus , Phlebovirus/immunology , Phlebovirus/genetics , Animals , Antibodies, Monoclonal/immunology , Mice , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Female , Severe Fever with Thrombocytopenia Syndrome/immunology , Severe Fever with Thrombocytopenia Syndrome/virology , Epitopes/immunology , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Glycoproteins/immunology , Glycoproteins/genetics , Bunyaviridae Infections/immunology , Bunyaviridae Infections/virology , Bunyaviridae Infections/prevention & control , Humans
6.
Front Cell Infect Microbiol ; 14: 1394713, 2024.
Article En | MEDLINE | ID: mdl-38836054

The rabies virus enters the nervous system by interacting with several molecular targets on host cells to modify behavior and trigger receptor-mediated endocytosis of the virion by poorly understood mechanisms. The rabies virus glycoprotein (RVG) interacts with the muscle acetylcholine receptor and the neuronal α4ß2 subtype of the nicotinic acetylcholine receptor (nAChR) family by the putative neurotoxin-like motif. Given that the neurotoxin-like motif is highly homologous to the α7 nAChR subtype selective snake toxin α-bungarotoxin (αBTX), other nAChR subtypes are likely involved. The purpose of this study is to determine the activity of the RVG neurotoxin-like motif on nAChR subtypes that are expressed in brain regions involved in rabid animal behavior. nAChRs were expressed in Xenopus laevis oocytes, and two-electrode voltage clamp electrophysiology was used to collect concentration-response data to measure the functional effects. The RVG peptide preferentially and completely inhibits α7 nAChR ACh-induced currents by a competitive antagonist mechanism. Tested heteromeric nAChRs are also inhibited, but to a lesser extent than the α7 subtype. Residues of the RVG peptide with high sequence homology to αBTX and other neurotoxins were substituted with alanine. Altered RVG neurotoxin-like peptides showed that residues phenylalanine 192, arginine 196, and arginine 199 are important determinants of RVG peptide apparent potency on α7 nAChRs, while serine 195 is not. The evaluation of the rabies ectodomain reaffirmed the observations made with the RVG peptide, illustrating a significant inhibitory impact on α7 nAChR with potency in the nanomolar range. In a mammalian cell culture model of neurons, we confirm that the RVG peptide binds preferentially to cells expressing the α7 nAChR. Defining the activity of the RVG peptide on nAChRs expands our understanding of basic mechanisms in host-pathogen interactions that result in neurological disorders.


Glycoproteins , Rabies virus , Xenopus laevis , alpha7 Nicotinic Acetylcholine Receptor , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Rabies virus/physiology , Rabies virus/metabolism , Humans , Glycoproteins/metabolism , Glycoproteins/genetics , Oocytes/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Host-Pathogen Interactions , Protein Binding , Rabies/metabolism , Rabies/virology , Acetylcholine/metabolism , Acetylcholine/pharmacology , Neurotoxins/metabolism , Neurotoxins/pharmacology
7.
J Gen Virol ; 105(5)2024 May.
Article En | MEDLINE | ID: mdl-38776134

Porcine reproductive and respiratory syndrome (PRRSV) is an enveloped single-stranded positive-sense RNA virus and one of the main pathogens that causes the most significant economical losses in the swine-producing countries. PRRSV is currently divided into two distinct species, PRRSV-1 and PRRSV-2. The PRRSV virion envelope is composed of four glycosylated membrane proteins and three non-glycosylated envelope proteins. Previous work has suggested that PRRSV-linked glycans are critical structural components for virus assembly. In addition, it has been proposed that PRRSV glycans are implicated in the interaction with host cells and critical for virus infection. In contrast, recent findings showed that removal of N-glycans from PRRSV does not influence virus infection of permissive cells. Thus, there are not sufficient evidences to indicate compellingly that N-glycans present in the PRRSV envelope play a direct function in viral infection. To gain insights into the role of N-glycosylation in PRRSV infection, we analysed the specific contribution of the envelope protein-linked N-glycans to infection of permissive cells. For this purpose, we used a novel strategy to modify envelope protein-linked N-glycans that consists of production of monoglycosylated PRRSV and viral glycoproteins with different glycan states. Our results showed that removal or alteration of N-glycans from PRRSV affected virus infection. Specifically, we found that complex N-glycans are required for an efficient infection in cell cultures. Furthermore, we found that presence of high mannose type glycans on PRRSV surface is the minimal requirement for a productive viral infection. Our findings also show that PRRSV-1 and PRRSV-2 have different requirements of N-glycan structure for an optimal infection. In addition, we demonstrated that removal of N-glycans from PRRSV does not affect viral attachment, suggesting that these carbohydrates played a major role in regulating viral entry. In agreement with these findings, by performing immunoprecipitation assays and colocalization experiments, we found that N-glycans present in the viral envelope glycoproteins are not required to bind to the essential viral receptor CD163. Finally, we found that the presence of N-glycans in CD163 is not required for PRRSV infection.


Polysaccharides , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/metabolism , Porcine respiratory and reproductive syndrome virus/genetics , Glycosylation , Animals , Swine , Polysaccharides/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/metabolism , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Cell Line , Receptors, Cell Surface/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Viral Envelope/metabolism
8.
Viruses ; 16(5)2024 04 29.
Article En | MEDLINE | ID: mdl-38793591

In recent years, pseudorabies virus (PRV) variants have resulted in an epidemic in swine herds and huge economic losses in China. Therefore, it is essential to develop an efficacious vaccine against the spread of PRV variants. Here, the triple-gene-deletion virus and the triple-gene-deletion plus gC virus were constructed by homologous recombination (HR). And then, their growth capacity, proliferation ability, and immune efficacy were evaluated. The results showed that the growth kinetics of the recombinant viruses were similar to those of the parental strain PRV-AH. Compared with the triple-gene-deletion virus group, the more dominant level of neutralizing antibody (NA) can be induced in the triple-gene-deletion plus gC virus group with the same 106.0 TCID50 dose after 4 and 6 weeks post-initial immunization (PII) (p < 0.0001). In addition, the antibody titers in mice immunized with the triple-gene-deletion plus gC virus were significantly higher than those immunized with triple-gene deletion virus with the same 105.0 TCID50 dose after 6 weeks PII (p < 0.001). More importantly, in the triple-gene-deletion plus gC virus group with 105.0 TCID50, the level of NA was close to that in the triple-gene deletion virus group with 106.0 TCID50 at 6 weeks PII. Meanwhile, the cytokines IL-4 and IFN-γ in sera were tested by enzyme-linked immunosorbent assay (ELISA) in each group. The highest level of IL-4 or IFN-γ was also elicited in the triple-gene deletion plus gC virus group at a dose of 106.0 TCID50. After challenge with PRV-AH, the survival rates of the triple-gene deletion plus gC virus immunized groups were higher than those of other groups. In immunized groups with 105.0 TCID50, the survival rate shows a significant difference between the triple-gene deletion plus gC virus group (75%, 6/8) and the triple-gene deletion virus group (12.5%, 1/8). In general, the immune efficacy of the PRV TK/gI/gE-deleted virus can be increased with additional gC insertion in mice, which has potential for developing an attenuated vaccine candidate for PRV control.


Antibodies, Neutralizing , Antibodies, Viral , Gene Deletion , Herpesvirus 1, Suid , Pseudorabies Vaccines , Pseudorabies , Animals , Herpesvirus 1, Suid/genetics , Herpesvirus 1, Suid/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Mice , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Pseudorabies/prevention & control , Pseudorabies/immunology , Pseudorabies/virology , Pseudorabies Vaccines/immunology , Pseudorabies Vaccines/genetics , Pseudorabies Vaccines/administration & dosage , Mice, Inbred BALB C , Swine , Female , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Homologous Recombination , Cytokines/metabolism , China
9.
Viruses ; 16(5)2024 04 30.
Article En | MEDLINE | ID: mdl-38793594

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the pig industry. Marc-145 cells are widely used for PRRSV isolation, vaccine production, and investigations into virus biological characteristics. Despite their significance in PRRSV research, Marc-145 cells struggle to isolate specific strains of the North American virus genotype (PRRSV-2). The involvement of viral GP2a, GP2b, and GP3 in this phenomenon has been noted. However, the vital amino acids have not yet been identified. In this study, we increased the number of blind passages and successfully isolated two strains that were previously difficult to isolate with Marc-145 cells. Both strains carried an amino acid substitution in GP2a, specifically phenylalanine to leucine at the 98th amino acid position. Through a phylogenetic and epidemiologic analysis of 32 strains, those that were not amenable to isolation widely exhibited this mutation. Then, by using the PRRSV reverse genetics system, IFA, and Western blotting, we identified the mutation that could affect the tropism of PRRSV-2 for Marc-145 cells. Furthermore, an animal experiment was conducted. Through comparisons of clinical signs, mortality rates, and viral load in the organs and sera, we found that mutation did not affect the pathogenicity of PRRSV-2. In conclusion, our study firmly establishes the 98th amino acid in GP2a as a key determinant of PRRSV-2 tropism for Marc-145 cells.


Amino Acid Substitution , Phylogeny , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/physiology , Animals , Swine , Cell Line , Porcine Reproductive and Respiratory Syndrome/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Tropism , Mutation , Genotype , Amino Acids/metabolism
10.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 447-454, 2024 May.
Article Zh | MEDLINE | ID: mdl-38790101

Objective To prepare monoclonal antibodies against the envelope protein extracellular domain (Eecto) of Zika virus (ZIKV) in mice. Methods A prokaryotic expression plasmid, pET28a-ZIKV-Eecto of ZIKV Eecto, was constructed, transformed into Escherichia coli BL21 and induced by isopropyl ß-D-thiogalactoside (IPTG). The recombinant Eecto protein was expressed in the form of inclusion bodies, and purified proteins were obtained through denaturation, renaturation and ultrafiltration. After three rounds of immunization with the Eecto protein, the serum of BALB/c mice was obtained and the titer of polyclonal antibodies in serum was determined. The reactivity of polyclonal antibodies was analyzed with Western blotting and immunofluorescence assay in HEK293T cells expressing the ZIKV prME. Spleen cells from mice with higher antibody titers were prepared and fused with SP2/0 myeloma cells. The hybridoma cells secreting antibodies were screened through the limited dilution method, and the ascites containing antibody were harvested for titer measurement and subclass analysis. The Eecto from the envelope proteins of Japanese encephalitis virus (JEV), Yellow fever virus (YFV), Dengue virus (DENV1-4), and Tick borne encephalitis virus (TBEV) were coated and used to analyze the cross-reactivity of ZIKV monoclonal antibodies by ELISA. Further specificity analysis was conducted on antibodies with high titers and strong specificity. Results The plasmid pET28a-ZIKV-Eecto was successfully constructed. The purified Eecto protein was obtained with good immunogenicity. Four monoclonal antibodies were prepared and screened, namely 1D6, 4F11, 4H7, and 4F8. Among them, 1D6, 4H7, and 4F8 are IgG (K) type antibodies, and 4F11 is an IgM (K) antibody. The ascitic fluid titer of 1D6 was higher than 1:108. Antibodies 1D6 and 4H7 are ZIKV-specific and showed no cross-reactivity with other Flaviviruses. Conclusion The mice monoclonal antibodies against ZIKV-Eecto are produced successfully, which will provide experimental materials for the establishment of ZIKV detection methods and the study of its pathogenesis.


Antibodies, Monoclonal , Mice, Inbred BALB C , Viral Envelope Proteins , Zika Virus , Animals , Zika Virus/immunology , Zika Virus/genetics , Antibodies, Monoclonal/immunology , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Mice , Humans , HEK293 Cells , Female , Antibodies, Viral/immunology , Protein Domains/immunology , Enzyme-Linked Immunosorbent Assay
11.
J Med Virol ; 96(6): e29690, 2024 Jun.
Article En | MEDLINE | ID: mdl-38804180

Autophagy is a degradational pathway with pivotal roles in cellular homeostasis and survival, including protection of neurons in the central nervous system (CNS). The significance of autophagy as antiviral defense mechanism is recognized and some viruses hijack and modulate this process to their advantage in certain cell types. Here, we present data demonstrating that the human neurotropic herpesvirus varicella zoster virus (VZV) induces autophagy in human SH-SY5Y neuronal cells, in which the pathway exerts antiviral activity. Productively VZV-infected SH-SY5Y cells showed increased LC3-I-LC3-II conversion as well as co-localization of the viral glycoprotein E and the autophagy receptor p62. The activation of autophagy was dependent on a functional viral genome. Interestingly, inducers of autophagy reduced viral transcription, whereas inhibition of autophagy increased viral transcript expression. Finally, the genotype of patients with severe ocular and brain VZV infection were analyzed to identify potential autophagy-associated inborn errors of immunity. Two patients expressing genetic variants in the autophagy genes ULK1 and MAP1LC3B2, respectively, were identified. Notably, cells of both patients showed reduced autophagy, alongside enhanced viral replication and death of VZV-infected cells. In conclusion, these results demonstrate a neuro-protective role for autophagy in the context of VZV infection and suggest that failure to mount an autophagy response is a potential predisposing factor for development of severe VZV disease.


Autophagy , Herpesvirus 3, Human , Neurons , Humans , Herpesvirus 3, Human/physiology , Herpesvirus 3, Human/pathogenicity , Neurons/virology , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Virus Replication , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Varicella Zoster Virus Infection/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Cell Line , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Host-Pathogen Interactions
12.
Viruses ; 16(5)2024 05 15.
Article En | MEDLINE | ID: mdl-38793663

Marek's disease (MD), caused by gallid alphaherpesvirus 2 (GaAHV2) or Marek's disease herpesvirus (MDV), is a devastating disease in chickens characterized by the development of lymphomas throughout the body. Vaccine strains used against MD include gallid alphaherpesvirus 3 (GaAHV3), a non-oncogenic chicken alphaherpesvirus homologous to MDV, and homologous meleagrid alphaherpesvirus 1 (MeAHV1) or turkey herpesvirus (HVT). Previous work has shown most of the MDV gC produced during in vitro passage is secreted into the media of infected cells although the predicted protein contains a transmembrane domain. We formerly identified two alternatively spliced gC mRNAs that are secreted during MDV replication in vitro, termed gC104 and gC145 based on the size of the intron removed for each UL44 (gC) transcript. Since gC is conserved within the Alphaherpesvirinae subfamily, we hypothesized GaAHV3 (strain 301B/1) and HVT also secrete gC due to mRNA splicing. To address this, we collected media from 301B/1- and HVT-infected cell cultures and used Western blot analyses and determined that both 301B/1 and HVT produced secreted gC. Next, we extracted RNAs from 301B/1- and HVT-infected cell cultures and chicken feather follicle epithelial (FFE) skin cells. RT-PCR analyses confirmed one splicing variant for 301B/1 gC (gC104) and two variants for HVT gC (gC104 and gC145). Interestingly, the splicing between all three viruses was remarkably conserved. Further analysis of predicted and validated mRNA splicing donor, branch point (BP), and acceptor sites suggested single nucleotide polymorphisms (SNPs) within the 301B/1 UL44 transcript sequence resulted in no gC145 being produced. However, modification of the 301B/1 gC145 donor, BP, and acceptor sites to the MDV UL44 sequences did not result in gC145 mRNA splice variant, suggesting mRNA splicing is more complex than originally hypothesized. In all, our results show that mRNA splicing of avian herpesviruses is conserved and this information may be important in developing the next generation of MD vaccines or therapies to block transmission.


Chickens , RNA Splicing , Viral Envelope Proteins , Animals , Chickens/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Marek Disease/virology , Mardivirus/genetics , Mardivirus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Herpesvirus 2, Gallid/genetics , Alternative Splicing , Antigens, Viral
13.
Nat Commun ; 15(1): 4330, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773072

The Hendra and Nipah viruses (HNVs) are highly pathogenic pathogens without approved interventions for human use. In addition, the interaction pattern between the attachment (G) and fusion (F) glycoproteins required for virus entry remains unclear. Here, we isolate a panel of Macaca-derived G-specific antibodies that cross-neutralize HNVs via multiple mechanisms. The most potent antibody, 1E5, confers adequate protection against the Nipah virus challenge in female hamsters. Crystallography demonstrates that 1E5 has a highly similar binding pattern to the receptor. In cryo-electron microscopy studies, the tendency of 1E5 to bind to the upper or lower heads results in two distinct quaternary structures of G. Furthermore, we identify the extended outer loop ß1S2-ß1S3 of G and two pockets on the apical region of fusion (F) glycoprotein as the essential sites for G-F interactions. This work highlights promising drug candidates against HNVs and contributes deeper insights into the viruses.


Antibodies, Neutralizing , Antibodies, Viral , Cryoelectron Microscopy , Henipavirus Infections , Viral Fusion Proteins , Animals , Antibodies, Neutralizing/immunology , Female , Antibodies, Viral/immunology , Henipavirus Infections/virology , Henipavirus Infections/immunology , Viral Fusion Proteins/immunology , Viral Fusion Proteins/chemistry , Humans , Viral Envelope Proteins/immunology , Viral Envelope Proteins/chemistry , Nipah Virus/immunology , Virus Internalization/drug effects , Henipavirus/immunology , Cricetinae , Cross Reactions/immunology , Hendra Virus/immunology , Macaca , Mesocricetus , Crystallography, X-Ray
14.
Sci Rep ; 14(1): 10407, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710792

Glucose regulated protein 78 (GRP78) is a chaperone protein that is a central mediator of the unfolded protein response, a key cellular stress response pathway. GRP78 has been shown to be critically required for infection and replication of a number of flaviviruses, and to interact with both non-structural (NS) and structural flavivirus proteins. However, the nature of the specific interaction between GRP78 and viral proteins remains largely unknown. This study aimed to characterize the binding domain and critical amino acid residues that mediate the interaction of GRP78 to ZIKV E and NS1 proteins. Recombinant EGFP fused GRP78 and individual subdomains (the nucleotide binding domain (NBD) and the substrate binding domain (SBD)) were used as a bait protein and co-expressed with full length or truncated ZIKV E and NS1 proteins in HEK293T/17 cells. Protein-protein interactions were determined by a co-immunoprecipitation assay. From the results, both the NBD and the SBD of GRP78 were crucial for an effective interaction. Single amino acid substitutions in the SBD showed that R492E and T518A mutants significantly reduced the binding affinity of GRP78 to ZIKV E and NS1 proteins. Notably, the interaction of GRP78 with ZIKV E was stably maintained against various single amino acid substitutions on ZIKV E domain III and with all truncated ZIKV E and NS1 proteins. Collectively, the results suggest that the principal binding between GRP78 and viral proteins is mainly a classic canonical chaperone protein-client interaction. The blocking of GRP78 chaperone function effectively inhibited ZIKV infection and replication in neuronal progenitor cells. Our findings reveal that GRP78 is a potential host target for anti-ZIKV therapeutics.


Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins , Protein Binding , Viral Nonstructural Proteins , Zika Virus , Endoplasmic Reticulum Chaperone BiP/metabolism , Zika Virus/metabolism , Zika Virus/physiology , Humans , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , HEK293 Cells , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/virology , Virus Replication
15.
Viruses ; 16(5)2024 05 18.
Article En | MEDLINE | ID: mdl-38793684

Hepatitis C virus (HCV) is a major medical health burden and the leading cause of chronic liver disease and cancer worldwide. More than 58 million people are chronically infected with HCV, with 1.5 million new infections occurring each year. An effective HCV vaccine is a major public health and medical need as recognized by the World Health Organization. However, due to the high variability of the virus and its ability to escape the immune response, HCV rapidly accumulates mutations, making vaccine development a formidable challenge. An effective vaccine must elicit broadly neutralizing antibodies (bnAbs) in a consistent fashion. After decades of studies from basic research through clinical development, the antigen of choice is considered the E1E2 envelope glycoprotein due to conserved, broadly neutralizing antigenic domains located in the constituent subunits of E1, E2, and the E1E2 heterodimeric complex itself. The challenge has been elicitation of robust humoral and cellular responses leading to broad virus neutralization due to the relatively low immunogenicity of this antigen. In view of this challenge, structure-based vaccine design approaches to stabilize key antigenic domains have been hampered due to the lack of E1E2 atomic-level resolution structures to guide them. Another challenge has been the development of a delivery platform in which a multivalent form of the antigen can be presented in order to elicit a more robust anti-HCV immune response. Recent nanoparticle vaccines are gaining prominence in the field due to their ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they can interact with both the cellular and humoral components of the immune system. This review focuses on recent advances in understanding the E1E2 heterodimeric structure to facilitate a rational design approach and the potential for development of a multivalent nanoparticle-based HCV E1E2 vaccine. Both aspects are considered important in the development of an effective HCV vaccine that can effectively address viral diversity and escape.


Hepacivirus , Hepatitis C , Vaccine Development , Viral Envelope Proteins , Viral Hepatitis Vaccines , Hepacivirus/immunology , Hepacivirus/genetics , Hepacivirus/chemistry , Humans , Viral Envelope Proteins/immunology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Hepatitis Vaccines/immunology , Hepatitis C/prevention & control , Hepatitis C/immunology , Hepatitis C/virology , Antibodies, Neutralizing/immunology , Animals , Hepatitis C Antibodies/immunology
16.
Sci Rep ; 14(1): 12190, 2024 05 28.
Article En | MEDLINE | ID: mdl-38806566

The Bovine Leukemia Virus (BLV) Envelope (Env) glycoprotein complex is instrumental in viral infectivity and shapes the host's immune response. This study presents the production and characterization of a soluble furin-mutated BLV Env ectodomain (sBLV-EnvFm) expressed in a stable S2 insect cell line. We purified a 63 kDa soluble protein, corresponding to the monomeric sBLV-EnvFm, which predominantly presented oligomannose and paucimannose N-glycans, with a high content of core fucose structures. Our results demonstrate that our recombinant protein can be recognized from specific antibodies in BLV infected cattle, suggesting its potential as a powerful diagnostic tool. Moreover, the robust humoral immune response it elicited in mice shows its potential contribution to the development of subunit-based vaccines against BLV.


Antibodies, Viral , Leukemia Virus, Bovine , Recombinant Proteins , Viral Envelope Proteins , Animals , Leukemia Virus, Bovine/genetics , Leukemia Virus, Bovine/immunology , Cattle , Recombinant Proteins/genetics , Mice , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Antibodies, Viral/immunology , Enzootic Bovine Leukosis/virology , Cell Line , Gene Products, env/genetics , Gene Products, env/metabolism , Gene Products, env/immunology
17.
Vet Microbiol ; 294: 110125, 2024 Jul.
Article En | MEDLINE | ID: mdl-38795404

Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen affecting pigs and belongs to the enveloped plus-stranded RNA virus family Arteriviridae. A unique feature of Arteriviruses is that the genes encoding the structural proteins overlap at their 3` and 5` ends. This impedes mutagenesis opportunities and precludes the binding of short peptides for antibody detection, as this would alter the amino acids encoded by the overlapping gene. In this study, we aimed to generate infectious PRRSV variants with separated genes encoding the minor glycoproteins Gp2, Gp3, and Gp4, accompanied by appended tags for detection. All recombinant genomes facilitate the release of infectious virus particles into the supernatant of transfected 293 T cells, as evidenced by immunofluorescence of infected MARC-145 cells using anti-nucleocapsid antibodies. Furthermore, expression of Gp2-Myc and Gp3-HA was confirmed through immunofluorescence and western blot analysis with tag-specific antibodies. However, after two passages of Gp2-Myc and Gp3-HA viruses, the appended tags were completely removed as indicated by sequencing the viral genome. Recombinant viruses with separated Gp2 and Gp3 genes remained stable for at least nine passages, while those with Gp3 and Gp4 genes separated reverted to wild type after only four passages. Notably, this virus exhibited significantly reduced titers in growth assays. Furthermore, we introduced a tag to the C-terminus of Gp4. The Gp4-HA virus was consistently stable for at least 10 passages, and the HA-tag was detectable by western blotting and immunofluorescence.


Glycoproteins , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/genetics , Animals , Swine , Glycoproteins/genetics , Humans , Cell Line , Porcine Reproductive and Respiratory Syndrome/virology , Genome, Viral , HEK293 Cells , Genetic Engineering , Viral Envelope Proteins/genetics
18.
PLoS Pathog ; 20(4): e1012139, 2024 Apr.
Article En | MEDLINE | ID: mdl-38578790

Alpha herpesviruses naturally infect the peripheral nervous system, and can spread to the central nervous system, causing severe debilitating or deadly disease. Because alpha herpesviruses spread along synaptic circuits, and infected neurons exhibit altered electrophysiology and increased spontaneous activity, we hypothesized that alpha herpesviruses use activity-dependent synaptic vesicle-like regulated secretory mechanisms for egress and spread from neurons. Using live-cell fluorescence microscopy, we show that Pseudorabies Virus (PRV) particles use the constitutive Rab6 post-Golgi secretory pathway to exit from the cell body of primary neurons, independent of local calcium signaling. Some PRV particles colocalize with Rab6 in the proximal axon, but we did not detect colocalization/co-transport in the distal axon. Thus, the specific secretory mechanisms used for viral egress from axons remains unclear. To address the role of neuronal activity more generally, we used a compartmentalized neuron culture system to measure the egress and spread of PRV from axons, and pharmacological and optogenetics approaches to modulate neuronal activity. Using tetrodotoxin to silence neuronal activity, we observed no inhibition, and using potassium chloride or optogenetics to elevate neuronal activity, we also show no increase in virus spread from axons. We conclude that PRV egress from neurons uses constitutive secretory mechanisms: generally, activity-independent mechanisms in axons, and specifically, the constitutive Rab6 post-Golgi secretory pathway in cell bodies.


Alphaherpesvirinae , Herpesvirus 1, Suid , Pseudorabies , Animals , Cell Body/metabolism , Viral Envelope Proteins/metabolism , Axons , Alphaherpesvirinae/metabolism , Neurons , Herpesvirus 1, Suid/metabolism , Pseudorabies/metabolism , Exocytosis
19.
Sci Adv ; 10(14): eadl5012, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38569033

The ß-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the global COVID-19 pandemic. Coronaviral Envelope (E) proteins are pentameric viroporins that play essential roles in assembly, release, and pathogenesis. We developed a nondisruptive tagging strategy for SARS-CoV-2 E and find that, at steady state, it localizes to the Golgi and to lysosomes. We identify sequences in E, conserved across Coronaviridae, responsible for endoplasmic reticulum-to-Golgi export, and relate this activity to interaction with COP-II via SEC24. Using proximity biotinylation, we identify an ADP ribosylation factor 1/adaptor protein-1 (ARFRP1/AP-1)-dependent pathway allowing Golgi-to-lysosome trafficking of E. We identify sequences in E that bind AP-1, are conserved across ß-coronaviruses, and allow E to be trafficked from Golgi to lysosomes. We show that E acts to deacidify lysosomes and, by developing a trans-complementation assay for SARS-CoV-2 structural proteins, that lysosomal delivery of E and its viroporin activity is necessary for efficient viral replication and release.


COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Viral Envelope Proteins/metabolism , Transcription Factor AP-1/metabolism , Pandemics , Virus Replication , Lysosomes/metabolism , ADP-Ribosylation Factors/metabolism
20.
Science ; 384(6693): eadn9524, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38669573

The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.


Aedes , Dengue Virus , Mosquito Vectors , Symbiosis , Zika Virus , Animals , Aedes/microbiology , Aedes/virology , Dengue Virus/physiology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Zika Virus/physiology , Dengue/transmission , Dengue/virology , Dengue/prevention & control , Gastrointestinal Microbiome , Acetobacteraceae/physiology , Female , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Flavivirus/physiology , Flavivirus/genetics , Zika Virus Infection/transmission , Zika Virus Infection/virology
...