Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(22): e2310677121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753503

ABSTRACT

Seasonal and pandemic-associated influenza strains cause highly contagious viral respiratory infections that can lead to severe illness and excess mortality. Here, we report on the optimization of our small-molecule inhibitor F0045(S) targeting the influenza hemagglutinin (HA) stem with our Sulfur-Fluoride Exchange (SuFEx) click chemistry-based high-throughput medicinal chemistry (HTMC) strategy. A combination of SuFEx- and amide-based lead molecule diversification and structure-guided design led to identification and validation of ultrapotent influenza fusion inhibitors with subnanomolar EC50 cellular antiviral activity against several influenza A group 1 strains. X-ray structures of six of these compounds with HA indicate that the appended moieties occupy additional pockets on the HA surface and increase the binding interaction, where the accumulation of several polar interactions also contributes to the improved affinity. The compounds here represent the most potent HA small-molecule inhibitors to date. Our divergent HTMC platform is therefore a powerful, rapid, and cost-effective approach to develop bioactive chemical probes and drug-like candidates against viral targets.


Subject(s)
Antiviral Agents , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chemistry, Pharmaceutical/methods , High-Throughput Screening Assays/methods , Influenza, Human/drug therapy , Influenza, Human/virology , Crystallography, X-Ray/methods , Click Chemistry/methods , Animals , Influenza A virus/drug effects , Madin Darby Canine Kidney Cells , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Protein Inhibitors/chemistry , Dogs
2.
Viruses ; 16(4)2024 04 20.
Article in English | MEDLINE | ID: mdl-38675980

ABSTRACT

Clofazimine and Arbidol have both been reported to be effective in vitro SARS-CoV-2 fusion inhibitors. Both are promising drugs that have been repurposed for the treatment of COVID-19 and have been used in several previous and ongoing clinical trials. Small-molecule bindings to expressed constructs of the trimeric S2 segment of Spike and the full-length SARS-CoV-2 Spike protein were measured using a Surface Plasmon Resonance (SPR) binding assay. We demonstrate that Clofazimine, Toremifene, Arbidol and its derivatives bind to the S2 segment of the Spike protein. Clofazimine provided the most reliable and highest-quality SPR data for binding with S2 over the conditions explored. A molecular docking approach was used to identify the most favorable binding sites on the S2 segment in the prefusion conformation, highlighting two possible small-molecule binding sites for fusion inhibitors. Results related to molecular docking and modeling of the structure-activity relationship (SAR) of a newly reported series of Clofazimine derivatives support the proposed Clofazimine binding site on the S2 segment. When the proposed Clofazimine binding site is superimposed with other experimentally determined coronavirus structures in structure-sequence alignments, the changes in sequence and structure may rationalize the broad-spectrum antiviral activity of Clofazimine in closely related coronaviruses such as SARS-CoV, MERS, hCoV-229E, and hCoV-OC43.


Subject(s)
Clofazimine , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Binding Sites , Clofazimine/pharmacology , Clofazimine/chemistry , Clofazimine/metabolism , COVID-19 Drug Treatment , Indoles , Molecular Docking Simulation , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Structure-Activity Relationship , Sulfides , Surface Plasmon Resonance , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Protein Inhibitors/chemistry
3.
Antiviral Res ; 206: 105399, 2022 10.
Article in English | MEDLINE | ID: mdl-36007601

ABSTRACT

Filoviruses enter cells through macropinocytosis and trafficking into the endosomes in which they bind to the receptor Niemann-Pick C1 protein (NPC1) for membrane fusion and entry into the cytoplasm. The endosomal receptor-binding is critical step for filovirus entry. Designing inhibitors to block receptor binding will prevent viral entry. Using available binding structural information from the co-crystal structures of the viral GP with the receptor NPC1 or with monoclonal antibodies, we have conducted structure-based design of peptide inhibitors to target the receptor binding site (RBS). The designed peptides were tested for their inhibition activity against pseudo-typed or replication-competent viruses in a cell-based assay. The results indicate that these peptides exhibited strong activities against both Ebola and Marburg virus infection. It is expected that these peptides can be further developed for therapeutic use to treat filovirus infection and combat the outbreaks.


Subject(s)
Filoviridae , Receptors, Virus , Viral Fusion Protein Inhibitors , Binding Sites , Carrier Proteins/metabolism , Cell Line , Ebolavirus/physiology , Endosomes/metabolism , Filoviridae/chemistry , Filoviridae/drug effects , Hemorrhagic Fever, Ebola , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Ligands , Membrane Glycoproteins/metabolism , Niemann-Pick C1 Protein/metabolism , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/pharmacology , Virus Internalization/drug effects
4.
Viruses ; 14(4)2022 03 22.
Article in English | MEDLINE | ID: mdl-35458385

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by infection of SARS-CoV-2 and its variants has posed serious threats to global public health, thus calling for the development of potent and broad-spectrum antivirals. We previously designed and developed a peptide-based pan-coronavirus (CoV) fusion inhibitor, EK1, which is effective against all human CoVs (HCoV) tested by targeting the HCoV S protein HR1 domain. However, its relatively short half-life may limit its clinical use. Therefore, we designed, constructed, and expressed a recombinant protein, FL-EK1, which consists of a modified fibronectin type III domain (FN3) with albumin-binding capacity, a flexible linker, and EK1. As with EK1, we found that FL-EK1 could also effectively inhibit infection of SARS-CoV-2 and its variants, as well as HCoV-OC43. Furthermore, it protected mice from infection by the SARS-CoV-2 Delta variant and HCoV-OC43. Importantly, the half-life of FL-EK1 (30 h) is about 15.7-fold longer than that of EK1 (1.8 h). These results suggest that FL-EK1 is a promising candidate for the development of a pan-CoV fusion inhibitor-based long-acting antiviral drug for preventing and treating infection by current and future SARS-CoV-2 variants, as well as other HCoVs.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Viral Fusion Protein Inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Fibronectin Type III Domain , Half-Life , Mice , Recombinant Fusion Proteins , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/pharmacology
5.
Molecules ; 26(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946996

ABSTRACT

Respiratory syncytial virus (RSV) is a major pathogen that causes severe lower respiratory tract infection in infants, the elderly and the immunocompromised worldwide. At present no approved specific drugs or vaccines are available to treat this pathogen. Recently, several promising candidates targeting RSV entry and multiplication steps are under investigation. However, it is possible to lead to drug resistance under the long-term treatment. Therapeutic combinations constitute an alternative to prevent resistance and reduce antiviral doses. Therefore, we tested in vitro two-drug combinations of fusion inhibitors (GS5806, Ziresovir and BMS433771) and RNA-dependent RNA polymerase complex (RdRp) inhibitors (ALS8176, RSV604, and Cyclopamine). The statistical program MacSynergy II was employed to determine synergism, additivity or antagonism between drugs. From the result, we found that combinations of ALS8176 and Ziresovir or GS5806 exhibit additive effects against RSV in vitro, with interaction volume of 50 µM2% and 31 µM2% at 95% confidence interval, respectively. On the other hand, all combinations between fusion inhibitors showed antagonistic effects against RSV in vitro, with volume of antagonism ranging from -50 µM2 % to -176 µM2 % at 95% confidence interval. Over all, our results suggest the potentially therapeutic combinations in combating RSV in vitro could be considered for further animal and clinical evaluations.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Respiratory Syncytial Virus, Human/drug effects , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Drug Discovery/methods , Drug Synergism , Drug Therapy, Combination , Humans , Quinazolines/chemistry , Quinazolines/pharmacology , Quinazolines/therapeutic use , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/virology , Small Molecule Libraries , Sulfones , Thiazepines/chemistry , Thiazepines/pharmacology , Thiazepines/therapeutic use , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Protein Inhibitors/therapeutic use
6.
Science ; 371(6536): 1379-1382, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33597220

ABSTRACT

Containment of the COVID-19 pandemic requires reducing viral transmission. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is initiated by membrane fusion between the viral and host cell membranes, which is mediated by the viral spike protein. We have designed lipopeptide fusion inhibitors that block this critical first step of infection and, on the basis of in vitro efficacy and in vivo biodistribution, selected a dimeric form for evaluation in an animal model. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour cohousing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and thus may readily translate into safe and effective intranasal prophylaxis to reduce transmission of SARS-CoV-2.


Subject(s)
COVID-19/transmission , Lipopeptides/administration & dosage , Membrane Fusion/drug effects , SARS-CoV-2/drug effects , Viral Fusion Protein Inhibitors/administration & dosage , Virus Internalization/drug effects , Administration, Intranasal , Animals , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Disease Models, Animal , Drug Design , Ferrets , Lipopeptides/chemistry , Lipopeptides/pharmacokinetics , Lipopeptides/pharmacology , Mice , Pre-Exposure Prophylaxis , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Tissue Distribution , Vero Cells , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/pharmacokinetics , Viral Fusion Protein Inhibitors/pharmacology
7.
J Gen Virol ; 102(1)2021 01.
Article in English | MEDLINE | ID: mdl-33054904

ABSTRACT

Although enveloped viruses canonically mediate particle entry through virus-cell fusion, certain viruses can spread by cell-cell fusion, brought about by receptor engagement and triggering of membrane-bound, viral-encoded fusion proteins on the surface of cells. The formation of pathogenic syncytia or multinucleated cells is seen in vivo, but their contribution to viral pathogenesis is poorly understood. For the negative-strand paramyxoviruses respiratory syncytial virus (RSV) and Nipah virus (NiV), cell-cell spread is highly efficient because their oligomeric fusion protein complexes are active at neutral pH. The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has also been reported to induce syncytia formation in infected cells, with the spike protein initiating cell-cell fusion. Whilst it is well established that fusion protein-specific antibodies can block particle attachment and/or entry into the cell (canonical virus neutralization), their capacity to inhibit cell-cell fusion and the consequences of this neutralization for the control of infection are not well characterized, in part because of the lack of specific tools to assay and quantify this activity. Using an adapted bimolecular fluorescence complementation assay, based on a split GFP-Renilla luciferase reporter, we have established a micro-fusion inhibition test (mFIT) that allows the identification and quantification of these neutralizing antibodies. This assay has been optimized for high-throughput use and its applicability has been demonstrated by screening monoclonal antibody (mAb)-mediated inhibition of RSV and NiV fusion and, separately, the development of fusion-inhibitory antibodies following NiV vaccine immunization in pigs. In light of the recent emergence of coronavirus disease 2019 (COVID-19), a similar assay was developed for SARS-CoV-2 and used to screen mAbs and convalescent patient plasma for fusion-inhibitory antibodies. Using mFITs to assess antibody responses following natural infection or vaccination is favourable, as this assay can be performed entirely at low biocontainment, without the need for live virus. In addition, the repertoire of antibodies that inhibit cell-cell fusion may be different to those that inhibit particle entry, shedding light on the mechanisms underpinning antibody-mediated neutralization of viral spread.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/diagnosis , Henipavirus Infections/diagnosis , High-Throughput Screening Assays , Respiratory Syncytial Virus Infections/diagnosis , Viral Fusion Proteins/antagonists & inhibitors , Animals , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/metabolism , Antibodies, Viral/isolation & purification , Antibodies, Viral/metabolism , COVID-19/immunology , COVID-19/virology , Cell Fusion , Convalescence , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Henipavirus Infections/immunology , Henipavirus Infections/virology , Humans , Immune Sera/chemistry , Luciferases/genetics , Luciferases/metabolism , Models, Molecular , Nipah Virus/immunology , Nipah Virus/pathogenicity , Protein Conformation , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/pathogenicity , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Swine , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/metabolism , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
8.
J Med Chem ; 63(15): 8043-8045, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32786236

ABSTRACT

Inhibitors of the respiratory syncytial virus (RSV) fusion protein block entry of the virus into the cell and have shown varying efficacy in a human challenge model of RSV disease. Trials in patient populations are yet to show significant benefits. Jonckers et al. ( J. Med. Chem. 2020, DOI: 10.1021/acs.jmedchem.0c00226) describe the discovery of JNJ-53718678 which can now claim the leading position in clinical evaluation. For RSV inhibitors, the current status of the clinical development of the compound is discussed.


Subject(s)
Antiviral Agents/chemistry , Imidazolidines/chemistry , Indoles/chemistry , Respiratory Syncytial Virus, Human/drug effects , Viral Fusion Protein Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Crystallography, X-Ray/methods , Humans , Imidazolidines/pharmacology , Imidazolidines/therapeutic use , Indoles/pharmacology , Indoles/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/physiology , Treatment Outcome , Viral Fusion Protein Inhibitors/pharmacology
9.
J Med Chem ; 63(15): 8046-8058, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32407115

ABSTRACT

Respiratory syncytial virus (RSV) is a seasonal virus that infects the lungs and airways of 64 million children and adults every year. It is a major cause of acute lower respiratory tract infection and is associated with significant morbidity and mortality. Despite the large medical and economic burden, treatment options for RSV-associated bronchiolitis and pneumonia are limited and mainly consist of supportive care. This publication covers the medicinal chemistry efforts resulting in the identification of JNJ-53718678, an orally bioavailable RSV inhibitor that was shown to be efficacious in a phase 2a challenge study in healthy adult subjects and that is currently being evaluated in hospitalized infants and adults. Cocrystal structures of several new derivatives helped in rationalizing some of the structure-activity relationship (SAR) trends observed.


Subject(s)
Antiviral Agents/chemistry , Drug Discovery/methods , Imidazolidines/chemistry , Indoles/chemistry , Respiratory Syncytial Virus, Human/drug effects , Viral Fusion Protein Inhibitors/chemistry , Administration, Oral , Antiviral Agents/administration & dosage , Crystallography, X-Ray/methods , HeLa Cells , Humans , Imidazolidines/administration & dosage , Indoles/administration & dosage , Protein Structure, Secondary , Respiratory Syncytial Virus, Human/physiology , Viral Fusion Protein Inhibitors/administration & dosage
10.
Sci Adv ; 5(4): eaav4580, 2019 04.
Article in English | MEDLINE | ID: mdl-30989115

ABSTRACT

Continuously emerging highly pathogenic human coronaviruses (HCoVs) remain a major threat to human health, as illustrated in past SARS-CoV and MERS-CoV outbreaks. The development of a drug with broad-spectrum HCoV inhibitory activity would address this urgent unmet medical need. Although previous studies have suggested that the HR1 of HCoV spike (S) protein is an important target site for inhibition against specific HCoVs, whether this conserved region could serve as a target for the development of broad-spectrum pan-CoV inhibitor remains controversial. Here, we found that peptide OC43-HR2P, derived from the HR2 domain of HCoV-OC43, exhibited broad fusion inhibitory activity against multiple HCoVs. EK1, the optimized form of OC43-HR2P, showed substantially improved pan-CoV fusion inhibitory activity and pharmaceutical properties. Crystal structures indicated that EK1 can form a stable six-helix bundle structure with both short α-HCoV and long ß-HCoV HR1s, further supporting the role of HR1 region as a viable pan-CoV target site.


Subject(s)
Coronavirus Infections/virology , Coronavirus/drug effects , Coronavirus/metabolism , Protein Interaction Domains and Motifs/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/pharmacology , Amino Acid Sequence , Animals , Cell Line , Coronavirus/classification , Coronavirus/genetics , Coronavirus Infections/drug therapy , Disease Models, Animal , Humans , Membrane Fusion/drug effects , Mice , Models, Molecular , Peptides/chemistry , Peptides/pharmacology , Phylogeny , Protein Conformation , Protein Domains , Solubility
12.
Mol Pharm ; 15(11): 5005-5018, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30226777

ABSTRACT

New therapeutic alternatives to fight against the spread of HIV-1 are based on peptides designed to inhibit the early steps of HIV-1 fusion in target cells. However, drawbacks, such as bioavailability, short half-life, rapid clearance, and poor ability to cross the physiological barriers, make such peptides unattractive for the pharmaceutical industry. Here we developed, optimized, and characterized polymeric nanoparticles (NPs) coated with glycol chitosan to incorporate and release an HIV-1 fusion inhibitor peptide (E1) inside the vaginal mucosa. The NPs were prepared by a modified double emulsion method, and optimization was carried out by a factorial design. In vitro, ex vivo, and in vivo studies were carried out to evaluate the optimized formulation. The results indicate that the physicochemical features of these NPs enable them to incorporate and release HIV fusion inhibitor peptides to the vaginal mucosa before the fusion step takes place.


Subject(s)
Drug Carriers/chemistry , HIV-1/drug effects , Peptides/administration & dosage , Viral Fusion Protein Inhibitors/administration & dosage , Administration, Intravaginal , Animals , Chitosan/chemistry , Drug Design , Female , HIV Envelope Protein gp41/antagonists & inhibitors , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/physiology , Models, Animal , Mucous Membrane/drug effects , Mucous Membrane/metabolism , Mucous Membrane/virology , Nanoparticles/chemistry , Particle Size , Peptides/chemistry , Peptides/pharmacokinetics , Swine , Vagina/drug effects , Vagina/metabolism , Vagina/virology , Viral Envelope Proteins/chemistry , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/pharmacokinetics , Virus Internalization/drug effects
13.
Sci Rep ; 8(1): 2769, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29426822

ABSTRACT

Current anti-hepatitis B virus (HBV) agents including interferons and nucleos(t)ide analogs efficiently suppress HBV infection. However, as it is difficult to eliminate HBV from chronically infected liver, alternative anti-HBV agents targeting a new molecule are urgently needed. In this study, we applied a chemical array to high throughput screening of small molecules that interacted with sodium taurocholate cotransporting polypeptide (NTCP), an entry receptor for HBV. From approximately 30,000 compounds, we identified 74 candidates for NTCP interactants, and five out of these were shown to inhibit HBV infection in cell culture. One of such compound, NPD8716, a coumarin derivative, interacted with NTCP and inhibited HBV infection without causing cytotoxicity. Consistent with its NTCP interaction capacity, this compound was shown to block viral attachment to host hepatocytes. NPD8716 also prevented the infection with hepatitis D virus, but not hepatitis C virus, in agreement with NPD8716 specifically inhibiting NTCP-mediated infection. Analysis of derivative compounds showed that the anti-HBV activity of compounds was apparently correlated with the affinity to NTCP and the capacity to impair NTCP-mediated bile acid uptake. These results are the first to show that the chemical array technology represents a powerful platform to identify novel viral entry inhibitors.


Subject(s)
Hepatitis B virus/drug effects , Organic Anion Transporters, Sodium-Dependent/agonists , Symporters/agonists , Viral Fusion Protein Inhibitors/isolation & purification , Viral Fusion Protein Inhibitors/pharmacology , Virus Attachment/drug effects , Virus Internalization/drug effects , Bile Acids and Salts/metabolism , Coumarins/chemistry , Coumarins/isolation & purification , Coumarins/pharmacology , Hep G2 Cells , Hepacivirus/drug effects , Hepatitis Delta Virus/drug effects , Humans , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Viral Fusion Protein Inhibitors/chemistry
14.
Int J Mol Sci ; 19(2)2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29415501

ABSTRACT

Human coronavirus 229E (HCoV-229E) infection in infants, elderly people, and immunocompromised patients can cause severe disease, thus calling for the development of effective and safe therapeutics to treat it. Here we reported the design, synthesis and characterization of two peptide-based membrane fusion inhibitors targeting HCoV-229E spike protein heptad repeat 1 (HR1) and heptad repeat 2 (HR2) domains, 229E-HR1P and 229E-HR2P, respectively. We found that 229E-HR1P and 229E-HR2P could interact to form a stable six-helix bundle and inhibit HCoV-229E spike protein-mediated cell-cell fusion with IC50 of 5.7 and 0.3 µM, respectively. 229E-HR2P effectively inhibited pseudotyped and live HCoV-229E infection with IC50 of 0.5 and 1.7 µM, respectively. In a mouse model, 229E-HR2P administered intranasally could widely distribute in the upper and lower respiratory tracts and maintain its fusion-inhibitory activity. Therefore, 229E-HR2P is a promising candidate for further development as an antiviral agent for the treatment and prevention of HCoV-229E infection.


Subject(s)
Coronavirus 229E, Human/drug effects , Peptides/pharmacology , Protein Interaction Domains and Motifs/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Viral Fusion Protein Inhibitors/pharmacology , Animals , Cell Survival/drug effects , Giant Cells/drug effects , Giant Cells/virology , Humans , Membrane Fusion , Mice , Peptides/chemistry , Protein Binding , Viral Fusion Protein Inhibitors/chemistry
15.
Adv Exp Med Biol ; 966: 37-54, 2017.
Article in English | MEDLINE | ID: mdl-27966108

ABSTRACT

The influenza virus is a major health concern associated with an estimated 5000 to 30,000 deaths every year (Reed et al. 2015) and a significant economic impact with the development of treatments, vaccinations and research (Molinari et al. 2007). The entirety of the influenza genome is comprised of only eleven coding genes. An enormous degree of variation in non-conserved regions leads to significant challenges in the development of inclusive inhibitors for treatment. The fusion peptide domain of the influenza A hemagglutinin (HA) is a promising candidate for treatment since it is one of the most highly conserved sequences in the influenza genome (Heiny et al. 2007), and it is vital to the viral life cycle. Hemagglutinin is a class I viral fusion protein that catalyzes the membrane fusion process during cellular entry and infection. Impediment of the hemagglutinin's function, either through incomplete post-translational processing (Klenk et al. 1975; Lazarowitz and Choppin 1975) or through mutations (Cross et al. 2001), leads to non-infective virus particles. This review will investigate current research on the role of hemagglutinin in the virus life cycle, its structural biology and mechanism as well as the central role of the hemagglutinin fusion peptide (HAfp) to influenza membrane fusion and infection.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/metabolism , Influenza, Human/virology , Viral Fusion Proteins/metabolism , Virus Internalization , Animals , Drug Design , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/drug effects , Host-Pathogen Interactions , Humans , Influenza A virus/drug effects , Influenza A virus/pathogenicity , Influenza, Human/drug therapy , Models, Molecular , Protein Domains , Structure-Activity Relationship , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/therapeutic use , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/drug effects , Virulence , Virus Internalization/drug effects
16.
PLoS One ; 10(11): e0144171, 2015.
Article in English | MEDLINE | ID: mdl-26636321

ABSTRACT

The peptides derived from envelope proteins have been shown to inhibit the protein-protein interactions in the virus membrane fusion process and thus have a great potential to be developed into effective antiviral therapies. There are three types of envelope proteins each exhibiting distinct structure folds. Although the exact fusion mechanism remains elusive, it was suggested that the three classes of viral fusion proteins share a similar mechanism of membrane fusion. The common mechanism of action makes it possible to correlate the properties of self-derived peptide inhibitors with their activities. Here we developed a support vector machine model using sequence-based statistical scores of self-derived peptide inhibitors as input features to correlate with their activities. The model displayed 92% prediction accuracy with the Matthew's correlation coefficient of 0.84, obviously superior to those using physicochemical properties and amino acid decomposition as input. The predictive support vector machine model for self- derived peptides of envelope proteins would be useful in development of antiviral peptide inhibitors targeting the virus fusion process.


Subject(s)
Peptide Fragments/chemistry , Support Vector Machine , Viral Envelope Proteins/antagonists & inhibitors , Viral Fusion Protein Inhibitors/chemistry , Peptide Fragments/pharmacology , Protein Binding , Sequence Analysis, Protein/methods , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Viral Fusion Protein Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...