Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 880
Filter
1.
Vet Res ; 55(1): 87, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982477

ABSTRACT

Hepatitis E virus (HEV) is a major cause of viral hepatitis worldwide. Pigs are the natural host of HEV genotype 3 and the main reservoir of HEV. As the host range of HEV genotype 3 expands, the possibility that HEV from various species can be transmitted to humans via pigs is increasing. We investigated the potential cross-species transmission of HEV by infecting minipigs with swine HEV (swHEV), rabbit HEV (rbHEV), and human HEV (huHEV) and examining their histopathological characteristics and distribution in various organs. Fifteen specific-pathogen-free Yucatan minipigs were infected with swHEV, rbHEV, huHEV, or a mock control. In the present study, we analysed faecal shedding, viremia, and serological parameters over a seven-week period. Our results indicated that swHEV exhibited more robust shedding and viremia than non-swHEVs. Only swHEV affected the serological parameters, suggesting strain-specific differences. Histopathological examination revealed distinct patterns in the liver, pancreas, intestine, and lymphoid tissues after infection with each HEV strain. Notably, all three HEVs induced histopathological changes in the pancreas, supporting the association of HEVs with acute pancreatitis. Our results also identified skeletal muscle as a site of HEV antigen presence, suggesting a potential link to myositis. In conclusion, this study provides valuable insights into the infection dynamics of different HEV strains in minipigs, emphasizing the strain-specific variations in virological, serological, and histological parameters. The observed differences in infection kinetics and tissue tropism will contribute to our understanding of HEV pathogenesis and the potential for cross-species transmission.


Subject(s)
Hepatitis E virus , Hepatitis E , Swine Diseases , Swine, Miniature , Animals , Swine , Hepatitis E/veterinary , Hepatitis E/virology , Hepatitis E/transmission , Hepatitis E virus/physiology , Swine Diseases/virology , Swine Diseases/transmission , Swine Diseases/pathology , Specific Pathogen-Free Organisms , Rabbits , Virus Shedding , Humans , Feces/virology , Female , Viremia/veterinary , Viremia/virology
2.
Vet Res ; 55(1): 89, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010163

ABSTRACT

Since the reintroduction of African swine fever virus (ASFV) in Europe in 2007 and its subsequent spread to Asia, wild boar has played a crucial role in maintaining and disseminating the virus. There are significant gaps in the knowledge regarding infection dynamics and disease pathogenesis in domestic pigs and wild boar, particularly at the early infection stage. We aimed to compare domestic pigs and wild boar infected intranasally to mimic natural infection with one of the original highly virulent genotype II ASFV isolates (Armenia 2007). The study involved euthanising three domestic pigs and three wild boar on days 1, 2, 3, and 5 post-infection, while four domestic pigs and four wild boar were monitored until they reached a humane endpoint. The parameters assessed included clinical signs, macroscopic lesions, viremia levels, tissue viral load, and virus shedding in nasal and rectal swabs from day 1 post-infection. Compared with domestic pigs, wild boar were more susceptible to ASFV, with a shorter incubation period and earlier onset of clinical signs. While wild boar reached a humane endpoint earlier than domestic pigs did, the macroscopic lesions were comparatively less severe. In addition, wild boar had earlier viremia, and the virus was also detected earlier in tissues. The medial retropharyngeal lymph nodes were identified as key portals for ASFV infection in both subspecies. No viral genome was detected in nasal or rectal swabs until shortly before reaching the humane endpoint in both domestic pigs and wild boar, suggesting limited virus shedding in acute infections.


Subject(s)
African Swine Fever Virus , African Swine Fever , Genotype , Sus scrofa , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/physiology , African Swine Fever/virology , Swine , Virus Shedding , Viremia/veterinary , Viremia/virology , Viral Load/veterinary , Virulence
3.
Virology ; 597: 110154, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917693

ABSTRACT

To determine the pathogenicity of two different genotypes of avian hepatitis E strains in two species of birds, a total of thirty healthy 12-week-old birds were used. After inoculation, fecal virus shedding, viremia, seroconversion, serum alanine aminotransferase (ALT) increases and liver lesions were evaluated. The results revealed that CHN-GS-aHEV and CaHEV could both infect Hy-Line hens and silkie fowls, respectively. Compared to the original avian HEV strain, the cross-infected virus exhibited a delay of 2 weeks and 1 week in emerged seroconversion, viremia, fecal virus shedding, and increased ALT level, and also showed mild liver lesions. These findings suggested that CHN-GS-aHEV may have circulated in chickens. Overall, these two different genotypes of avian HEV showed some variant pathogenicity in different bird species. This study provides valuable data for further analysis of the epidemic conditions of two avian HEVs in Hy-Line hens and silkie fowls.


Subject(s)
Chickens , Genotype , Hepatitis, Viral, Animal , Hepevirus , Poultry Diseases , Virus Shedding , Animals , Chickens/virology , Poultry Diseases/virology , Hepevirus/genetics , Hepevirus/pathogenicity , Hepevirus/isolation & purification , Hepevirus/classification , Hepatitis, Viral, Animal/virology , Hepatitis, Viral, Animal/pathology , Female , Feces/virology , Liver/virology , Liver/pathology , Viremia/veterinary , Viremia/virology , RNA Virus Infections/veterinary , RNA Virus Infections/virology , Virulence , Alanine Transaminase/blood
4.
J Vet Intern Med ; 38(4): 2373-2379, 2024.
Article in English | MEDLINE | ID: mdl-38899610

ABSTRACT

BACKGROUND: Equine parvovirus hepatitis (EqPV-H) can cause Theiler's disease and subclinical hepatitis in horses. OBJECTIVES: Assess the frequency of subclinical EqPV-H infection in hospitalized horses and to study viral transmission by investigating potential shedding routes. ANIMALS: One hundred sixteen equids, that presented to the University Equine Hospital of the University of Veterinary Medicine Vienna between February 2021 and March 2022, for causes other than hepatopathy. METHODS: In this cross-sectional study, samples (serum, feces, nasal, and buccal swabs) of hospitalized horses were collected. Sera were screened for the presence of anti-EqPV-H antibodies by a luciferase immunoprecipitation system assay. Quantitative PCR was used for the detection of EqPV-H DNA in the samples and a nested PCR was used for further validation. RESULTS: Seroprevalence was 10.3% (12/116) and viremia occurred in 12.9% (15/116) of the serologically positive horses. The detected viral load in serum varied from non-quantifiable amount to 1.3 × 106 genome equivalents per milliliter of serum. A low viral load of EqPV-H DNA was detected in 2 nasal swabs and 1 fecal sample. CONCLUSION AND CLINICAL IMPORTANCE: EqPV-H DNA was detected in nasal secretions and feces of viremic horses, which could pose a risk to naive hospitalized horses. It is advisable to screen hospitalized horses that are potential donors of blood or plasma to reduce the risk of iatrogenic EqPV-H transmission.


Subject(s)
Hepatitis, Viral, Animal , Horse Diseases , Parvoviridae Infections , Parvovirus , Virus Shedding , Animals , Horses , Horse Diseases/virology , Horse Diseases/epidemiology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvoviridae Infections/epidemiology , Austria/epidemiology , Cross-Sectional Studies , Hepatitis, Viral, Animal/virology , Hepatitis, Viral, Animal/epidemiology , Male , Female , Parvovirus/isolation & purification , Feces/virology , Antibodies, Viral/blood , Asymptomatic Infections/epidemiology , Seroepidemiologic Studies , Viremia/veterinary , DNA, Viral , Viral Load/veterinary
5.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38767608

ABSTRACT

Herpesviruses establish a well-adapted balance with their host's immune system. Despite this co-evolutionary balance, infections can lead to severe disease including neurological disorders in their natural host. In horses, equine herpesvirus 1 (EHV-1) causes respiratory disease, abortions, neonatal foal death and myeloencephalopathy (EHM) in ~10 % of acute infections worldwide. Many aspects of EHM pathogenesis and protection from EHM are still poorly understood. However, it has been shown that the incidence of EHM increases to >70 % in female horses >20 years of age. In this study we used old mares as an experimental equine EHV-1 model of EHM to identify host-specific factors contributing to EHM. Following experimental infection with the neuropathogenic strain EHV-1 Ab4, old mares and yearling horses were studied for 21 days post-infection. Nasal viral shedding and cell-associated viremia were assessed by quantitative PCR. Cytokine/chemokine responses were evaluated in nasal secretions and cerebrospinal fluid (CSF) by Luminex assay and in whole blood by quantitative real-time PCR. EHV-1-specific IgG sub-isotype responses were measured by ELISA. All young horses developed respiratory disease and a bi-phasic fever post-infection, but only 1/9 horses exhibited ataxia. In contrast, respiratory disease was absent in old mares, but all old mares developed EHM that resulted in euthanasia in 6/9 old mares. Old mares also presented significantly decreased nasal viral shedding but higher viremia coinciding with a single fever peak at the onset of viremia. According to clinical disease manifestation, horses were sorted into an EHM group (nine old horses and one young horse) and a non-EHM group (eight young horses) for assessment of host immune responses. Non-EHM horses showed an early upregulation of IFN-α (nasal secretions), IRF7/IRF9, IL-1ß, CXCL10 and TBET (blood) in addition to an IFN-γ upregulation during viremia (blood). In contrast, IFN-α levels in nasal secretions of EHM horses were low and peak levels of IRF7, IRF9, CXCL10 and TGF-ß (blood) coincided with viremia. Moreover, EHM horses showed significantly higher IL-10 levels in nasal secretions, peripheral blood mononuclear cells and CSF and higher serum IgG3/5 antibody titres compared to non-EHM horses. These results suggest that protection from EHM depends on timely induction of type 1 IFN and upregulation cytokines and chemokines that are representative of cellular immunity. In contrast, induction of regulatory or TH-2 type immunity appeared to correlate with an increased risk for EHM. It is likely that future vaccine development for protection from EHM must target shifting this 'at-risk' immunophenotype.


Subject(s)
Cytokines , Herpesviridae Infections , Herpesvirus 1, Equid , Horse Diseases , Animals , Horses , Herpesvirus 1, Equid/immunology , Female , Horse Diseases/virology , Horse Diseases/immunology , Herpesviridae Infections/veterinary , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Cytokines/blood , Cytokines/immunology , Antibodies, Viral/blood , Virus Shedding , Viremia/immunology , Viremia/veterinary , Immunoglobulin G/blood
6.
J Virol ; 98(6): e0015824, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38695539

ABSTRACT

Tripartite motif (TRIM) proteins are involved in different cellular functions, including regulating virus infection. In teleosts, two orthologous genes of mammalian TRIM2 are identified. However, the functions and molecular mechanisms of piscine TRIM2 remain unclear. Here, we show that trim2b-knockout zebrafish are more susceptible to spring viremia of carp virus (SVCV) infection than wild-type zebrafish. Transcriptomic analysis demonstrates that NOD-like receptor (NLR), but not RIG-I-like receptor (RLR), signaling pathway is significantly enriched in the trim2b-knockout zebrafish. In vitro, overexpression of Trim2b fails to degrade RLRs and those key proteins involved in the RLR signaling pathway but does for negative regulators NLRP12-like proteins. Zebrafish Trim2b degrades NLRP12-like proteins through its NHL_TRIM2_like and IG_FLMN domains in a ubiquitin-proteasome degradation pathway. SVCV-N and SVCV-G proteins are also degraded by NHL_TRIM2_like domains, and the degradation pathway is an autophagy lysosomal pathway. Moreover, zebrafish Trim2b can interfere with the binding between NLRP12-like protein and SVCV viral RNA and can completely block the negative regulation of NLRP12-like protein on SVCV infection. Taken together, our data demonstrate that the mechanism of action of zebrafish trim2b against SVCV infection is through targeting the degradation of host-negative regulators NLRP12-like receptors and viral SVCV-N/SVCV-G genes.IMPORTANCESpring viremia of carp virus (SVCV) is a lethal freshwater pathogen that causes high mortality in cyprinid fish. In the present study, we identified zebrafish trim2b, NLRP12-L1, and NLRP12-L2 as potential pattern recognition receptors (PRRs) for sensing and binding viral RNA. Zebrafish trim2b functions as a positive regulator; however, NLRP12-L1 and NLRP12-L2 function as negative regulators during SVCV infection. Furthermore, we find that zebrafish trim2b decreases host lethality in two manners. First, zebrafish Trim2b promotes protein degradations of negative regulators NLRP12-L1 and NLRP12-L2 by enhancing K48-linked ubiquitination and decreasing K63-linked ubiquitination. Second, zebrafish trim2b targets viral RNAs for degradation. Therefore, this study reveals a special antiviral mechanism in lower vertebrates.


Subject(s)
Carps , Proteolysis , Receptors, Pattern Recognition , Rhabdoviridae , Tripartite Motif Proteins , Viral Proteins , Zebrafish Proteins , Zebrafish , Animals , Carps/virology , DEAD Box Protein 58/metabolism , Fish Diseases/virology , Fish Diseases/metabolism , Immunity, Innate , Receptors, Pattern Recognition/metabolism , Rhabdoviridae/metabolism , Rhabdoviridae Infections/metabolism , Rhabdoviridae Infections/veterinary , Rhabdoviridae Infections/virology , Signal Transduction , Tripartite Motif Proteins/deficiency , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitination , Viral Proteins/metabolism , Viremia/veterinary , Viremia/virology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish/virology , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
7.
Viruses ; 16(3)2024 02 20.
Article in English | MEDLINE | ID: mdl-38543685

ABSTRACT

The early detection of classical swine fever (CSF) remains a key challenge, especially when outbreaks are caused by moderate and low-virulent CSF virus (CSFV) strains. Oral fluid is a reliable and cost-effective sample type that is regularly surveilled for endemic diseases in commercial pig herds in North America. Here, we explored the possibility of utilizing oral fluids for the early detection of CSFV incursions in commercial-size pig pens using two independent experiments. In the first experiment, a seeder pig infected with the moderately-virulent CSFV Pinillos strain was used, and in the second experiment, a seeder pig infected with the highly-virulent CSFV Koslov strain was used. Pen-based oral fluid samples were collected daily and individual samples (whole blood, swabs) every other day. All samples were tested by a CSFV-specific real-time RT-PCR assay. CSFV genomic material was detected in oral fluids on the seventh and fourth day post-introduction of the seeder pig into the pen, in the first and second experiments, respectively. In both experiments, oral fluids tested positive before the contact pigs developed viremia, and with no apparent sick pigs in the pen. These results indicate that pen-based oral fluids are a reliable and convenient sample type for the early detection of CSF, and therefore, can be used to supplement the ongoing CSF surveillance activities in North America.


Subject(s)
Classical Swine Fever Virus , Classical Swine Fever , Swine , Animals , Classical Swine Fever Virus/genetics , Viremia/diagnosis , Viremia/veterinary , Viremia/epidemiology , Disease Outbreaks/veterinary , Vaccination/veterinary
8.
J Zoo Wildl Med ; 55(1): 182-194, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38453501

ABSTRACT

This study examined the viral shedding kinetics of elephant endotheliotropic herpesvirus (EEHV) in African elephants (Loxodonta africana) compared to viral shedding behavior in Asian elephants (Elephas maximus). Little is known about the transmission dynamics and epidemiology of this disease in African elephants. In light of recent clinical cases and mortalities, this paper aims to identify trends in viral biology. Trunk wash samples were collected from 22 African elephants from four North American zoological institutions that had recently experienced herd viremias or translocations. Processing of these samples included DNA extraction followed by qPCR to quantitate viral DNA load. The results were then compared with available literature that chronicled similar cases in Asian and African elephants. Minimal EEHV shedding was detected in response to varied herd translocations. Increased shedding was recorded in herds in which an elephant experienced an EEHV viremia when compared to baseline shedding. These index infections were followed by subsequent viremias in other elephants, although it is not known if these were recrudescence, transient controlled viremias, and/or primary infections via transmission to other elephants. When compared to historically published data, it was observed that EEHV3 cases in African elephants and EEHV1A cases in Asian elephants had consistently higher levels of viral DNA in the blood than were shed in trunk secretions, a fact that is seemingly inconsistent with such severe cases of disease and the high mortality rates associated with those respective types. The findings produced in this study highlight the need for more routine monitoring of viral shedding in African elephant herds to elucidate possible EEHV transmission and recrudescence factors for ex situ population management.


Subject(s)
Elephants , Herpesviridae Infections , Herpesviridae , Animals , Herpesviridae Infections/epidemiology , Herpesviridae Infections/veterinary , DNA, Viral/genetics , Viremia/veterinary , Animals, Zoo/genetics , Herpesviridae/genetics , Recurrence
9.
J Zoo Wildl Med ; 55(1): 290-294, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38453514

ABSTRACT

Multiple species of elephant endotheliotropic herpesvirus (EEHV) have caused fatal hemorrhagic disease in African (Loxodonta africana) and Asian (Elephas maximus) elephants. To date, EEHV7 has been detected only in benign pulmonary and skin nodules and in saliva of African elephants and has not been associated with clinical illness. Low-level viremia due to EEHV7A was detected via qPCR in two subadult African elephants during routine surveillance. Hematologic changes were noted in both elephants, including leukopenia, lymphopenia, monocytopenia, and band heterophilia. Treatment was initiated with famciclovir, antimicrobials, and rectal fluids, and one elephant received plasma transfusions due to a progressive decrease in platelet count. Both elephants remained asymptomatic throughout the viremias, with rapid resolution of hematologic abnormalities. These cases add to the current understanding of the epidemiology of EEHV in African elephants; to the authors' knowledge, they represent the first documentation of clinical disease due to EEHV7 infection in any elephant.


Subject(s)
Elephants , Herpesviridae Infections , Herpesviridae , Humans , Animals , Herpesviridae Infections/diagnosis , Herpesviridae Infections/epidemiology , Herpesviridae Infections/veterinary , Famciclovir/therapeutic use , Antiviral Agents/therapeutic use , Viremia/veterinary
10.
BMC Vet Res ; 20(1): 41, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302973

ABSTRACT

The coinfection of ALVs (ALV-J plus ALV-A or/and ALV-B) has played an important role in the incidence of tumors recently found in China in local breeds of yellow chickens. The study aims to obtain a better knowledge of the function and relevance of ALV coinfection in the clinical disease of avian leukosis, as well as its unique effect on the pathogenicity in Three-yellow chickens. One-day-old Three-yellow chicks (one day old) were infected with ALV-A, ALV-B, and ALV-J mono-infections, as well as ALV-A + J, ALV-B + J, and ALV-A + B + J coinfections, via intraperitoneal injection, and the chicks were then grown in isolators until they were 15 weeks old. The parameters, including the suppression of body weight gain, immune organ weight, viremia, histopathological changes and tumor incidence, were observed and compared with those of the uninfected control birds. The results demonstrated that coinfection with ALVs could induce more serious suppression of body weight gain (P < 0.05), damage to immune organs (P < 0.05) and higher tumor incidences than monoinfection, with triple infection producing the highest pathogenicity. The emergence of visible tumors and viremia occurred faster in the coinfected birds than in the monoinfected birds. These findings demonstrated that ALV coinfection resulted in considerably severe pathogenic and immunosuppressive consequences.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Coinfection , Neoplasms , Poultry Diseases , Animals , Chickens , Coinfection/veterinary , Virulence , Viremia/veterinary , Avian Leukosis/epidemiology , Neoplasms/veterinary , Body Weight , Poultry Diseases/epidemiology
11.
BMC Vet Res ; 20(1): 5, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172908

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is a viral disease with worldwide distribution and an enormous economic impact. To control PRRS virus (PRRSV) infection, modified live vaccines (MLVs) are widely used in the field, mainly administered via an intramuscular (IM) route. Currently, some MLVs are authorized for intradermal (ID) administration, which has many practical and welfare advantages. The objectives of the study were to compare the immune responses (systemic in blood and mucosal in lungs) and vaccine efficacy in preventing challenge strain transmission after IM or needle-free ID immunization of piglets with an MLV against PRRSV-1 (MLV1). METHODS: Groups of sixteen 5-week-old specific pathogen-free piglets were vaccinated with Porcilis PRRS® (MSD) either by an IM (V+ IM) or ID route (V+ ID) using an IDAL®3G device or kept unvaccinated (V-). Four weeks after vaccination, in each group, 8 out of the 16 piglets were challenged intranasally with a PRRSV-1 field strain, and one day later, the inoculated pigs were mingled by direct contact with the remaining 8 sentinel noninoculated pigs to evaluate PRRSV transmission. Thus, after the challenge, each group (V+ IM, V+ ID or V-) included 8 inoculated and 8 contact piglets. During the postvaccination and postchallenge phases, PRRSV replication (RT-PCR), PRRSV-specific antibodies (ELISA IgG and IgA, virus neutralization tests) and cell-mediated immunity (ELISPOT Interferon gamma) were monitored in blood and bronchoalveolar lavages (BALs). RESULTS: Postvaccination, vaccine viremia was lower in V+ ID pigs than in V+ IM pigs, whereas the cell-mediated immune response was detected earlier in the V+ ID group at 2 weeks postvaccination. In the BAL fluid, a very low mucosal immune response (humoral and cellular) was detected. Postchallenge, the vaccine efficacy was similar in inoculated animals with partial control of PRRSV viremia in V+ ID and V+ IM animals. In vaccinated sentinel pigs, vaccination drastically reduced PRRSV transmission with similar estimated transmission rates and latency durations for the V+ IM and V+ ID groups. CONCLUSIONS: Our results show that the tested MLV1 induced a faster cell-mediated immune response after ID immunization two weeks after vaccination but was equally efficacious after IM or ID immunization towards a challenge four weeks later. Considering the practical and welfare benefits of ID vaccination, these data further support the use of this route for PRRS MLVs.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Viral Vaccines , Swine , Animals , Porcine Reproductive and Respiratory Syndrome/prevention & control , Viremia/veterinary , Immunity, Mucosal , Antibodies, Viral , Vaccination/veterinary , Vaccination/methods , Vaccines, Attenuated
12.
Vet Microbiol ; 289: 109945, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154395

ABSTRACT

Bovine viral diarrhea is a widespread and economically important viral disease for livestock which can cause clinically diverse manifestations. The number of established BVDV subgenotypes has increased, not only the serological relationships of recently described subgenotypes but virulence and pathogenic characteristics have not yet been mostly elaborated. The dominant BVDV subgenotype in Turkiye was elaborated to be BVDV-1l, that involves more than half of field strains and there is no scientific data to identify the pathogenicity of this strain so far. This study investigated the pathogenicity of a selected field strain (TR-72) from subgenotype BVDV-1l. Experimental infection was implemented by intranasal inoculation of the strain TR-72 (10 ×105.5) to four young calves which were previously not vaccinated and were free both for BVDV antibodies and antigens. Clinical changes as well as blood parameters, body temperature, and viremia were monitored for 14 days. Only mild clinical signs associated with respiratory signs of BVDV infection were observed. Detected clinical signs included nasal discharge, conjunctivitis, cough, fatigue, high rectal temperature reaching 40.7 â„ƒ, and white blood cell counts depression started from the 2nd day and 40.4% decreased between the 12th and 14th days post-infection (poi). The presence of viremia was investigated by virus isolation, RT-PCR, and real-time RT-PCR from blood samples. The efficiency of experimental infection was established not only by observed clinical signs but also by virus isolation from blood leukocytes between the 5th and 8th days poi., virus detection was obtained by real-time PCR between the 3rd - 13th days poi. Besides, the recorded mild clinical signs, high fever, long duration of viremia , and high decrease in blood parameters obtained in this study, it was shown that the noncytopathogenic BVDV-1l strain TR-72 has a moderate virulence in naïve cattle.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Cattle Diseases , Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , Animals , Cattle , Virulence , Viremia/veterinary , Antibodies, Viral , Diarrhea/veterinary
13.
Virus Res ; 338: 199246, 2023 12.
Article in English | MEDLINE | ID: mdl-37858729

ABSTRACT

Bluetongue virus (BTV) is an economically important pathogen of ruminant species with worldwide prevalence. While many BTV infections are asymptomatic, animals with symptomatic presentation deteriorate quickly with the sickest succumbing to disease within one week. Animals that survive the infection often require months to recover. The immune response to BTV infection is thought to play a central role in controlling the disease. Key to understanding BTV disease is profiling vertebrate host immunological cellular and cytokine responses. Studies to characterize immune responses in ruminants have been limited by a lack of species-specific reagents and assay technology. Here we assess the longitudinal immunological response to experimental BTV-17-California (CA) infection in sheep using the most up to date assays. We infected a cohort of sheep with BTV-17-CA and longitudinally monitored each animal for clinical disease, viremia and specific immunological parameters (B cells, T cells, monocytes) by RT-qPCR, traditional flow cytometry and/or fluorescent based antibody arrays. BTV-inoculated sheep exhibited clinical signs characteristic of bluetongue virus disease. Circulating virus was demonstrated after 8 days post inoculation (DPI) and remained detectable for the remainder of the time course (24 DPI). A distinct lymphopenia was observed between 7 and 14 DPI that rebounded to mock-inoculated control levels at 17 DPI. In addition, we observed increased expression of pro-inflammatory cytokines after 8 DPI. Taken together, we have established a model of BTV infection in sheep and have successfully monitored the longitudinal vertebrate host immunological response and viral infection progression using a combination of traditional methods and cutting-edge technology.


Subject(s)
Bluetongue virus , Bluetongue , Humans , Sheep , Animals , Bluetongue virus/genetics , Antibodies, Viral , Cytokines , T-Lymphocytes , Viremia/veterinary , Bluetongue/epidemiology
14.
Vet Res ; 54(1): 81, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759265

ABSTRACT

Although classical swine fever occurred in September 2018 for the first time in 26 years, its virulence is thought to be moderate based on field observations by veterinary authorities and our previous experimental infections. We quantified viremia and viral shedding in pigs infected with recent Japanese classical swine fever virus isolates, as well as a highly virulent strain. The results show that pigs infected with the Japanese strains exhibited lower viremia and viral shedding than those infected with the highly virulent strain. However, horizontal transmission occurred in pigs infected with the Japanese strains, similar to those infected with the highly virulent strain. Additionally, viremia and neuralization antibodies coexisted in pigs infected with the Japanese strains, presenting challenges for control measures.


Subject(s)
Classical Swine Fever Virus , Swine Diseases , Animals , Swine , Japan/epidemiology , Virus Shedding , Viremia/veterinary , Disease Outbreaks/veterinary , Swine Diseases/epidemiology
15.
Front Cell Infect Microbiol ; 13: 1163467, 2023.
Article in English | MEDLINE | ID: mdl-37396301

ABSTRACT

Introduction: West Nile virus (WNV) and Usutu virus (USUV) are emerging zoonotic arboviruses sharing the same life cycle with mosquitoes as vectors and wild birds as reservoir hosts. The main objective of this study was to characterize the pathogenicity and course of infection of two viral strains (WNV/08 and USUV/09) co-circulating in Southern Spain in a natural host, the red-legged partridge (Alectoris rufa), and to compare the results with those obtained with the reference strain WNV/NY99. Methods: WNV inoculated birds were monitored for clinical and analytical parameters (viral load, viremia, and antibodies) for 15 days post-inoculation. Results and discussion: Partridges inoculated with WNV/NY99 and WNV/08 strains showed clinical signs such as weight loss, ruffled feathers, and lethargy, which were not observed in USUV/09-inoculated individuals. Although statistically significant differences in mortality were not observed, partridges inoculated with WNV strains developed significantly higher viremia and viral loads in blood than those inoculated with USUV. In addition, the viral genome was detected in organs and feathers of WNV-inoculated partridges, while it was almost undetectable in USUV-inoculated ones. These experimental results indicate that red-legged partridges are susceptible to the assayed Spanish WNV with pathogenicity similar to that observed for the prototype WNV/NY99 strain. By contrast, the USUV/09 strain was not pathogenic for this bird species and elicited extremely low viremia levels, demonstrating that red-legged partridges are not a competent host for the transmission of this USUV strain.


Subject(s)
Bird Diseases , Galliformes , West Nile Fever , West Nile virus , Humans , Animals , West Nile Fever/veterinary , Spain , Viremia/veterinary , Mosquito Vectors , West Nile virus/genetics
16.
mSphere ; 8(4): e0014423, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37314205

ABSTRACT

Raccoons are naturally susceptible to canine distemper virus (CDV) infection and can be a potential source of spill-over events. CDV is a highly contagious morbillivirus that infects multiple species of carnivores and omnivores, resulting in severe and often fatal disease. Here, we used a recombinant CDV (rCDV) based on a full-genome sequence detected in a naturally infected raccoon to perform pathogenesis studies in raccoons. Five raccoons were inoculated intratracheally with a recombinant virus engineered to express a fluorescent reporter protein, and extensive virological, serological, histological, and immunohistochemical assessments were performed at different time points post inoculation. rCDV-infected white blood cells were detected as early as 4 days post inoculation (dpi). Raccoon necropsies at 6 and 8 dpi revealed replication in the lymphoid tissues, preceding spread into peripheral tissues observed during necropsies at 21 dpi. Whereas lymphocytes, and to a lesser extent myeloid cells, were the main target cells of CDV at early time points, CDV additionally targeted epithelia at 21 dpi. At this later time point, CDV-infected cells were observed throughout the host. We observed lymphopenia and lymphocyte depletion from lymphoid tissues after CDV infection, in the absence of detectable CDV neutralizing antibodies and an impaired ability to clear CDV, indicating that the animals were severely immunosuppressed. The use of a wild-type-based recombinant virus in a natural host species infection study allowed systematic and sensitive assessment of antigen detection by immunohistochemistry, enabling further comparative pathology studies of CDV infection in different species. IMPORTANCE Expansion of the human interface supports increased interactions between humans and peridomestic species like raccoons. Raccoons are highly susceptible to canine distemper virus (CDV) and are considered an important target species. Spill-over events are increasingly likely, potentially resulting in fatal CDV infections in domestic and free ranging carnivores. CDV also poses a threat for (non-human) primates, as massive outbreaks in macaque colonies were reported. CDV pathogenesis was studied by experimental inoculation of several species, but pathogenesis in raccoons was not properly studied. Recently, we generated a recombinant virus based on a full-genome sequence detected in a naturally infected raccoon. Here, we studied CDV pathogenesis in its natural host species and show that distemper completely overwhelms the immune system and spreads to virtually all tissues, including the central nervous system. Despite this, raccoons survived up to 21 d post inoculation with long-term shedding, supporting an important role of raccoons as host species for CDV.


Subject(s)
Distemper Virus, Canine , Lymphopenia , Animals , Humans , Distemper Virus, Canine/genetics , Raccoons , Viremia/veterinary , Disease Outbreaks
17.
Viruses ; 15(6)2023 05 26.
Article in English | MEDLINE | ID: mdl-37376557

ABSTRACT

Infectious bursal disease (IBD) is an acute, highly contagious, immunosuppressive, and fatal infectious disease of young chickens caused by infectious bursal disease virus (IBDV). Since 2017, a new trend has been discovered in the IBDV epidemic, with very virulent IBDV (vvIBDV) and novel variant IBDV (nVarIBDV) becoming the two current dominant strains in East Asia including China. In this study, we compared the biological characteristics of the vvIBDV (HLJ0504 strain), nVarIBDV (SHG19 strain), and attenuated IBDV (attIBDV, Gt strain) using specific-pathogen-free (SPF) chicken infection model. The results showed that vvIBDV distributed in multiple tissues, replicated the fastest in lymphoid organs such as bursa of Fabricius, induced significant viremia and virus excretion, and is the most pathogenic virus with a mortality of more than 80%. The nVarIBDV had a weaker replication capability and did not kill the chickens but caused severe damage to the central immune organ bursa of Fabricius and B lymphocytes and induced significant viremia and virus excretion. The attIBDV strain was found not to be pathogenic. Further studies preliminarily suggested that the expression level of inflammatory factors triggered by HLJ0504 was the highest, followed by the SHG19 group. This study is the first to systematically compare the pathogenic characteristics of three IBDVs closely related to poultry industry from the perspectives of clinical signs, micro-pathology, virus replication, and distribution. It is of great importance to obtain an extensive knowledge of epidemiology, pathogenicity, and comprehensive prevention, and control of various IBDV strains.


Subject(s)
Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Poultry , Chickens , Virulence , Viremia/veterinary , Birnaviridae Infections/epidemiology , Birnaviridae Infections/veterinary
18.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37210473

ABSTRACT

Replication of porcine circovirus type 2 (PCV2), an important worldwide swine pathogen, has been demonstrated to be influenced by host genotype. Specifically, a missense DNA polymorphism (SYNGR2 p.Arg63Cys) within the SYNGR2 gene was demonstrated to contribute to variation in PCV2b viral load and subsequent immune response following infection. PCV2 is known to induce immunosuppression leading to an increase in susceptibility to subsequent infections with other viral pathogens such as porcine reproductive and respiratory syndrome virus (PRRSV). In order to assess the role of SYNGR2 p.Arg63Cys in co-infections, pigs homozygous for the favorable SYNGR2 p.63Cys (N = 30) and unfavorable SYNGR2 p.63Arg (N = 29) alleles were infected with PCV2b followed a week later by a challenge with PRRSV. A lower PCV2b viremia (P < 0.001) and PCV2-specific IgM antibodies (P < 0.005) were observed in SYNGR2 p.63Cys compared to SYNGR2 p.63Arg genotypes. No significant differences in PRRSV viremia and specific IgG antibodies were observed between SYNGR2 genotypes. Lung histology score, an indicator of disease severity, was lower in the pigs with SYNGR2 p.63Cys genotypes (P < 0.05). Variation in the lung histology scores within SYNGR2 genotypes suggests that additional factors, environmental and/or genetic, could be involved in disease severity.


Porcine circovirus type 2 (PCV2) is an important virus involved in the onset of a group of severe disease symptoms commonly known as porcine circovirus associated diseases (PCVAD). Vaccination options exist for PCV2, though the severity of PCVAD can be influenced by the presence of additional co-infecting pathogens, such as porcine reproductive and respiratory syndrome virus (PRRSV), for which vaccination is still a challenge. Host genetic resistance is a potential avenue for solving this problem. Previously, a genetic polymorphism in the SYNGR2 gene was found to be associated with PCV2b viremia and immune response. The aim of this study was to determine the impact of this polymorphism in pigs experimentally co-infected with PCV2b and PRRSV. Pigs were weighed, and blood was collected at various days following infection to measure viremia and antibodies. Histological analysis was performed at the experiment completion to assess disease severity in lungs and lymph nodes. The results showed that variation within the SYNGR2 gene is involved in PCV2b disease progression including lung histology scores, but no evidence was seen in response to PRRSV infection.


Subject(s)
Circoviridae Infections , Circovirus , Coinfection , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Swine , Animals , Porcine respiratory and reproductive syndrome virus/genetics , Swine Diseases/pathology , Viremia/veterinary , Coinfection/veterinary , Antibodies, Viral , Circoviridae Infections/veterinary , Circoviridae Infections/pathology , Circovirus/genetics
19.
J Virol ; 97(2): e0133822, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36744960

ABSTRACT

Spring viremia of carp virus (SVCV) is the causative agent of spring viremia of carp (SVC), an important infectious disease that causes high mortality in aquaculture cyprinids. How the host defends against SVCV infection and the underlying mechanisms are still elusive. In this study, we identify that a novel gene named maoc1 is induced by SVCV infection. maoc1-deficient zebrafish are more susceptible to SVCV infection, with higher virus replication and antiviral gene induction. Further assays indicate that maoc1 interacts with the P protein of SVCV to trigger P protein degradation through the autophagy-lysosomal pathway, leading to the restriction of SVCV propagation. These findings reveal a unique zebrafish defense machinery in response to SVCV infection. IMPORTANCE SVCV P protein plays an essential role in the virus replication and viral immune evasion process. Here, we identify maoc1 as a novel SVCV-inducible gene and demonstrate its antiviral capacity through attenuating SVCV replication, by directly binding to P protein and mediating its degradation via the autophagy-lysosomal pathway. Therefore, this study not only reveals an essential role of maoc1 in fighting against SVCV infection but also demonstrates an unusual host defense mechanism in response to invading viruses.


Subject(s)
Autophagy , Fish Diseases , Lysosomes , Rhabdoviridae Infections , Rhabdoviridae , Zebrafish Proteins , Animals , Fish Diseases/genetics , Fish Diseases/virology , Rhabdoviridae Infections/veterinary , Viremia/veterinary , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/physiology , Phosphoproteins
20.
BMC Vet Res ; 19(1): 31, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36726139

ABSTRACT

BACKGROUND: The effect of a water-soluble formulation of tylvalosin (Aivlosin® 625 mg/g granules) on disease caused by porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae (Mhyop) was investigated in two animal studies. In a PRRSV challenge model in pregnant sows (n = 18), six sows received water medicated at target dose of 5 mg tylvalosin/kg body weight/day from 3 days prior to challenge until the end of gestation. Six sows were left untreated, with a third group remaining untreated and unchallenged. Sows were challenged with PRRSV-2 at approximately 85 days of gestation. Cytokines, viremia, viral shedding, sow reproductive parameters and piglet performance to weaning were evaluated. In a dual infection study (n = 16), piglets were challenged with Mhyop on days 0, 1 and 2, and with PRRSV-1 on day 14 and euthanized on day 24. From day 10 to 20, eight piglets received water medicated at target dose of 20 mg tylvalosin/kg body weight/day and eight piglets were left untreated. Cytokines, viremia, bacteriology and lung lesions were evaluated. RESULTS: In the PRRSV challenge study in pregnant sows, tylvalosin significantly reduced the levels of serum IL-8 (P < 0.001), IL-12 (P = 0.032), TNFα (P < 0.001) and GM-CSF (P = 0.001). IL-8 (P = 0.100) tended to be lower in uterus of tylvalosin sows. All piglets from tylvalosin sows surviving to weaning were PRRSV negative in faecal swabs at weaning compared to 33.3% PRRSV positive piglets from untreated sows (P = 0.08). In the dual challenge study in piglet, tylvalosin reduced serum IL1ß, IL-4, IL-6, IL-8, IL-10, IL-12, IL-1α, IL-13, IL-17A, IL-18, GM-CSF, TGFß1, TNFα, CCL3L1, MIG, PEPCAM-1 (P < 0.001) and increased serum IFNα, IL-1ra and MIP-1b (P < 0.001). In the lungs, tylvalosin reduced IL-8, IL-10 and IL-12 compared to untreated pigs (P < 0.001) and tended to reduce TNFα (P = 0.082). Lung lavage samples from all tylvalosin treated piglets were negative for Mhyop (0 cfu/mL) compared to the untreated piglets which had mean Mhyop counts of 2.68 × 104 cfu/mL (P = 0.023). CONCLUSION: Overall, tylvalosin reduced both local and systemic proinflammatory cytokines after challenge with respiratory pathogens in sows and in piglets. Tylvalosin was effective in reducing Mhyop recovery from the lungs and may reduce virus shedding in piglets following transplacental PRRSV infection in sows.


Subject(s)
Mycoplasma hyopneumoniae , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Pregnancy , Swine , Animals , Female , Granulocyte-Macrophage Colony-Stimulating Factor , Porcine Reproductive and Respiratory Syndrome/drug therapy , Tumor Necrosis Factor-alpha , Interleukin-10 , Viremia/veterinary , Interleukin-8 , Cytokines , Interleukin-12 , Body Weight , Swine Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL