Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.493
1.
Food Res Int ; 188: 114309, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823823

Previous studies have demonstrated that Ligilactobacillus salivarius CCFM 1266 exhibits anti-inflammatory properties and the capability to synthesize niacin. This study aimed to investigate the fermentative abilities of L. salivarius CCFM 1266 in fermented milk. Metabonomic analysis revealed that fermentation by L. salivarius CCFM 1266 altered volatile flavor compounds and metabolite profiles, including heptanal, nonanal, and increased niacin production. Genomic investigations confirmed that L. salivarius CCFM 1266 possess essential genes for the metabolism of fructose and mannose, affirming its proficiency in utilizing fructooligosaccharides and mannan oligosaccharides. The addition of fructooligosaccharides and mannan oligosaccharides during the fermentation process significantly facilitated the proliferation of L. salivarius CCFM 1266 in fermented milk, with growth exceeding 107 colony-forming units (CFU)/mL. This intervention not only augmented the microbial density but also modified the metabolite composition of fermented milk, resulting in an elevated presence of advantageous flavor compounds such as nonanal, 2,3-pentanedione, and 3-methyl-2-butanone. However, its influence on improving the texture of fermented milk was observed to be minimal. Co-fermentation of L. salivarius CCFM 1266 with commercial fermentation starters indicated that L. salivarius CCFM 1266 was compatible, similarly altering metabolite composition and increasing niacin content in fermented milk. In summary, the findings suggest that L. salivarius CCFM 1266 holds substantial promise as an adjunctive fermentation starter, capable of enhancing the nutritional diversity of fermented milk products.


Cultured Milk Products , Fermentation , Ligilactobacillus salivarius , Metabolomics , Metabolomics/methods , Ligilactobacillus salivarius/metabolism , Cultured Milk Products/microbiology , Niacin/metabolism , Food Microbiology , Dairy Products/microbiology , Taste , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Animals
2.
Food Res Int ; 188: 114454, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823832

The Amadori rearrangement products are an important flavor precursor in the Maillard reaction. Its thermal decomposition products usually contribute good flavors in foods. Therefore, investigating the thermal breakdown of Amadori products is significant for understanding the flavor forming mechanism in the Maillard reaction. In this study, volatiles from thermal decomposition of Amadori products in cysteine and glucose Maillard reaction was investigated by a thermal desorption cryo-trapping system combined with gas chromatography-mass spectrometry (GC-MS). A total of 60 volatiles were detected and identified. Meanwhile, the forming mechanism of 2-methylthiophene, a major decomposition product, was also investigated by using density functional theory. Seventeen reactions, 12 transition states, energy barrier and rate constant of each reaction were finally obtained. Results reveal that it is more likely for Amadori products of cysteine and glucose to undergo decomposition under neutral or weakly alkaline conditions.


Cysteine , Gas Chromatography-Mass Spectrometry , Glucose , Maillard Reaction , Volatile Organic Compounds , Cysteine/chemistry , Glucose/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Density Functional Theory , Hot Temperature
3.
Food Res Int ; 188: 114506, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823846

The characteristic aroma compounds of braised pork were identified through molecular sensory science and PLSR analysis, and the difference between two cooking methods, traditional open-fire (BPF) and induction cooker (BPC), was compared. Seventeen aroma compounds with odor activity values (OAVs) > 1 were identified in both samples. BPF revealed higher OAVs for most of the aroma compounds compared to BPC, and the higher aroma quality. Aroma recombination and omission experiments confirmed that twelve aroma compounds significantly contributed to the characteristic aroma of braised pork, and eight compounds such as hexanal, (E)-2-octenal, and methanethiol were further confirmed as important contributors by PLSR analysis. Furthermore, PLSR analysis clarified the role of aldehydes such as hexanal, (E)-2-octenal, and (E,E)-2,4-decadienal in contributing to fatty attribute, whereas methanethiol was responsible for the meaty aroma. These characteristic aroma compounds mainly derived from lean meat due to its high content of phospholipids, and the exogenous seasonings contributed to the balanced characteristic aroma profile of braised pork by altering the distribution of these characteristic aroma compounds. Variations in heating parameters affected the formation of lipid oxidation and Strecker degradation products, which might explain aroma discrepancy between braised pork cooked by two methods with different heat transfer efficiencies.


Aldehydes , Cooking , Odorants , Cooking/methods , Odorants/analysis , Animals , Swine , Aldehydes/analysis , Volatile Organic Compounds/analysis , Pork Meat/analysis , Humans , Sulfhydryl Compounds/analysis
4.
Food Res Int ; 188: 114429, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823856

Among the emerging prebiotics, galactooligosaccharide (GOS) has a remarkable value with health-promoting properties confirmed by several studies. In addition, the application of ohmic heating has been gaining prominence in food processing, due to its various technological and nutritional benefits. This study focuses on the transformative potential of ohmic heating processing (OH, voltage values 30 and 60 V, frequencies 100, 300, and 500 Hz, respectively) in prebiotic chocolate milk beverage (3.0 %w/v galactooligosaccharide) processing. Chemical stability of GOS was assessed along all the ohmic conditions. In addition, microbiological analysis (predictive modeling), physical analysis (color and rheology), thermal load indicators assessment, bioactivity values, and volatile compound was performed. HPAEC-PAD analysis confirmed GOS stability and volatile compound evaluation supported OH's ability to preserve flavor-associated compounds. Besides, OH treatments demonstrated superior microbial reduction and decreased thermal load indicators as well as the assessment of the bioactivity. In conclusion, OH presented was able to preserve the GOS chemical stability on chocolate milk beverages processing with positive effects of the intrinsic quality parameters of the product.


Chocolate , Food Handling , Milk , Oligosaccharides , Oligosaccharides/chemistry , Oligosaccharides/analysis , Chocolate/analysis , Food Handling/methods , Milk/chemistry , Animals , Prebiotics/analysis , Hot Temperature , Beverages/analysis , Rheology , Cacao/chemistry , Volatile Organic Compounds/analysis
5.
Food Res Int ; 188: 114457, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823859

The effect of the substitution of emulsifying salt by the young bamboo flour (BF) (0, 25, 50, 75, 100 % w/w) on requeijão cremoso processed cheese [REQ, REQ 25, REQ 75 REQ 100]) processing was investigated. Gross composition, calcium and sodium values, functional properties (melting rate), color parameters (L, a*, b*, C*, and Whiteness Index, WI), texture profile, fatty acid profile, volatile organic compounds (VOCs), and sensory profiling were evaluated. No effect was observed on the gross composition; however, sodium and melting rate values were decreased, and calcium values presented the opposite behavior. BF could modify the optical parameters, observing an increase in WI values. Higher BF addition increased hardness and lowered elasticity, and regarding the fatty acid profile, there is no significant difference. Different volatile compounds were noted in a proportional form with the BF addition, which was reflected in similar sensory acceptance for REQ 25 and control samples. Although some aspects require further in-depth studies, using BF as a substitute for emulsifying salt in requeijão cremoso processed cheese appears to be a viable option, especially when considering partial replacements.


Cheese , Flour , Food Handling , Volatile Organic Compounds , Cheese/analysis , Flour/analysis , Volatile Organic Compounds/analysis , Food Handling/methods , Humans , Taste , Fatty Acids/analysis , Color , Emulsions/chemistry , Hardness , Calcium/analysis , Calcium/chemistry
6.
Food Res Int ; 188: 114484, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823870

The aim of the present study was to provide a first characterization of lacto-fermented garlic manufactured by local small-scale artisanal producers in the Lower Silesia Region (Poland). The lacto-fermented garlic samples showed high nutritional features in terms of antioxidant activity. A total of 86 compounds, belonging to various chemical classes, were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS). Most of these compounds belonged to six main classes, being sulfur compounds, esters and acetates, oxygenated monoterpenes, monoterpene hydrocarbons, and alcohols. Aldehydes, acids, ketones, furans, and phenols were also identified. In the analyzed samples, counts up to 8 log cfu g-1 were observed for lactic acid bacteria. Metataxonomic analysis revealed the presence of Levilactobacillus, Lactiplantibacillus, Latilactobacillus, Secundilactobacillus, Weissella, Leuconostoc, Lactococcus, Pediococcus, and Lacticaseibacillus among the major taxa. These results were confirmed by the isolation and characterization of viable lactic acid bacteria. Indeed, the presence of the closest relatives to Lacticaseibacillus casei group, Pediococcus parvulus, Levilactobacillus brevis, Levilactobacillus parabrevis, and Lactiplantibacillus plantarum group was observed. A good acidification performance in salty garlic-based medium was observed for all the isolates that, between 8 and 15 days of fermentation, reached pH values comprised between 4 and 3.5, depending on the tested species. Of note, 15 out of the 37 lactic acid bacteria isolates (Levilactobacillus parabrevis, Pediococcus parvulus, Lactiplantibacillus plantarum group, and Lacticaseibacillus casei group) showed the presence of the hdcA gene of Gram-positive bacteria encoding for histidine decarboxylase. Furthermore, for 8 out of the 37 isolates the in-vitro exopolysaccharides production was observed. No isolate showed inhibitory activity against the three Listeria innocua strains used as surrogate for Listeria monocytogenes.


Fermentation , Food Microbiology , Garlic , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Garlic/chemistry , Antioxidants/analysis , Lactobacillales/metabolism , Lactobacillales/isolation & purification , Fermented Foods/microbiology , Fermented Foods/analysis
7.
Food Res Int ; 188: 114483, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823869

The Monascus-fermented cheese (MC) is a unique cheese product that undergoes multi-strain fermentation, imparting it with distinct flavor qualities. To clarify the role of microorganisms in the formation of flavor in MC, this study employed SPME (arrow)-GC-MS, GC-O integrated with PLS-DA to investigate variations in cheese flavors represented by volatile flavor compounds across 90-day ripening periods. Metagenomic datasets were utilized to identify taxonomic and functional changes in the microorganisms. The results showed a total of 26 characteristic flavor compounds in MC at different ripening periods (VIP>1, p < 0.05), including butanoic acid, hexanoic acid, butanoic acid ethyl ester, hexanoic acid butyl ester, 2-heptanone and 2-octanone. According to NR database annotation, the genera Monascus, Lactococcus, Aspergillus, Lactiplantibacillus, Staphylococcus, Flavobacterium, Bacillus, Clostridium, Meyerozyma, and Enterobacter were closely associated with flavor formation in MC. Ester compounds were linked to Monascus, Meyerozyma, Staphylococcus, Lactiplantibacillus, and Bacillus. Acid compounds were linked to Lactococcus, Lactobacillus, Staphylococcus, and Bacillus. The production of methyl ketones was closely related to the genera Monascus, Staphylococcus, Lactiplantibacillus, Lactococcus, Bacillus, and Flavobacterium. This study offers insights into the microorganisms of MC and its contribution to flavor development, thereby enriching our understanding of this fascinating dairy product.


Cheese , Fermentation , Food Microbiology , Metagenomics , Monascus , Taste , Volatile Organic Compounds , Cheese/microbiology , Cheese/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Monascus/metabolism , Monascus/genetics , Monascus/growth & development , Metagenomics/methods , Gas Chromatography-Mass Spectrometry , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Flavoring Agents/metabolism
8.
Food Res Int ; 188: 114525, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823888

As a kind of green tea with unique multiple baking processes, the flavor code of Lu'an Guapian (LAGP) has recently been revealed. To improve and stabilize the quality of LAGP, further insight into the dynamic changes in odorants during the whole processing is required. In this study, 50 odorants were identified in processing tea leaves, 14 of which were selected for absolute quantification to profile the effect of processes. The results showed that spreading is crucial for key aroma generation and accumulation, while these odorants undergo significant changes at the deep baking stage. By adjusting the conditions of the spreading and deep baking, it was found that low-temperature (4 °C) spreading for 6 h and low-temperature with long-time baking (final leaf temperature: 102 °C, 45 min) could improve the overall aroma quality. These results provide a new direction for enhancing the quality of LAGP green tea.


Odorants , Tea , Volatile Organic Compounds , Odorants/analysis , Tea/chemistry , Volatile Organic Compounds/analysis , Plant Leaves/chemistry , Food Handling/methods , Cooking/methods , Camellia sinensis/chemistry , Gas Chromatography-Mass Spectrometry , Hot Temperature
9.
Molecules ; 29(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38792057

Coleus scutellarioides (L.) Benth. is a globally spread species, known for its characteristic spectacularly colorful leaves of decorative value. Thanks to its rich chemical composition, the plant is used in ethnopharmacology, and it is also regarded as having high medicinal potential. The application of in vitro cultures enables the acquisition of homogeneous certified material of high quality. Additionally, excluding the effect of biotic and abiotic factors on the plants is a way to fully recognize the influence of phytohormones on the plant morphology and the biosynthetic pathways of compound production. The best way to grow C. scutellarioides "Electric Lime" under in vitro conditions is to use the basic MS medium (Murashige and Skoog medium), enriched with naphthyl-1-acetic acid at a concentration of 0.5 mg dm-3. The analysis of volatile compounds demonstrated that the content of volatile compounds in the plants cultivated under in vivo conditions was expressed at a level of 2848.59 µg g-1, whereas in the plants bred in vitro without supplementation with phytohormones, the level was 8191.47 µg g-1. The highest content was noted for copaene, α-pinene, 1-octene-3-ol, α-selinene, sabinen, γ- and δ-cadinene, 3-octanol, and ß-pinene. Aroma profiling revealed a lack of boranyl acetate, 2-hexenal, and 2-hexen-1-ol in the plants cultivated under in vivo conditions. Differences were found in the volatile composition between plants bred in vivo and in vitro, with the most significant recorded for the contents of 1-octen-3-ol and 3-octanol. The addition of plant growth regulators into the basic medium under in vitro conditions affected the percentage ratio and contents of specific compounds in plant tissues. The most intense biosynthesis of volatile compounds took place in the plants cultivated on the medium enriched with NAA at 10,579.11 µg g-1, whereas the least intense was noted for plants cultivated on the medium supplemented with BA, where it was recorded at the level of 5610.02 µg g-1. So far, there has been no research published which would pertain to the profiling of volatile compounds performed using the SPME (solid-phase microextraction) technique. Moreover, the very few studies conducted on the chemical composition of these compounds do not mention the specific variety of C. scutellarioides under analysis.


Volatile Organic Compounds , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Plant Growth Regulators/pharmacology , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/chemistry
10.
Molecules ; 29(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38792158

This work is focused on the characterization of the composition of a CO2 supercritical fluid extract of Aquilaria sinensis (Chinese agarwood) collected in the Dongguan area (China) and infected by mechanical methods. The constituents of this extract were analyzed by gas chromatography-mass spectrometry (GC-MS) and quantified accurately by gas chromatography with a flame ionization detector (GC-FID), using an internal reference and predicted response factors. Since a significant number of components of this extract remained non-identified after the initial GC-MS analysis of the whole extract, its fractionation by chromatography on silica gel helped to characterize several additional constituents by isolation and structural analysis by NMR spectroscopy. The main components are the classical agarwood chromones (Flindersia chromone and its mono-, di-, and trimethoxylated analogues (respectively, 11.01% and 0.11-4.02%) along with sesquiterpenic constituents typically found in agarwood essential oils, like baimuxinal (1.90%) and kusunol (1.24%), as well as less common selinane dialdehydes (1.58-2.27%) recently described in the literature. Moreover, the structure and stereochemistry of a new sesquiterpenic alcohol, 14ß,15ß-dimethyl-7αH-eremophila-9,11-dien-8ß-ol (0.67%), was determined unambiguously by the combination of structural analysis (NMR, MS), hemisynthesis, and total synthesis, leading to dihydrokaranone and a neopetasane epimer.


Carbon Dioxide , Chromatography, Supercritical Fluid , Gas Chromatography-Mass Spectrometry , Thymelaeaceae , Thymelaeaceae/chemistry , Chromatography, Supercritical Fluid/methods , Carbon Dioxide/chemistry , Plant Extracts/chemistry , Magnetic Resonance Spectroscopy/methods , Oils, Volatile/chemistry , Oils, Volatile/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Molecular Structure , East Asian People
11.
Mar Drugs ; 22(5)2024 May 20.
Article En | MEDLINE | ID: mdl-38786624

The deep-sea bacterium Spongiibacter nanhainus CSC3.9 has significant inhibitory effects on agricultural pathogenic fungi and human pathogenic bacteria, especially Pseudomonas aeruginosa, the notorious multidrug-resistant pathogen affecting human public health. We demonstrate that the corresponding antibacterial agents against P. aeruginosa PAO1 are volatile organic compounds (VOCs, namely VOC-3.9). Our findings show that VOC-3.9 leads to the abnormal cell division of P. aeruginosa PAO1 by disordering the expression of several essential division proteins associated with septal peptidoglycan synthesis. VOC-3.9 hinders the biofilm formation process and promotes the biofilm dispersion process of P. aeruginosa PAO1 by affecting its quorum sensing systems. VOC-3.9 also weakens the iron uptake capability of P. aeruginosa PAO1, leading to reduced enzymatic activity associated with key metabolic processes, such as reactive oxygen species (ROS) scavenging. Overall, our study paves the way to developing antimicrobial compounds against drug-resistant bacteria by using volatile organic compounds.


Anti-Bacterial Agents , Biofilms , Pseudomonas aeruginosa , Quorum Sensing , Volatile Organic Compounds , Pseudomonas aeruginosa/drug effects , Volatile Organic Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Quorum Sensing/drug effects , Microbial Sensitivity Tests , Reactive Oxygen Species/metabolism , Humans
12.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791403

Nowadays, there is an increasing interest in the study of medicinal and aromatic plants, due to their therapeutic properties that correlate with the presence of different active compounds. Agastache species (sp.) are aromatic plants that belong to the Lamiaceae family, originating from North America and East Asia. The present study aimed to evaluate the composition of essential oils (EOs) obtained from different Romanian cultivated Agastache sp. and to investigate their antibacterial and cytotoxic activities. The gas chromatography-mass spectrometry (GC-MS) screening revealed that menthone was the dominant constituent of A. foeniculum (31.58%), A. rugosa (39.60%) and A. rugosa 'After Eight' (39.76%) EOs, while estragole was the major constituent of A. foeniculum "Aromat de Buzau" (63.27%) and A. mexicana (41.66%) EOs. The investigation of the antiproliferative effect showed that A. rugosa and A. foeniculum "Aromat de Buzau" EOs had significant cytotoxic activity on MDA-MB-231 and HEPG2 tumour cell lines, with the most promising effect on the MDA-MB-231 breast cancer cell line for A. foeniculum "Aromat de Buzau" EO (IC50 = 203.70 ± 0.24 µg/mL). Regarding the antibacterial activity, A. rugosa EO was most active against E. coli (8.91 ± 3.27 µL/mL) and S. aureus (10.80 ± 0.00 µL/mL). To the best of our knowledge, this is the first report on the cytotoxic effect of Agastache sp. EOs on MDA-MB-231, HCT116 and HEPG2 tumour cell lines. The results of our study provide new and promising information for the subsequent in vivo study of the pharmacological properties of Agastache sp. essential oils.


Agastache , Anti-Bacterial Agents , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gas Chromatography-Mass Spectrometry/methods , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Agastache/chemistry , Cell Line, Tumor , Hep G2 Cells , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Microbial Sensitivity Tests , Cell Proliferation/drug effects , Volatile Organic Compounds/pharmacology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
13.
Diagn Microbiol Infect Dis ; 109(3): 116309, 2024 Jul.
Article En | MEDLINE | ID: mdl-38692202

BACKGROUND: The COVID-19 pandemic had profound global impacts on daily lives, economic stability, and healthcare systems. Diagnosis of COVID-19 infection via RT-PCR was crucial in reducing spread of disease and informing treatment management. While RT-PCR is a key diagnostic test, there is room for improvement in the development of diagnostic criteria. Identification of volatile organic compounds (VOCs) in exhaled breath provides a fast, reliable, and economically favorable alternative for disease detection. METHODS: This meta-analysis analyzed the diagnostic performance of VOC-based breath analysis in detection of COVID-19 infection. A systematic review of twenty-nine papers using the grading criteria from Newcastle-Ottawa Scale (NOS) and PRISMA guidelines was conducted. RESULTS: The cumulative results showed a sensitivity of 0.92 (95 % CI, 90 %-95 %) and a specificity of 0.90 (95 % CI 87 %-93 %). Subgroup analysis by variant demonstrated strong sensitivity to the original strain compared to the Omicron and Delta variant in detection of SARS-CoV-2 infection. An additional subgroup analysis of detection methods showed eNose technology had the highest sensitivity when compared to GC-MS, GC-IMS, and high sensitivity-MS. CONCLUSION: Overall, these results support the use of breath analysis as a new detection method of COVID-19 infection.


Breath Tests , COVID-19 , SARS-CoV-2 , Sensitivity and Specificity , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Humans , COVID-19/diagnosis , Breath Tests/methods , SARS-CoV-2/isolation & purification , COVID-19 Testing/methods , Gas Chromatography-Mass Spectrometry
14.
Int J Food Microbiol ; 418: 110741, 2024 Jun 16.
Article En | MEDLINE | ID: mdl-38733636

Plant volatile organic compounds (PVOCs) have gained increasing attention for their role in preventing fungal spoilage and insect contamination in postharvest agro-products owing to their effectiveness and sustainability. In this study, the essential oil was extracted from fresh M. alternifolia (tea tree) leaves, and the fumigation vapor of tea tree oil (TTO) completely inhibited the growth of Aspergillus flavus on agar plates at a concentration of 1.714 µL/mL. Terpinen-4-ol was identified as the major component (40.76 %) of TTO volatiles analyzed using headspace gas chromatography-mass spectrometry. Terpinen-4-ol vapor completely inhibited the A. flavus growth on agar plates and 20 % moisture wheat grain at 0.556 and 1.579 µL/mL, respectively, indicating that terpinen-4-ol serves as the main antifungal constituent in TTO volatiles. The minimum inhibitory concentration of terpinen-4-ol in liquid-contact culture was 1.6 µL/mL. Terpinen-4-ol treatment caused depressed, wrinkled, and punctured mycelial morphology and destroyed the plasma membrane integrity of A. flavus. Metabolomics analysis identified significant alterations in 93 metabolites, with 79 upregulated and 14 downregulated in A. flavus mycelia exposed to 1.6 µL/mL terpinen-4-ol for 6 h, involved in multiple cellular processes including cell membrane permeability and integrity, the ABC transport system, pentose phosphate pathway, and the tricarboxylic acid cycle. Biochemical analysis and 2,7-dichlorofluorescein diacetate staining showed that terpinen-4-ol induced oxidative stress and mitochondrial dysfunction in A. flavus mycelia. This study provides new insights into the antifungal effects of the main TTO volatile compounds terpinen-4-ol on the growth of A. flavus.


Aspergillus flavus , Tea Tree Oil , Terpenes , Triticum , Aspergillus flavus/drug effects , Aspergillus flavus/growth & development , Tea Tree Oil/pharmacology , Terpenes/pharmacology , Triticum/microbiology , Antifungal Agents/pharmacology , Volatile Organic Compounds/pharmacology , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry , Edible Grain/microbiology , Food Preservation/methods
15.
PLoS One ; 19(5): e0302541, 2024.
Article En | MEDLINE | ID: mdl-38696430

This study investigated the effects of Rhizoctonia solani J.G. Kühn infestation on the volatile organic compound (VOC) emissions and biochemical composition of ten cultivars of chrysanthemum (Chrysanthemum × morifolium /Ramat./ Hemsl.) to bring new insights for future disease management strategies and the development of resistant chrysanthemum cultivars. The chrysanthemum plants were propagated vegetatively and cultivated in a greenhouse under semi-controlled conditions. VOCs emitted by the plants were collected using a specialized system and analyzed by gas chromatography/mass spectrometry. Biochemical analyses of the leaves were performed, including the extraction and quantification of chlorophylls, carotenoids, and phenolic compounds. The emission of VOCs varied among the cultivars, with some cultivars producing a wider range of VOCs compared to others. The analysis of the VOC emissions from control plants revealed differences in both their quality and quantity among the tested cultivars. R. solani infection influenced the VOC emissions, with different cultivars exhibiting varying responses to the infection. Statistical analyses confirmed the significant effects of cultivar, collection time, and their interaction on the VOCs. Correlation analyses revealed positive relationships between certain pairs of VOCs. The results show significant differences in the biochemical composition among the cultivars, with variations in chlorophyll, carotenoids, and phenolic compounds content. Interestingly, R. solani soil and leaf infestation decreased the content of carotenoids in chrysanthemums. Plants subjected to soil infestation were characterized with the highest content of phenolics. This study unveils alterations in the volatile and biochemical responses of chrysanthemum plants to R. solani infestation, which can contribute to the development of strategies for disease management and the improvement of chrysanthemum cultivars with enhanced resistance to R. solani.


Chrysanthemum , Plant Diseases , Rhizoctonia , Volatile Organic Compounds , Chrysanthemum/metabolism , Chrysanthemum/microbiology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Rhizoctonia/physiology , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Leaves/chemistry , Gas Chromatography-Mass Spectrometry , Chlorophyll/metabolism , Chlorophyll/analysis , Carotenoids/metabolism , Carotenoids/analysis
16.
J Oleo Sci ; 73(5): 665-674, 2024.
Article En | MEDLINE | ID: mdl-38692890

Sacha inchi seed oil is a food matrix rich in bioactive constituents, mainly polyunsaturated fatty acids. In this study, the characteristics of color, carotenoid content, tocopherols, and volatile aroma compounds in eight sacha inchi seed (Plukenetia volubilis L.) oil accessions were evaluated. Results showed that the oil obtained from the accessions presented a lightness and chroma of 91 to 98 units and 6 to 10 units respectively, while the hue angle ranged between 93 to 97 units. The total carotenoid content in the different accessions ranged from 0.6 to 1.5 mg/kg, while γ- and δ-tocopherol ranged from 861.6 to 1142 mg/kg and 587 to 717.1 mg/kg. In addition, the total content of tocopherols varied between 1450 and 1856 mg/kg and the δ/γ ratio ranged between 0.58 and 0.70. The oils from the accessions PER000408 (861 µg/kg) and PER000411 (896 µg/kg) were those with the higher volatile concentration, especially 1-hepten-3-ol, 2-nonanol, (E)-3-hexen- 1-ol, (E)-2-hexenal, and 1-hexanol. In this study, the variability of the oil obtained from 8 accessions were observed, from which promising accessions can be selected for continuous investigations of the new sacha inchi seed genotypes.


Carotenoids , Plant Oils , Seeds , Tocopherols , Volatile Organic Compounds , Carotenoids/analysis , Tocopherols/analysis , Seeds/chemistry , Volatile Organic Compounds/analysis , Plant Oils/analysis , Plant Oils/chemistry , Brassicaceae/chemistry
17.
Food Res Int ; 186: 114305, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729687

Kefir is a traditional dairy beverage, usually made from cow or goat milk fermented with kefir grains, and has many health benefits. To elucidate the fermentation patterns of animal milk kefirs during the fermentation process and find the optimal milk types, cow, camel, goat, and donkey milk were fermented with kefir grains for 0, 1, 3, 5, and 7 days. Volatile and non-volatile metabolites and microbial changes were dynamically monitored. The results showed that volatile flavor substances were massively elevated in four kefirs on days 1-3. Lipids and carbohydrates gradually decreased, while amino acids, small peptides, and tryptophan derivatives accumulated during fermentation in four kefirs. Besides, four kefirs had similar alterations in Lactobacillus and Acetobacter, while some distinctions existed in low-abundance bacteria. Association analysis of microorganisms and volatile and non-volatile metabolites also revealed the underlying fermentation mechanism. This study found that appropriately extending the fermentation time contributed to the accumulation of some functional nutrients. Furthermore, goat and donkey milk could be the better matrices for kefir fermentation.


Equidae , Fermentation , Goats , Kefir , Milk , Animals , Kefir/microbiology , Cattle , Milk/microbiology , Milk/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Taste , Camelus , Food Microbiology , Lactobacillus/metabolism , Microbiota , Acetobacter/metabolism , Amino Acids/metabolism , Amino Acids/analysis
18.
Food Res Int ; 186: 114319, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729690

The "outstanding and unique aged aroma" of Chinese Chenxiang-type baijiu (CXB)-Daoguang 25 (DG25) mainly originates from a "extraordinary storage technology" of Mujiuhai (a wooden container), so it is mysterious and interesting. In this study, an untargeted GC/MS-based metabolomics was used to reveals the volatile differential metabolites for discriminating six different vintages of DG25 combing with chemometrics. A total of 100 volatile metabolites (including unknowns) were extracted and identified, including esters (41%), alcohols (10%) and acids (7%) so on. Finally, 33 differential metabolites were identified as aging-markers. Among them, 25 aging-markers showed a downtrend, including 17 esters such as ethyl acetate, ethyl hexanoate and ethyl palmitate so on. Moreover, it was interesting and to further study that furans showed a significant downtrend. Statistically speaking, ethyl benzoate played an important role in discriminating vintage of 1Y and 3Y, and the other 24 differential metabolites with downtrend discriminating the unstored (0Y-aged) DG25. Eight differential metabolites, such as ethyl octanoate, benzaldehyde, 3-methylbutanol and 1,1-diethoxyaccetal so on increased during aging of DG25, and they played a statistical role in discriminating the 5Y-, 10Y- and 20Y-aged DG25. This study provides a theoretical basis way for the formation mechanism of aging aroma for CXB.


Gas Chromatography-Mass Spectrometry , Metabolomics , Odorants , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Odorants/analysis , Wine/analysis , Alcoholic Beverages/analysis
19.
Food Res Int ; 186: 114313, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729689

Exploring the contribution of common microorganisms to spoilage is of great significance in inhibiting spoilage in lamb. This work investigated the extent of protein degradation and profile changes of free amino acids (FAAs), free fatty acids (FFAs) and volatile organic compounds (VOCs) in lamb caused by single- and co-culture of the common aerobic spoilage bacteria, P. paralactis, Ac. MN21 and S. maltophilia. Meanwhile, some key VOCs produced by the three bacteria during lamb spoilage were also screened by orthogonal partial least square discriminant analysis and difference value in VOCs content between inoculated groups and sterile group. Lamb inoculated with P. paralactis had the higher total viable counts, pH, total volatile base nitrogen and TCA-soluble peptides than those with the other two bacteria. Some FAAs and FFAs could be uniquely degraded by P. paralactis but not Ac. MN21 and S. maltophilia, such as Arg, Glu, C15:0, C18:0 and C18:1n9t. Co-culture of the three bacteria significantly promoted the overall spoilage, including bacterial growth, proteolysis and lipolysis. Key VOCs produced by P. paralactis were 2, 3-octanedione, those by Ac. MN21 were 1-octanol, octanal, hexanoic acid, 1-pentanol and hexanoic acid methyl ester, and that by S. maltophilia were hexanoic acid. The production of extensive key-VOCs was significantly and negatively correlated with C20:0, C23:0 and C18:ln9t degradation. This study can provide a basis for inhibiting common spoilage bacteria and promoting high-quality processing of fresh lamb.


Acinetobacter , Coculture Techniques , Food Microbiology , Pseudomonas , Red Meat , Stenotrophomonas maltophilia , Volatile Organic Compounds , Animals , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Pseudomonas/metabolism , Pseudomonas/growth & development , Acinetobacter/growth & development , Acinetobacter/metabolism , Stenotrophomonas maltophilia/growth & development , Stenotrophomonas maltophilia/metabolism , Red Meat/microbiology , Red Meat/analysis , Sheep , Food Storage , Cold Temperature , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Nonesterified/analysis , Amino Acids/metabolism , Amino Acids/analysis , Sheep, Domestic/microbiology , Proteolysis
20.
Food Res Int ; 186: 114347, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729697

Although Z. mioga flower buds are popular among consumers for its unique spicy flavor, high nutritional and medicinal value, there are few reports on the formation and changes of the flavor during its growth and maturation process. The understanding of the profile of volatile compounds would help to unravel the flavor formation for Z. mioga flower buds during growth. The volatile changes in Z. mioga flower buds were analyzed by GC-MS and a total of 182 volatile compounds identified, and the terpenoids accounted for the most abundant volatile substances. Almost all the identified volatiles presented an intuitive upward trend throughout the growth period and reached the maximum at the later stage of development (DS3 or DS4). Regarding the PCA and HCA results, there were significant differences found among the four stages, and the DS3 was the critical node. The top 50 differential volatiles screened by OPLS-DA and PLS-DA were all up-regulated, and the correlation analysis indicated that terpenoids might synergize with other chemical types of volatiles to jointly affect the flavor formation of Z. mioga flower buds during growth. The association network for flavor omics revealed that the most important sensory flavor for Z. mioga flower buds were woody and sweet, and the main contribution compounds for the unique flavor contained ß-guaiene, ß-farnesene, δ-cadinene and citronellyl isobutanoate. Taken together, the results of this study provided a reference for flavor quality evaluation of flower buds and determination of the best harvest period.


Flowers , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds , Flowers/growth & development , Flowers/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Taste , Terpenes/metabolism , Terpenes/analysis
...