Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 467
Filter
1.
Biomolecules ; 14(9)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39334905

ABSTRACT

This review presents current knowledge related to the voltage-dependent anion channel-1 (VDAC1) as a multi-functional mitochondrial protein that acts in regulating both cell life and death. The location of VDAC1 at the outer mitochondrial membrane (OMM) allows control of metabolic cross-talk between the mitochondria and the rest of the cell, and also enables its interaction with proteins that are involved in metabolic, cell death, and survival pathways. VDAC1's interactions with over 150 proteins can mediate and regulate the integration of mitochondrial functions with cellular activities. To target these protein-protein interactions, VDAC1-derived peptides have been developed. This review focuses specifically on cell-penetrating VDAC1-based peptides that were developed and used as a "decoy" to compete with VDAC1 for its VDAC1-interacting proteins. These peptides interfere with VDAC1 interactions, for example, with metabolism-associated proteins such as hexokinase (HK), or with anti-apoptotic proteins such as Bcl-2 and Bcl-xL. These and other VDAC1-interacting proteins are highly expressed in many cancers. The VDAC1-based peptides in cells in culture selectively affect cancerous, but not non-cancerous cells, inducing cell death in a variety of cancers, regardless of the cancer origin or genetics. They inhibit cell energy production, eliminate cancer stem cells, and act very rapidly and at low micro-molar concentrations. The activity of these peptides has been validated in several mouse cancer models of glioblastoma, lung, and breast cancers. Their anti-cancer activity involves a multi-pronged attack targeting the hallmarks of cancer. They were also found to be effective in treating non-alcoholic fatty liver disease and diabetes mellitus. Thus, VDAC1-based peptides, by targeting VDAC1-interacting proteins, offer an affordable and innovative new conceptual therapeutic paradigm that can potentially overcome heterogeneity, chemoresistance, and invasive metastatic formation.


Subject(s)
Diabetes Mellitus , Neoplasms , Voltage-Dependent Anion Channel 1 , Voltage-Dependent Anion Channel 1/metabolism , Humans , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Diabetes Mellitus/metabolism , Diabetes Mellitus/drug therapy , Peptides/pharmacology , Peptides/chemistry , Peptides/therapeutic use , Peptides/metabolism , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/metabolism , Cell-Penetrating Peptides/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Protein Binding
2.
Nature ; 632(8027): 1110-1117, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39169179

ABSTRACT

Mitochondrial membranes define distinct structural and functional compartments. Cristae of the inner mitochondrial membrane (IMM) function as independent bioenergetic units that undergo rapid and transient remodelling, but the significance of this compartmentalized organization is unknown1. Using super-resolution microscopy, here we show that cytosolic IMM vesicles, devoid of outer mitochondrial membrane or mitochondrial matrix, are formed during resting state. These vesicles derived from the IMM (VDIMs) are formed by IMM herniation through pores formed by voltage-dependent anion channel 1 in the outer mitochondrial membrane. Live-cell imaging showed that lysosomes in proximity to mitochondria engulfed the herniating IMM and, aided by the endosomal sorting complex required for transport machinery, led to the formation of VDIMs in a microautophagy-like process, sparing the remainder of the organelle. VDIM formation was enhanced in mitochondria undergoing oxidative stress, suggesting their potential role in maintenance of mitochondrial function. Furthermore, the formation of VDIMs required calcium release by the reactive oxygen species-activated, lysosomal calcium channel, transient receptor potential mucolipin 1, showing an interorganelle communication pathway for maintenance of mitochondrial homeostasis. Thus, IMM compartmentalization could allow for the selective removal of damaged IMM sections via VDIMs, which should protect mitochondria from localized injury. Our findings show a new pathway of intramitochondrial quality control.


Subject(s)
Lysosomes , Mitochondria , Mitochondrial Membranes , Animals , Humans , Mice , Autophagy , Calcium/metabolism , Cytosol/metabolism , Homeostasis , Lysosomes/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Membranes/chemistry , Mitochondrial Membranes/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Transient Receptor Potential Channels/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Cell Compartmentation , Mitochondrial Dynamics
3.
STAR Protoc ; 5(3): 103240, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39116198

ABSTRACT

The voltage-dependent anion channel (VDAC) is an abundant and multifunctional outer mitochondrial membrane protein, playing key roles in neurodegeneration, apoptosis, and mitochondrial membrane biogenesis. Here, we present a protocol to produce and reconstitute high yields of detergent-solubilized VDAC, expressed as inclusion bodies in E. coli. We describe steps for purification by affinity chromatography and refolding in lauryldimethylamine-N-oxide (LDAO). We then detail procedures for reconstituting VDAC into membrane vesicles to assay its channel and phospholipid scramblase activity via fluorescence-based assays. For complete details on the use and execution of this protocol, please refer to Bergdoll et al.,1 Queralt-Martín et al., 2 and Jahn et al.3.


Subject(s)
Biochemistry , Escherichia coli , Fluorescence , Voltage-Dependent Anion Channel 1 , Humans , Escherichia coli/metabolism , Escherichia coli/genetics , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 1/chemistry , Biochemistry/methods
4.
Cell Death Dis ; 15(7): 523, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039044

ABSTRACT

The mechanism regulating cellular senescence of postmitotic muscle cells is still unknown. cGAS-STING innate immune signaling was found to mediate cellular senescence in various types of cells, including postmitotic neuron cells, which however has not been explored in postmitotic muscle cells. Here by studying the myofibers from Zmpste24-/- progeria aged mice [an established mice model for Hutchinson-Gilford progeria syndrome (HGPS)], we observed senescence-associated phenotypes in Zmpste24-/- myofibers, which is coupled with increased oxidative damage to mitochondrial DNA (mtDNA) and secretion of senescence-associated secretory phenotype (SASP) factors. Also, Zmpste24-/- myofibers feature increased release of mtDNA from damaged mitochondria, mitophagy dysfunction, and activation of cGAS-STING. Meanwhile, increased mtDNA release in Zmpste24-/- myofibers appeared to be related with increased VDAC1 oligomerization. Further, the inhibition of VDAC1 oligomerization in Zmpste24-/- myofibers with VBIT4 reduced mtDNA release, cGAS-STING activation, and the expression of SASP factors. Our results reveal a novel mechanism of innate immune activation-associated cellular senescence in postmitotic muscle cells in aged muscle, which may help identify novel sets of diagnostic markers and therapeutic targets for progeria aging and aging-associated muscle diseases.


Subject(s)
Cellular Senescence , DNA, Mitochondrial , Membrane Proteins , Nucleotidyltransferases , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Mice , Progeria/metabolism , Progeria/pathology , Progeria/genetics , Signal Transduction , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 1/genetics , Mice, Knockout , Muscle Cells/metabolism , Mitophagy , Mitochondria/metabolism , Humans , Mice, Inbred C57BL , Metalloendopeptidases
5.
Mitochondrion ; 78: 101929, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986923

ABSTRACT

Type 2 diabetes (T2D) is a chronic metabolic disease that accounts for more than 90% of diabetic patients. Its main feature is hyperglycemia due to insulin resistance or insulin deficiency. With changes in diet and lifestyle habits, the incidence of T2D in adolescents has burst in recent decades. The deterioration in the exposure to the environmental pollutants further aggravates the prevalence of T2D, and consequently, it imposes a significant economic burden. Therefore, early prevention and symptomatic treatment are essential to prevent diabetic complications. Mitochondrial number and electron transport chain activity are decreased in the patients with T2D. Voltage-Dependent Anion Channel 1 (VDAC1), as a crucial channel protein on the outer membrane of mitochondria, regulates signal transduction between mitochondria and other cellular components, participating in various biological processes. When VDAC1 exists in oligomeric form, it additionally facilitates the entry and exit of macromolecules into and from mitochondria, modulating insulin secretion. We summarize and highlight the interplay between VDAC1 and T2D, especially in the environmental pollutants-related T2D, shed light on the potential therapeutic implications of targeting VDAC1 monomers and oligomers, providing a new possible target for the treatment of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Environmental Pollutants , Voltage-Dependent Anion Channel 1 , Humans , Diabetes Mellitus, Type 2/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Environmental Pollutants/metabolism , Environmental Pollutants/toxicity , Mitochondria/metabolism , Animals
6.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38955468

ABSTRACT

In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.


Subject(s)
Cytosol , Mitochondria , Prohibitins , RNA, Double-Stranded , RNA, Mitochondrial , Humans , Cytosol/metabolism , Mitochondria/metabolism , RNA, Double-Stranded/metabolism , RNA, Mitochondrial/metabolism , RNA, Mitochondrial/genetics , Cell Line, Tumor , Repressor Proteins/metabolism , Repressor Proteins/genetics , RNA Transport , Exoribonucleases/metabolism , Exoribonucleases/genetics , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 1/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Mitochondrial Proteins
7.
Sci Total Environ ; 946: 174246, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38955266

ABSTRACT

The ionizing radiation (IR) represents a formidable challenge as an environmental factor to mitochondria, leading to disrupt cellular energy metabolism and posing health risks. Although the deleterious impacts of IR on mitochondrial function are recognized, the specific molecular targets remain incompletely elucidated. In this study, HeLa cells subjected to γ-rays exhibited concomitant oxidative stress, mitochondrial structural alterations, and diminished ATP production capacity. The γ-rays induced a dose-dependent induction of mitochondrial fission, simultaneously manifested by an elevated S616/S637 phosphorylation ratio of the dynamin-related protein 1 (DRP1) and a reduction in the expression of the mitochondrial fusion protein mitofusin 2 (MFN2). Knockdown of DRP1 effectively mitigated γ-rays-induced mitochondrial network damage, implying that DRP1 phosphorylation may act as an effector of radiation-induced mitochondrial damage. The mitochondrial outer membrane protein voltage-dependent anion channel 1 (VDAC1) was identified as a crucial player in IR-induced mitochondrial damage. The VDAC1 inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), counteracts the excessive mitochondrial fission induced by γ-rays, consequently rebalancing the glycolytic and oxidative phosphorylation equilibrium. This metabolic shift was uncovered to enhance glycolytic capacity, thus fortifying cellular resilience and elevating the radiosensitivity of cancer cells. These findings elucidate the intricate regulatory mechanisms governing mitochondrial morphology under radiation response. It is anticipated that the development of targeted drugs directed against VDAC1 may hold promise in augmenting the sensitivity of tumor cells to radiotherapy and chemotherapy.


Subject(s)
Glucose , Mitochondrial Dynamics , Radiation, Ionizing , Voltage-Dependent Anion Channel 1 , Humans , Voltage-Dependent Anion Channel 1/metabolism , HeLa Cells , Glucose/metabolism , Mitochondria/metabolism , Oxidative Stress , Metabolic Reprogramming
8.
Phytomedicine ; 132: 155331, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38870748

ABSTRACT

BACKGROUND: Zishenhuoxue decoction (ZSHX), a Chinese herbal medicine, exhibits myocardial and vascular endothelial protective properties. The intricate regulatory mechanisms underlying myocardial ischemic injury and its association with dysfunctional mitochondrial quality surveillance (MQS) remain elusive. HYPOTHESIS/PURPOSE: To study the protective effect of ZSHX on ischemic myocardial injury in mice using a TMBIM6 gene-modified animal model and mitochondrial quality control-related experiments. STUDY DESIGN: Using model animals and myocardial infarction surgery-induced ischemic myocardial injury TMBIM6 gene-modified mouse models, the pharmacological activity of ZSHX in inhibiting ischemic myocardial injury and mitochondrial homeostasis disorder in vivo was tested. METHODS: Our focal point entailed scrutinizing the impact of ZSHX on ischemic myocardial impairment through the prism of TMBIM6. This endeavor was undertaken utilizing mice characterized by heart-specific TMBIM6 knockout (TMBIM6CKO) and their counterparts, the TMBIM6 transgenic (TMBIM6TG) and VDAC1 transgenic (VDAC1TG) mice. RESULTS: ZSHX demonstrated dose-dependent effectiveness in mitigating ischemic myocardial injury and enhancing mitochondrial integrity. TMBIM6CKO hindered ZSHX's cardio-therapeutic and mitochondrial protective effects, while ZSHX's benefits persisted in TMBIM6TG mice. TMBIM6CKO also blocked ZSHX's regulation of mitochondrial function in HR-treated cardiomyocytes. Hypoxia disrupted the MQS in cardiomyocytes, including calcium overload, excessive fission, mitophagy issues, and disrupted biosynthesis. ZSHX counteracted these effects, thereby normalizing MQS and inhibiting calcium overload and cardiomyocyte necroptosis. Our results also showed that hypoxia-induced TMBIM6 blockade resulted in the over-activation of VDAC1, a major mitochondrial calcium uptake pathway, while ZSHX could increase the expression of TMBIM6 and inhibit VDAC1-mediated calcium overload and MQS abnormalities. CONCLUSIONS: Our findings suggest that ZSHX regulates mitochondrial calcium homeostasis and MQS abnormalities through a TMBIM6-VDAC1 interaction mechanism, which helps to treat ischemic myocardial injury and provides myocardial protection. This study also offers insights for the clinical translation and application of mitochondrial-targeted drugs in cardiomyocytess.


Subject(s)
Calcium , Drugs, Chinese Herbal , Homeostasis , Voltage-Dependent Anion Channel 1 , Animals , Drugs, Chinese Herbal/pharmacology , Voltage-Dependent Anion Channel 1/metabolism , Calcium/metabolism , Homeostasis/drug effects , Mice , Male , Membrane Proteins/metabolism , Myocardial Infarction/drug therapy , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Mice, Knockout , Mice, Transgenic , Disease Models, Animal , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitophagy/drug effects , Myocardial Ischemia/drug therapy , Cardiotonic Agents/pharmacology
9.
Ecotoxicol Environ Saf ; 281: 116647, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944014

ABSTRACT

As a persistent organic pollutant, perfluorooctane sulfonate (PFOS) has a serious detrimental impact on human health. It has been suggested that PFOS is associated with liver inflammation. However, the underlying mechanisms are still unclear. Here, PFOS was found to elevate the oligomerization tendency of voltage-dependent anion channel 1 (VDAC1) in the mice liver and human normal liver cells L-02. Inhibition of VDAC1 oligomerization alleviated PFOS-induced nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome activation. Cytoplasmic membrane VDAC1 translocated to mitochondria was also observed in response to PFOS. Therefore, the oligomerization of VDAC1 occurred mainly in the mitochondria. VDAC1 was found to interact with the ATP synthase beta subunit (ATP5B) under PFOS treatment. Knockdown of ATP5B or immobilization of ATP5B to the cytoplasmic membrane alleviated the increased VDAC1 oligomerization and NLRP3 inflammasome activation. Therefore, our results suggested that PFOS induced NLRP3 inflammasome activation through VDAC1 oligomerization, a process dependent on ATP5B to transfer VDAC1 from the plasma membrane to the mitochondria. The findings offer novel perspectives on the activation of the NLRP3 inflammasome, the regulatory mode on VDAC1 oligomerization, and the mechanism of PFOS toxicity.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Voltage-Dependent Anion Channel 1 , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Animals , Alkanesulfonic Acids/toxicity , Inflammasomes/metabolism , Inflammasomes/drug effects , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 1/genetics , Fluorocarbons/toxicity , Humans , Mice , Mitochondrial Proton-Translocating ATPases/metabolism , Cell Line , Mice, Inbred C57BL , Liver/drug effects , Liver/metabolism , Environmental Pollutants/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism
10.
J Chem Inf Model ; 64(12): 4822-4834, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38844760

ABSTRACT

Cholesterol (CHL) plays an integral role in modulating the function and activity of various mammalian membrane proteins. Due to the slow dynamics of lipids, conventional computational studies of protein-CHL interactions rely on either long-time scale atomistic simulations or coarse-grained approximations to sample the process. A highly mobile membrane mimetic (HMMM) has been developed to enhance lipid diffusion and thus used to facilitate the investigation of lipid interactions with peripheral membrane proteins and, with customized in silico solvents to replace phospholipid tails, with integral membrane proteins. Here, we report an updated HMMM model that is able to include CHL, a nonphospholipid component of the membrane, henceforth called HMMM-CHL. To this end, we had to optimize the effect of the customized solvents on CHL behavior in the membrane. Furthermore, the new solvent is compatible with simulations using force-based switching protocols. In the HMMM-CHL, both improved CHL dynamics and accelerated lipid diffusion are integrated. To test the updated model, we have applied it to the characterization of protein-CHL interactions in two membrane protein systems, the human ß2-adrenergic receptor (ß2AR) and the mitochondrial voltage-dependent anion channel 1 (VDAC-1). Our HMMM-CHL simulations successfully identified CHL binding sites and captured detailed CHL interactions in excellent consistency with experimental data as well as other simulation results, indicating the utility of the improved model in applications where an enhanced sampling of protein-CHL interactions is desired.


Subject(s)
Cholesterol , Molecular Dynamics Simulation , Cholesterol/chemistry , Cholesterol/metabolism , Humans , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Voltage-Dependent Anion Channel 1/chemistry , Voltage-Dependent Anion Channel 1/metabolism , Protein Binding , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Molecular , Diffusion , Solvents/chemistry
11.
Nat Commun ; 15(1): 5199, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890305

ABSTRACT

Extracellular ATP (eATP) signaling through the P2X7 receptor pathway is widely believed to trigger NLRP3 inflammasome assembly in microglia, potentially contributing to depression. However, the cellular stress responses of microglia to both eATP and stress itself remain largely unexplored. Mitochondria-associated membranes (MAMs) is a platform facilitating calcium transport between the endoplasmic reticulum (ER) and mitochondria, regulating ER stress responses and mitochondrial homeostasis. This study aims to investigate how MAMs influence microglial reaction and their involvement in the development of depression-like symptoms in response to chronic social defeat stress (CSDS). CSDS induced ER stress, MAMs' modifications, mitochondrial damage, and the formation of the IP3R3-GRP75-VDAC1 complex at the ER-mitochondria interface in hippocampal microglia, all concomitant with depression-like behaviors. Additionally, exposing microglia to eATP to mimic CSDS conditions resulted in analogous outcomes. Furthermore, knocking down GRP75 in BV2 cells impeded ER-mitochondria contact, calcium transfer, ER stress, mitochondrial damage, mitochondrial superoxide production, and NLRP3 inflammasome aggregation induced by eATP. In addition, reduced GRP75 expression in microglia of Cx3cr1CreER/+Hspa9f/+ mice lead to reduce depressive behaviors, decreased NLRP3 inflammasome aggregation, and fewer ER-mitochondria contacts in hippocampal microglia during CSDS. Here, we show the role of MAMs, particularly the formation of a tripartite complex involving IP3R3, GRP75, and VDAC1 within MAMs, in facilitating communication between the ER and mitochondria in microglia, thereby contributing to the development of depression-like phenotypes in male mice.


Subject(s)
Depression , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Mice, Inbred C57BL , Microglia , Mitochondria , NLR Family, Pyrin Domain-Containing 3 Protein , Social Defeat , Stress, Psychological , Voltage-Dependent Anion Channel 1 , Animals , Mitochondria/metabolism , Depression/metabolism , Microglia/metabolism , Microglia/pathology , Mice , Male , Endoplasmic Reticulum/metabolism , Stress, Psychological/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 1/genetics , Hippocampus/metabolism , Hippocampus/pathology , Adenosine Triphosphate/metabolism , Inflammasomes/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate Receptors/genetics , Calcium/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Behavior, Animal , Mitochondria Associated Membranes , HSP70 Heat-Shock Proteins
12.
J Cell Sci ; 137(12)2024 06 15.
Article in English | MEDLINE | ID: mdl-38786982

ABSTRACT

Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are high-conductance channels that allow the regulated redistribution of Ca2+ from the endoplasmic reticulum (ER) to the cytosol and, at specialized membrane contact sites (MCSs), to other organelles. Only a subset of IP3Rs release Ca2+ to the cytosol in response to IP3. These 'licensed' IP3Rs are associated with Kras-induced actin-interacting protein (KRAP, also known as ITPRID2) beneath the plasma membrane. It is unclear whether KRAP regulates IP3Rs at MCSs. We show, using simultaneous measurements of Ca2+ concentration in the cytosol and mitochondrial matrix, that KRAP also licenses IP3Rs to release Ca2+ to mitochondria. Loss of KRAP abolishes cytosolic and mitochondrial Ca2+ signals evoked by stimulation of IP3Rs via endogenous receptors. KRAP is located at ER-mitochondrial membrane contact sites (ERMCSs) populated by IP3R clusters. Using a proximity ligation assay between IP3R and voltage-dependent anion channel 1 (VDAC1), we show that loss of KRAP reduces the number of ERMCSs. We conclude that KRAP regulates Ca2+ transfer from IP3Rs to mitochondria by both licensing IP3R activity and stabilizing ERMCSs.


Subject(s)
Calcium , Endoplasmic Reticulum , Inositol 1,4,5-Trisphosphate Receptors , Mitochondria , Animals , Humans , Calcium/metabolism , Calcium Signaling , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , HeLa Cells , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate Receptors/genetics , Lectins, C-Type , Membrane Proteins , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 1/genetics
13.
IET Syst Biol ; 18(3): 103-117, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38813617

ABSTRACT

Genes associated with endoplasmic reticulum stress (ERS) and mitophagy can be conducive to predicting solid tumour prognosis. The authors aimed to develop a prognosis prediction model for these genes in lung adenocarcinoma (LUAD). Relevant gene expression and clinical information were collected from public databases including Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). A total of 265 differentially expressed genes was finally selected (71 up-regulated and 194 downregulated) in the LUAD dataset. Among these, 15 candidate ERS and mitophagy genes (ATG12, CSNK2A1, MAP1LC3A, MAP1LC3B, MFN2, PGAM5, PINK1, RPS27A, SQSTM1, SRC, UBA52, UBB, UBC, ULK1, and VDAC1) might be critical to LUAD based on the expression analysis after crossing with the ERS and mitochondrial autophagy genes. The prediction model demonstrated the ability to effectively predict the 5-, 3-, and 1-year prognoses of LUAD patients in both GEO and TCGA databases. Moreover, high VDAC1 expression was associated with poor overall survival in LUAD (p < 0.001), suggesting it might be a critical gene for LUAD prognosis prediction. Overall, the prognosis model based on ERS and mitophagy genes in LUAD can be useful for evaluating the prognosis of patients with LUAD, and VDAC1 may serve as a promising biomarker for LUAD prognosis.


Subject(s)
Adenocarcinoma of Lung , Endoplasmic Reticulum Stress , Lung Neoplasms , Mitophagy , Humans , Mitophagy/genetics , Endoplasmic Reticulum Stress/genetics , Prognosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Voltage-Dependent Anion Channel 1/genetics , Voltage-Dependent Anion Channel 1/metabolism , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Profiling , Transcriptome
14.
Ecotoxicol Environ Saf ; 276: 116318, 2024 May.
Article in English | MEDLINE | ID: mdl-38626609

ABSTRACT

Perfluorooctane sulfonate (PFOS), an officially listed persistent organic pollutant, is a widely distributed perfluoroalkyl substance. Epidemiological studies have shown that PFOS is intimately linked to the occurrence of insulin resistance (IR). However, the detailed mechanism remains obscure. In previous studies, we found that mitochondrial calcium overload was concerned with hepatic IR induced by PFOS. In this study, we found that PFOS exposure noticeably raised lysosomal calcium in L-02 hepatocytes from 0.5 h. In the PFOS-cultured L-02 cells, inhibiting autophagy alleviated lysosomal calcium overload. Inhibition of mitochondrial calcium uptake aggravated the accumulation of lysosomal calcium, while inhibition of lysosomal calcium outflowing reversed PFOS-induced mitochondrial calcium overload and IR. Transient receptor potential mucolipin 1 (TRPML1), the calcium output channel of lysosomes, interacted with voltage-dependent anion channel 1 (VDAC1), the calcium intake channel of mitochondria, in the PFOS-cultured cells. Moreover, we found that ATP synthase F1 subunit beta (ATP5B) interacted with TRPML1 and VDAC1 in the L-02 cells and the liver of mice under PFOS exposure. Inhibiting ATP5B expression or restraining the ATP5B on the plasma membrane reduced the interplay between TRPML1 and VDAC1, reversed the mitochondrial calcium overload and deteriorated the lysosomal calcium accumulation in the PFOS-cultured cells. Our research unveils the molecular regulation of the calcium crosstalk between lysosomes and mitochondria, and explains PFOS-induced IR in the context of activated autophagy.


Subject(s)
Alkanesulfonic Acids , Autophagy , Calcium , Fluorocarbons , Insulin Resistance , Liver , Lysosomes , Mitochondria , Mitochondrial Proton-Translocating ATPases , Alkanesulfonic Acids/toxicity , Fluorocarbons/toxicity , Animals , Lysosomes/drug effects , Lysosomes/metabolism , Autophagy/drug effects , Calcium/metabolism , Mice , Mitochondrial Proton-Translocating ATPases/metabolism , Liver/drug effects , Liver/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Male , Voltage-Dependent Anion Channel 1/metabolism , Cell Line , Hepatocytes/drug effects , Hepatocytes/metabolism , Environmental Pollutants/toxicity , TRPM Cation Channels/metabolism , Mice, Inbred C57BL
15.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673950

ABSTRACT

Demyelinating Charcot-Marie-Tooth 4G (CMT4G) results from a recessive mutation in the 5'UTR region of the Hexokinase 1 (HK1) gene. HK participates in mitochondrial calcium homeostasis by binding to the Voltage-Dependent Anion Channel (VDAC), through its N-terminal porin-binding domain. Our hypothesis is that CMT4G mutation results in a broken interaction between mutant HK1 and VDAC, disturbing mitochondrial calcium homeostasis. We studied a cohort of 25 CMT4G patients recruited in the French gypsy population. The disease was characterized by a childhood onset, an intermediate demyelinating pattern, and a significant phenotype leading to becoming wheelchair-bound by the fifth decade of life. Co-IP and PLA studies indicated a strong decreased interaction between VDAC and HK1 in the patients' PBMCs and sural nerve. We observed that either wild-type HK1 expression or a peptide comprising the 15 aa of the N-terminal wild-type HK1 administration decreased mitochondrial calcium release in HEK293 cells. However, mutated CMT4G HK1 or the 15 aa of the mutated HK1 was unable to block mitochondrial calcium release. Taken together, these data show that the CMT4G-induced modification of the HK1 N-terminus disrupts HK1-VDAC interaction. This alters mitochondrial calcium buffering that has been shown to be critical for myelin sheath maintenance.


Subject(s)
Calcium , Charcot-Marie-Tooth Disease , Hexokinase , Mitochondria , Voltage-Dependent Anion Channel 1 , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Young Adult , 5' Untranslated Regions/genetics , Calcium/metabolism , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , HEK293 Cells , Hexokinase/genetics , Hexokinase/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Mutation , Protein Binding , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 1/genetics
16.
Cells ; 13(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38607066

ABSTRACT

The strategy for treating bladder cancer (BC) depends on whether there is muscle invasion or not, with the latter mostly treated with intravesical therapy, such as with bacillus Calmette-Guérin (BCG). However, BCG treatment is unsuccessful in 70% of patients, who are then subjected to radical cystectomy. Although immune-checkpoint inhibitors have been approved as a second-line therapy for a subset of BC patients, these have failed to meet primary endpoints in clinical trials. Thus, it is crucial to find a new treatment. The mitochondrial gatekeeper protein, the voltage-dependent anion channel 1 (VDAC1), mediates metabolic crosstalk between the mitochondria and cytosol and is involved in apoptosis. It is overexpressed in many cancer types, as shown here for BC, pointing to its significance in high-energy-demanding cancer cells. The BC cell lines UM-UC3 and HTB-5 express high VDAC1 levels compared to other cancer cell lines. VDAC1 silencing in these cells using siRNA that recognizes both human and mouse VDAC1 (si-m/hVDAC1-B) reduces cell viability, mitochondria membrane potential, and cellular ATP levels. Here, we used two BC mouse models: subcutaneous UM-UC3 cells and chemically induced BC using the carcinogen N-Butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Subcutaneous UM-UC3-derived tumors treated with si-m/hVDAC1 showed inhibited tumor growth and reprogrammed metabolism, as reflected in the reduced expression of metabolism-related proteins, including Glut1, hexokinase, citrate synthase, complex-IV, and ATP synthase, suggesting reduced metabolic activity. Furthermore, si-m/hVDAC1-B reduced the expression levels of cancer-stem-cell-related proteins (cytokeratin-14, ALDH1a), modifying the tumor microenvironment, including decreased angiogenesis, extracellular matrix, tumor-associated macrophages, and inhibited epithelial-mesenchymal transition. The BBN-induced BC mouse model showed a clear carcinoma, with damaged bladder morphology and muscle-invasive tumors. Treatment with si-m/hVDAC1-B encapsulated in PLGA-PEI nanoparticles that were administered intravesically directly to the bladder showed a decreased tumor area and less bladder morphology destruction and muscle invasion. Overall, the obtained results point to the potential of si-m/hVDAC1-B as a possible therapeutic tool for treating bladder cancer.


Subject(s)
Urinary Bladder Neoplasms , Voltage-Dependent Anion Channel 1 , Humans , Animals , Mice , Voltage-Dependent Anion Channel 1/metabolism , BCG Vaccine , Mitochondria/metabolism , Urinary Bladder Neoplasms/pathology , Adenosine Triphosphate/metabolism , Tumor Microenvironment
17.
Ecotoxicol Environ Saf ; 274: 116218, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38492481

ABSTRACT

Cyfluthrin (Cy) is a widely used pyrethroid insecticide. There is growing evidence that Cy can cause damage to the nervous, reproductive, and immune systems, but there is limited evidence on the potential effects of maternal Cy exposure on offspring. A model of maternal Cy exposure was used to assess its neurobehavioral effects on young-adult offspring. We found that gestational Cy exposure affected pregnancy outcomes and fetal development, and that offspring showed impairments in anxiety as well as learning and memory, accompanied by impairments in hippocampal synaptic ultrastructure and synaptic plasticity. In addition, the IP3R-GRP75-VDAC1 apoptogenic pathway was also upregulated, and in vitro models showed that inhibition of this pathway alleviated neuronal apoptosis as well as synaptic plasticity damage. In conclusion, maternal Cy exposure during pregnancy can cause neurobehavioral abnormalities and synaptic damage in offspring, which may be related to neuronal apoptosis induced by activation of the IP3R-GRP75-VDAC1 pathway in the hippocampus of offspring. Our findings provide clues to understand the neurotoxicity mechanism of maternal Cy exposure to offspring during pregnancy.


Subject(s)
Membrane Proteins , Nitriles , Pyrethrins , Female , Humans , Pregnancy , Rats , Hippocampus/metabolism , HSP70 Heat-Shock Proteins/metabolism , Inositol 1,4,5-Trisphosphate Receptors/drug effects , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Membrane Proteins/drug effects , Membrane Proteins/metabolism , Nitriles/toxicity , Pyrethrins/toxicity , Voltage-Dependent Anion Channel 1/drug effects , Voltage-Dependent Anion Channel 1/metabolism , Animals
18.
Phytomedicine ; 128: 155313, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38520833

ABSTRACT

BACKGROUND: The occurrence of hyperlipidemia is significantly influenced by lipid synthesis, which is regulated by sterol regulatory element binding proteins (SREBPs), thus the development of drugs that inhibit lipid synthesis has become a popular treatment strategy for hyperlipidemia. Alisol B (ALB), a triterpenoid compound extracted from Alisma, has been reported to ameliorate no-nalcoholic steatohepatitis (NASH) and slow obesity. However, the effect of ALB on hyperlipidemia and mechanism are unclear. PURPOSE: To examine the therapeutic impact of ALB on hyperlipidemia whether it inhibits SREBPs to reduce lipid synthesis. STUDY DESIGN: HepG2, HL7702 cells, and C57BL/6J mice were used to explore the effect of ALB on hyperlipidemia and the molecular mechanism in vivo and in vitro. METHODS: Hyperlipidemia models were established using western diet (WD)-fed mice in vivo and oleic acid (OA)-induced hepatocytes in vitro. Western blot, real-time PCR and other biological methods verified that ALB regulated AMPK/mTOR/SREBPs to inhibit lipid synthesis. Cellular thermal shift assay (CETSA), molecular dynamics (MD), and ultrafiltration-LC/MS analysis were used to evaluate the binding of ALB to voltage-dependent anion channel protein-1 (VDAC1). RESULTS: ALB decreased TC, TG, LDL-c, and increased HDL-c in blood, thereby ameliorating liver damage. Gene set enrichment analysis (GSEA) indicated that ALB inhibited the biosynthesis of cholesterol and fatty acids. Consistently, ALB inhibited the protein expression of n-SREBPs and downstream genes. Mechanistically, the impact of ALB on SREBPs was dependent on the regulation of AMPK/mTOR, thereby impeding the transportation of SREBPs from endoplasmic reticulum (ER) to golgi apparatus (GA). Further investigations indicated that the activation of AMPK by ALB was independent on classical upstream CAMKK2 and LKB1. Instead, ALB resulted in a decrease in ATP levels and an increase in the ratios of ADP/ATP and AMP/ATP. CETSA, MD, and ultrafiltration-LC/MS analysis indicated that ALB interacted with VDAC1. Molecular docking revealed that ALB directly bound to VDAC1 by forming hydrogen bonds at the amino acid sites S196 and H184 in the ATP-binding region. Importantly, the thermal stabilization of ALB on VDAC1 was compromised when VDAC1 was mutated at S196 and H184, suggesting that these amino acids played a crucial role in the interaction. CONCLUSION: Our findings reveal that VDAC1 serves as the target of ALB, leading to the inhibition of lipid synthesis, presents potential target and candidate drugs for hyperlipidemia.


Subject(s)
AMP-Activated Protein Kinases , Cholestenones , Hyperlipidemias , TOR Serine-Threonine Kinases , Voltage-Dependent Anion Channel 1 , Animals , Humans , Male , Mice , Alisma/chemistry , AMP-Activated Protein Kinases/metabolism , Cholestenones/pharmacology , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Hyperlipidemias/drug therapy , Mice, Inbred C57BL , Molecular Docking Simulation , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Voltage-Dependent Anion Channel 1/metabolism
19.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474278

ABSTRACT

The small GTPase RAS acts as a plasma membrane-anchored intracellular neurotrophin counteracting neuronal degeneration in the brain, but the underlying molecular mechanisms are largely unknown. In transgenic mice expressing constitutively activated V12-Ha-RAS selectively in neurons, proteome analysis uncovered a 70% decrease in voltage-dependent anion channel-1 (VDAC-1) in the cortex and hippocampus. We observed a corresponding reduction in the levels of mRNA splicing variant coding for plasma membrane-targeted VDAC-1 (pl-VDAC-1) while mRNA levels for mitochondrial membrane VDAC-1 (mt-VDAC-1) remained constant. In primary cortical neurons derived from V12-Ha-RAS animals, a decrease in pl-VDAC-1 mRNA levels was observed, accompanied by a concomitant reduction in the ferricyanide reductase activity associated with VDAC-1 protein. Application of MEK inhibitor U0126 to transgenic cortical neurons reconstituted pl-VDAC-1 mRNA to reach wild-type levels. Excitotoxic glutamate-induced cell death was strongly attenuated in transgenic V12-Ha-RAS overexpressing cortical cultures. Consistently, a neuroprotective effect could also be achieved in wild-type cortical cultures by the extracellular application of channel-blocking antibody targeting the N-terminus of VDAC-1. These results may encourage novel therapeutic approaches toward blocking pl-VDAC-1 by monoclonal antibody targeting for complementary treatments in transplantation and neurodegenerative disease.


Subject(s)
Neurodegenerative Diseases , Voltage-Dependent Anion Channels , Mice , Animals , Voltage-Dependent Anion Channels/metabolism , Neuroprotection , Neurodegenerative Diseases/metabolism , ras Proteins/metabolism , Down-Regulation , Voltage-Dependent Anion Channel 1/metabolism , Cell Membrane/metabolism , Mice, Transgenic , RNA, Messenger/metabolism , Voltage-Dependent Anion Channel 2/metabolism
20.
Int J Med Sci ; 21(4): 755-764, 2024.
Article in English | MEDLINE | ID: mdl-38464835

ABSTRACT

Alcoholic liver disease (ALD) poses a substantial global health challenge, with its pathogenesis deeply rooted in mitochondrial dysfunction. Our study explores the pivotal roles of Phosphoglycerate mutase family member 5 (Pgam5) and Voltage-Dependent Anion Channel 1 (VDAC1) in the progression of ALD, providing novel insights into their interplay and impact on mitochondrial integrity. We demonstrate that Pgam5 silencing preserves hepatocyte viability and attenuates ethanol-induced apoptosis, underscoring its detrimental role in exacerbating hepatocyte dysfunction. Pgam5's influence extends to the regulation of VDAC1 oligomerization, a key process in mitochondrial permeability transition pore (mPTP) opening, mitochondrial swelling, and apoptosis initiation. Notably, the inhibition of VDAC1 oligomerization through Pgam5 silencing or pharmacological intervention (VBIT-12) significantly preserves mitochondrial function, evident in the maintenance of mitochondrial membrane potential and reduced reactive oxygen species (ROS) production. In vivo experiments using hepatocyte-specific Pgam5 knockout (Pgam5hKO) and control mice reveal that Pgam5 deficiency mitigates ethanol-induced liver histopathology, inflammation, lipid peroxidation, and metabolic disorder, further supporting its role in ALD progression. Our findings highlight the critical involvement of Pgam5 and VDAC1 in mitochondrial dysfunction in ALD, suggesting potential therapeutic targets. While promising, these findings necessitate further research, including human studies, to validate their clinical applicability and explore broader implications in liver diseases. Overall, our study provides a significant advancement in understanding ALD pathophysiology, paving the way for novel therapeutic strategies targeting mitochondrial pathways in ALD.


Subject(s)
Liver Diseases, Alcoholic , Mitochondrial Diseases , Animals , Humans , Mice , Ethanol/toxicity , Ethanol/metabolism , Liver Diseases, Alcoholic/genetics , Mitochondria/genetics , Mitochondria/metabolism , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism , Voltage-Dependent Anion Channel 1/genetics , Voltage-Dependent Anion Channel 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL