Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.674
Filter
1.
PLoS One ; 19(7): e0306411, 2024.
Article in English | MEDLINE | ID: mdl-38954720

ABSTRACT

Transperineal laser ablation is a minimally invasive thermo-ablative treatment for prostate cancer that requires the insertion of a needle for accurate optical fiber positioning. Needle insertion in soft tissues may cause tissue motion and deformation, resulting in tissue damage and needle positioning errors. In this study, we present a wasp-inspired self-propelled needle that uses pneumatic actuation to move forward with zero external push force, thus avoiding large tissue motion and deformation. The needle consists of six parallel 0.25-mm diameter Nitinol rods driven by a pneumatic actuation system. The pneumatic actuation system consists of Magnetic Resonance (MR) safe 3D-printed parts and off-the-shelf plastic screws. A self-propelled motion is achieved by advancing the needle segments one by one, followed by retracting them simultaneously. The advancing needle segment has to overcome a cutting and friction force, while the stationary needle segments experience a friction force in the opposite direction. The needle self-propels through the tissue when the friction force of the five stationary needle segments overcomes the sum of the friction and cutting forces of the advancing needle segment. We evaluated the prototype's performance in 10-wt% gelatin phantoms and ex vivo porcine liver tissue inside a preclinical Magnetic Resonance Imaging (MRI) scanner in terms of the slip ratio of the needle with respect to the phantom or liver tissue. Our results demonstrated that the needle was able to self-propel through the phantom and liver tissue with slip ratios of 0.912-0.955 and 0.88, respectively. The prototype is a promising step toward the development of self-propelled needles for MRI-guided transperineal laser ablation as a method to treat prostate cancer.


Subject(s)
Equipment Design , Needles , Animals , Male , Humans , Wasps/physiology , Printing, Three-Dimensional , Laser Therapy/methods , Swine , Prostatic Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods
2.
J Insect Sci ; 24(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38989842

ABSTRACT

Advances in molecular ecology can overcome many challenges in understanding host-parasitoid interactions. Genetic characterization of the key-players in systems helps to confirm species and identify trophic linkages essential for ecological service delivery by biological control agents; however, relatively few agroecosystems have been explored using this approach. Pecan production consists of a large tree perennial system containing an assortment of seasonal pests and natural enemies. As a first step to characterizing host-parasitoid associations in pecan food webs, we focus on aphid species and their parasitoids. Based on DNA barcoding of field-collected and reared specimens, we confirmed the presence of 3 species of aphid, one family of primary parasitoids, and 5 species of hyperparasitoids. By applying metabarcoding to field-collected aphid mummies, we were able to identify multiple species within each aphid mummy to unravel a complex food web of 3 aphids, 2 primary parasitoids, and upward of 8 hyperparasitoid species. The results of this study demonstrate that multiple hyperparasitoid species attack a single primary parasitoid of pecan aphids, which may have negative consequences for successful aphid biological control. Although further research is needed on a broader spatial scale, our results suggest multiple species exist in this system and may suggest a complex set of interactions between parasitoids, hyperparasitoids, and the 3 aphid species. This was the first time that many of these species have been characterized and demonstrates the application of novel approaches to analyze the aphid-parasitoid food webs in pecans and other tree crop systems.


Subject(s)
Aphids , Food Chain , Host-Parasite Interactions , Animals , Aphids/parasitology , Aphids/genetics , Carya/parasitology , DNA Barcoding, Taxonomic , Wasps/physiology , Wasps/genetics
4.
J Environ Manage ; 365: 121625, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959772

ABSTRACT

This is the first study providing long-term data on the dynamics of bees and wasps and their parasitoids for the evidence-based management of reed beds. Ten years ago, we identified Lipara (Chloropidae) - induced galls on common reed (Phragmites australis, Poaceae) as a critically important resource for specialized bees and wasps (Hymenoptera: Aculeata). We found that they were surprisingly common in relatively newly formed anthropogenic habitats, which elicited questions about the dynamics of bees and wasps and their parasitoids in newly formed reed beds of anthropogenic origin. Therefore, in the winter and spring of 2022/23, we sampled reed galls from the same set of reed beds of anthropogenic and natural origin as those in 2012/13. At 10 sites, the number of sampled galls was similar in both time periods (80-122% of the value from 2012/13); 12 sites experienced a moderate decline (30-79% of the value from 2012/13), and the number of galls at six sampling sites was only 3-23% of their abundance in 2012/13. Spontaneous development was associated with increasing populations. After 10 years of spontaneous development, the populations of bees and wasps (including their parasitoids) bound to Lipara-induced reed galls increased in abundance and species richness or remained at their previous levels, which was dependent on the sampling site. The only identified threat consisted of reclamation efforts. The effects of habitat age were limited, and the assemblages in habitats of near-natural and anthropogenic origin largely overlapped. However, several species were consistently present at lower abundances in the anthropogenic habitats and vice versa. In conclusion, we provided evidence-based support for the establishment of oligotrophic reed beds of anthropogenic origin as management tools providing sustainable habitats for specialized reed gall-associated aculeate hymenopteran inquilines, including the threatened species.


Subject(s)
Ecosystem , Wasps , Animals , Wasps/physiology , Hymenoptera/physiology , Poaceae , Bees/parasitology , Plant Tumors/parasitology
5.
Neotrop Entomol ; 53(4): 715-725, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955944

ABSTRACT

Several crops depend on both managed and wild bees to produce fruits and/or seeds, and the efficiency of numerous wild bees is higher than that of some managed species. Therefore, knowing and understanding the required resources for wild bees could enabled the establishment of management practices to increase their populations. Here, we provide information about the nesting biology of Megachile (Chrysosarus) jenseni, a Faboideae-specialist bee species. Based on observations from two populations occurring in contrasting agroecosystems, this bivoltine species showed common behavioral features shared with other species of subgenus Chrysosarus, such as the use of petal pieces and mud as nesting materials and the utilization of pre-existing cavities. Both studied populations showed a bivoltine life cycle with a rapid early-summer generation and a second generation, with most individuals overwintering. Main causes of mortality were unknown diseases (or other factors), causing the death of preimaginal stages. Moreover, this species was attacked by a cleptoparasite megachilid (Coelioxys remissa), a parasitic eulophid wasp (Melittobia sp.), and a bee fly (Anthrax oedipus). Finally, we discussed the potential use of this leaf-cutter bee species for alfalfa pollination.


Subject(s)
Medicago sativa , Nesting Behavior , Pollination , Animals , Bees/physiology , Female , Wasps/physiology , Brazil , Seasons
6.
Microb Ecol ; 87(1): 81, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829379

ABSTRACT

Koinobiont endoparasitoids regulate the physiology of their hosts through altering host immuno-metabolic responses, processes which function in tandem to shape the composition of the microbiota of these hosts. Here, we employed 16S rRNA and ITS amplicon sequencing to investigate whether parasitization by the parasitoid wasps, Diachasmimorpha longicaudata (Ashmaed) (Hymenoptera: Braconidae) and Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae), induces gut dysbiosis and differentially alter the gut microbial (bacteria and fungi) communities of an important horticultural pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further investigated the composition of bacterial communities of adult D. longicaudata and P. cosyrae to ascertain whether the adult parasitoids and parasitized host larvae share microbial taxa through transmission. We demonstrated that parasitism by D. longicaudata induced significant gut perturbations, resulting in the colonization and increased relative abundance of pathogenic gut bacteria. Some pathogenic bacteria like Stenotrophomonas and Morganella were detected in both the guts of D. longicaudata-parasitized B. dorsalis larvae and adult D. longicaudata wasps, suggesting a horizontal transfer of microbes from the parasitoid to the host. The bacterial community of P. cosyrae adult wasps was dominated by Arsenophonus nasoniae, whereas that of D. longicaudata adults was dominated by Paucibater spp. and Pseudomonas spp. Parasitization by either parasitoid wasp was associated with an overall reduction in fungal diversity and evenness. These findings indicate that unlike P. cosyrae which is avirulent to B. dorsalis, parasitization by D. longicaudata induces shifts in the gut bacteriome of B. dorsalis larvae to a pathobiont-dominated community. This mechanism possibly enhances its virulence against the pest, further supporting its candidacy as an effective biocontrol agent of this frugivorous tephritid fruit fly pest.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Larva , RNA, Ribosomal, 16S , Tephritidae , Wasps , Animals , Tephritidae/microbiology , Tephritidae/parasitology , Wasps/microbiology , Wasps/physiology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Larva/microbiology , Larva/parasitology , Larva/growth & development , RNA, Ribosomal, 16S/genetics , Fungi/genetics , Fungi/physiology , Host-Parasite Interactions , Microbiota , Dysbiosis/microbiology , Dysbiosis/parasitology
7.
PLoS One ; 19(6): e0306204, 2024.
Article in English | MEDLINE | ID: mdl-38941328

ABSTRACT

Niche evolution refers to the process by which species undergo changes in ecological interactions, as well as their ability to disperse over time. Our study focuses on the widely distributed neotropical genus of social wasps, Synoeca (Hymenoptera, Vespidae, Epiponini). We use ecological niche modeling to investigate the niche evolution of this insects, to explore how species have evolved within and across distinct environmental boundaries, as well as to explore the overlap, equivalence, and similarity between their niches. Our analysis of Predicted Niche Occupancy reveals that species occupy heterogeneous niches in relation to temperature, precipitation, and altitude, similar to the patterns observed in the analysis of the evolutionary history of climate tolerances, which shows that species have evolved to occupy distinct niche ranges. In addition, our niche comparisons indicate that the species do not share similar niches with each other. All these results suggest that Phylogenetic Niche Conservatism may be playing a significant role as a process contributing to the allopatric pattern observed in this genus. This study represents the first investigation of niche evolution in Vespidae, providing valuable insights for future research into the evolutionary dynamics of insects.


Subject(s)
Biological Evolution , Climate , Ecosystem , Phylogeny , Wasps , Animals , Wasps/physiology
8.
Elife ; 132024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904661

ABSTRACT

The success of an organism depends on the molecular and ecological adaptations that promote its beneficial fitness. Parasitoids are valuable biocontrol agents for successfully managing agricultural pests, and they have evolved diversified strategies to adapt to both the physiological condition of hosts and the competition of other parasitoids. Here, we deconstructed the parasitic strategies in a highly successful parasitoid, Trichopria drosophilae, which parasitizes a broad range of Drosophila hosts, including the globally invasive species D. suzukii. We found that T. drosophilae had developed specialized venom proteins that arrest host development to obtain more nutrients via secreting tissue inhibitors of metalloproteinases (TIMPs), as well as a unique type of cell-teratocytes-that digest host tissues for feeding by releasing trypsin proteins. In addition to the molecular adaptations that optimize nutritional uptake, this pupal parasitoid has evolved ecologically adaptive strategies including the conditional tolerance of intraspecific competition to enhance parasitic success in older hosts and the obligate avoidance of interspecific competition with larval parasitoids. Our study not only demystifies how parasitoids weaponize themselves to colonize formidable hosts but also provided empirical evidence of the intricate coordination between the molecular and ecological adaptations that drive evolutionary success.


Subject(s)
Adaptation, Physiological , Drosophila , Host-Parasite Interactions , Wasps , Animals , Wasps/physiology , Drosophila/parasitology , Pupa/parasitology , Larva/parasitology , Larva/metabolism
9.
Int J Mol Sci ; 25(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38928098

ABSTRACT

Aphidius gifuensis is the dominant parasitic natural enemy of aphids. Elucidating the molecular mechanism of host recognition of A. gifuensis would improve its biological control effect. Chemosensory proteins (CSPs) play a crucial role in insect olfactory systems and are mainly involved in host localization. In this study, a total of nine CSPs of A. gifuensis with complete open reading frames were identified based on antennal transcriptome data. Phylogenetic analysis revealed that AgifCSPs were mainly clustered into three subgroups (AgifCSP1/2/7/8, AgifCSP3/9, and AgifCSP4/5/6). AgifCSP2/5 showed high expression in the antennae of both sexes. Moreover, AgifCSP5 was found to be specifically expressed in the antennae. In addition, fluorescent binding assays revealed that AifCSP5 had greater affinities for 7 of 32 volatile odor molecules from various sources. Molecular docking and site-directed mutagenesis results revealed that the residue at which AgifCSP5 binds to these seven plant volatiles is Tyr75. Behavior tests further confirmed that trans-2-nonenal, one of the seven active volatiles in the ligand binding test, significantly attracted female adults at a relatively low concentration of 10 mg/mL. In conclusion, AgifCSP5 may be involved in locating aphid-infested crops from long distances by detecting and binding trans-2-nonenal. These findings provide a theoretical foundation for further understanding the olfactory recognition mechanisms and indirect aphid localization behavior of A. gifuensis from long distances by first identifying the host plant of aphids.


Subject(s)
Aphids , Insect Proteins , Phylogeny , Animals , Aphids/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Female , Male , Host-Parasite Interactions/genetics , Arthropod Antennae/metabolism , Molecular Docking Simulation , Amino Acid Sequence , Receptors, Odorant/genetics , Receptors, Odorant/chemistry , Receptors, Odorant/metabolism , Wasps/genetics , Wasps/physiology
10.
J Insect Physiol ; 156: 104667, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38914156

ABSTRACT

Temperature is a crucial factor in many physiological processes, especially in small ectotherms whose body temperature is highly influenced by ambient temperature. Polistes (paper wasps) is a genus of primitively eusocial wasps found in widely varying thermal environments throughout the world. Paper wasps construct open-faced combs in which the brood is exposed to varying ambient temperatures. The Heat Shock Response is a physiological mechanism that has been shown to help cope with thermal stress. We investigated the expression of heat shock proteins in different life stages of three species of Polistes from different climates with the aim of deducing adaptive patterns. This was done by assaying heat shock protein (hsp70, hsp83, hsc70) expression during control conditions (25 °C) or a heat insult (35 or 45 °C) in individuals collected from natural populations in Alpine, Temperate, or Mediterranean climates. Basal expression of hsc70 and hsp83 was found to be high, while hsp70 and hsp83 expression was found to be highly responsive to severe heat stress. As expression levels varied based on species, geographical origin, and life stage as well as between heat shock proteins, the Heat Shock Response of Polistes was found to be complex. The results suggest that adaptive utilization of the heat shock response contributes to the ability of Polistes spp. to inhabit widely different thermal environments.


Subject(s)
Heat-Shock Proteins , Heat-Shock Response , Wasps , Animals , Heat-Shock Response/physiology , Wasps/physiology , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Climate , Insect Proteins/metabolism , Insect Proteins/genetics , Hot Temperature , Female
11.
Curr Biol ; 34(11): R547-R549, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834030

ABSTRACT

The Wolbachia strain that infects the parasitoid wasp Encarsia formosa induces female-producing parthenogenesis. A new study shows that a Wolbachia-encoded gene has replaced the use of the ancestral wasp homologue that normally controls sexual reproduction, resulting in parthenogenesis.


Subject(s)
Parthenogenesis , Wasps , Wolbachia , Wolbachia/physiology , Wolbachia/genetics , Animals , Wasps/microbiology , Wasps/physiology , Female , Reproduction
12.
Proc Natl Acad Sci U S A ; 121(23): e2322674121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768327

ABSTRACT

Predators and prey benefit from detecting sensory cues of each other's presence. As they move through their environment, terrestrial animals accumulate electrostatic charge. Because electric charges exert forces at a distance, a prey animal could conceivably sense electrical forces to detect an approaching predator. Here, we report such a case of a terrestrial animal detecting its predators by electroreception. We show that predatory wasps are charged, thus emit electric fields, and that caterpillars respond to such fields with defensive behaviors. Furthermore, the mechanosensory setae of caterpillars are deflected by these electrostatic forces and are tuned to the wingbeat frequency of their insect predators. This ability unveils a dimension of the sensory interactions between prey and predators and is likely widespread among terrestrial animals.


Subject(s)
Predatory Behavior , Wasps , Animals , Predatory Behavior/physiology , Wasps/physiology , Air , Static Electricity
13.
PLoS Biol ; 22(5): e3002299, 2024 May.
Article in English | MEDLINE | ID: mdl-38713712

ABSTRACT

Activation of immune cells requires the remodeling of cell metabolism in order to support immune function. We study these metabolic changes through the infection of Drosophila larvae by parasitoid wasp. The parasitoid egg is neutralized by differentiating lamellocytes, which encapsulate the egg. A melanization cascade is initiated, producing toxic molecules to destroy the egg while the capsule also protects the host from the toxic reaction. We combined transcriptomics and metabolomics, including 13C-labeled glucose and trehalose tracing, as well as genetic manipulation of sugar metabolism to study changes in metabolism, specifically in Drosophila hemocytes. We found that hemocytes increase the expression of several carbohydrate transporters and accordingly uptake more sugar during infection. These carbohydrates are metabolized by increased glycolysis, associated with lactate production, and cyclic pentose phosphate pathway (PPP), in which glucose-6-phosphate is re-oxidized to maximize NADPH yield. Oxidative PPP is required for lamellocyte differentiation and resistance, as is systemic trehalose metabolism. In addition, fully differentiated lamellocytes use a cytoplasmic form of trehalase to cleave trehalose to glucose and fuel cyclic PPP. Intracellular trehalose metabolism is not required for lamellocyte differentiation, but its down-regulation elevates levels of reactive oxygen species, associated with increased resistance and reduced fitness. Our results suggest that sugar metabolism, and specifically cyclic PPP, within immune cells is important not only to fight infection but also to protect the host from its own immune response and for ensuring fitness of the survivor.


Subject(s)
Glucose , Hemocytes , Pentose Phosphate Pathway , Trehalose , Animals , Trehalose/metabolism , Glucose/metabolism , Hemocytes/metabolism , Larva/metabolism , Larva/parasitology , Drosophila melanogaster/metabolism , Drosophila melanogaster/parasitology , Disease Resistance , Glycolysis , Host-Parasite Interactions , Wasps/metabolism , Wasps/physiology , Cell Differentiation , Drosophila/metabolism , Drosophila/parasitology
14.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38809687

ABSTRACT

Huanglongbing (HLB), a devastating citrus disease caused by Candidatus Liberibacter asiaticus, is efficiently vectored by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Tamarixia radiata (Waterston) plays a crucial role as an ectoparasitoid, preying on D. citri nymphs. By collecting and identifying headspace volatiles from fifth instar nymphs of D. citri using a gas chromatograph-mass spectrometer (GC-MS), we obtained a collection of 9 volatile compounds. These compounds were subsequently chosen to investigate the electrophysiological and behavioral responses of female T. radiata. At a concentration of 10 µg/µl, 9 compounds were compared with cis-3-hexen-1-ol (control), resulting in trans-2-nonenal inducing the highest relative electroantennogram (EAG) value, followed by hexanal, heptanal, n-heptadecane, tetradecanal, n-tetradecane, n-pentadecane, 1-tetradecanol, and 1-dodecanol. The top 5 EAG responses of female T. radiata to these compounds were further investigated through EAG dose-response experiments. The results showed positive dose-responses as concentrations increased from 0.01 to 10 µg/µl. In Y-tube olfactometer bioassays, female T. radiata exhibited a preference for specific compounds. They were significantly attracted to tetradecanal at a concentration of 10 µg/µl and trans-2-nonenal at 0.01 µg/µl, while no significant attraction was observed toward hexanal, heptanal, or n-heptadecane. Our report is the first to demonstrate that volatiles produced by D. citri nymphs attract T. radiata, which suggests that this parasitoid may utilize nymph volatiles to locate its host.


Subject(s)
Hemiptera , Nymph , Volatile Organic Compounds , Animals , Nymph/growth & development , Nymph/physiology , Hemiptera/physiology , Female , Wasps/physiology , Electrophysiological Phenomena , Behavior, Animal/drug effects , Arthropod Antennae/physiology , Arthropod Antennae/drug effects
15.
PLoS One ; 19(5): e0304220, 2024.
Article in English | MEDLINE | ID: mdl-38771894

ABSTRACT

There is increasing evidence that plant-associated microorganisms play important roles in defending plants against insect herbivores through both direct and indirect mechanisms. While previous research has shown that these microbes can modify the behaviour and performance of insect herbivores and their natural enemies, little is known about their effect on egg parasitoids which utilize oviposition-induced plant volatiles to locate their hosts. In this study, we investigated how root inoculation of sweet pepper (Capsicum annuum) with the plant-beneficial fungi Beauveria bassiana ARSEF 3097 or Trichoderma harzianum T22 influences the olfactory behaviour of the egg parasitoid Trissolcus basalis following egg deposition by its host Nezara viridula. Olfactometer assays showed that inoculation by T. harzianum significantly enhanced the attraction of the egg parasitoid, while B. bassiana had the opposite effect. However, no variation was observed in the chemical composition of plant volatiles. Additionally, fitness-related traits of the parasitoids (wasp body size) were not altered by any of the two fungi, suggesting that fungal inoculation did not indirectly affect host quality. Altogether, our results indicate that plant inoculation with T. harzianum T22 can be used to enhance attraction of egg parasitoids, which could be a promising strategy in manipulating early plant responses against pest species and improving sustainable crop protection. From a more fundamental point of view, our findings highlight the importance of taking into account the role of microorganisms when studying the intricate interactions between plants, herbivores and their associated egg parasitoids.


Subject(s)
Beauveria , Capsicum , Oviposition , Wasps , Animals , Beauveria/physiology , Capsicum/parasitology , Capsicum/microbiology , Wasps/physiology , Volatile Organic Compounds/metabolism , Female , Trichoderma/physiology , Host-Parasite Interactions , Ovum , Herbivory
17.
J Econ Entomol ; 117(3): 673-682, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38700485

ABSTRACT

Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and Spodoptera litura (Fabricius) are the main pests on corn (Poaceae: Gramineae). The performance of the larval wasp, Microplitis pallidipes Szépligeti (Hymenoptera: Braconidae), was reported on S. frugiperda and S. litura. In this study, we evaluated host selectivity, constructed an age-stage, 2-sex life table, and assessed the pest control potential of M. pallidipes against these 2 pests under laboratory conditions. In a 2-choice host preference experiment, M. pallidipes exhibited a stronger preference for S. frugiperda over S. litura and a distinct preference for second instars. We also investigated the parasitism of females that were either unfed or fed with 10% honey-water solution under different host densities and found that the highest parasitism rate was observed when M. pallidipes were fed with honey-water solution on the first day after mating and a presented female wasp:host ratio of 1:90. In a nonselective assay, M. pallidipes successfully completed a full generation on both hosts. However, the parasitoids exhibited higher fitness and population growth potential when reared on S. frugiperda, with a net reproductive rate (R0) of 24.24, an intrinsic rate of increase (r) of 0.20 per day, a finite rate of increase (λ) of 1.23 per day, and a mean generation time (T) of 15.69 days. This study elucidates the performance of M. pallidipes on 2 Spodoptera host species and offers insights into its biological control potential on lepidopteran pests.


Subject(s)
Host-Parasite Interactions , Larva , Pest Control, Biological , Spodoptera , Wasps , Animals , Spodoptera/parasitology , Spodoptera/growth & development , Spodoptera/physiology , Wasps/physiology , Larva/growth & development , Larva/physiology , Larva/parasitology , Female , Male
18.
J Agric Food Chem ; 72(19): 10828-10841, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691839

ABSTRACT

Chemosensory proteins (CSPs) constitute a class of olfactory proteins localized in insect sensory organs that serve a crucial function in decoding external chemical stimuli. This study aims to elucidate the involvement of CrufCSP3 in olfactory perception within the context of Cotesia ruficrus, an indigenous endoparasitoid targeting the invasive pest Spodoptera frugiperda. Through fluorescence-competitive binding assays and site-directed mutagenesis, we pinpointed four amino acids as pivotal residues involved in the interaction between CrufCSP3 and five host-related compounds. Subsequent RNA interference experiments targeting CrufCSP3 unveiled a reduced sensitivity to specific host-related compounds and a decline in the parasitism rate of the FAW larvae. These findings unequivocally indicate the essential role of CrufCSP3 in the chemoreception process of C. ruficrus. Consequently, our study not only sheds light on the functional importance of CSPs in parasitic wasp behavior but also contributes to the development of eco-friendly and efficacious wasp behavior modifiers for effectively mitigating pest population surges.


Subject(s)
Insect Proteins , Spodoptera , Wasps , Animals , Wasps/chemistry , Wasps/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Larva/growth & development , Host-Parasite Interactions , Olfactory Perception
19.
Curr Biol ; 34(11): 2359-2372.e9, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38692276

ABSTRACT

Host reproduction can be manipulated by bacterial symbionts in various ways. Parthenogenesis induction is the most effective type of reproduction manipulation by symbionts for their transmission. Insect sex is determined by regulation of doublesex (dsx) splicing through transformer2 (tra2) and transformer (tra) interaction. Although parthenogenesis induction by symbionts has been studied since the 1970s, its underlying molecular mechanism is unknown. Here we identify a Wolbachia parthenogenesis-induction feminization factor gene (piff) that targets sex-determining genes and causes female-producing parthenogenesis in the haplodiploid parasitoid Encarsia formosa. We found that Wolbachia elimination repressed expression of female-specific dsx and enhanced expression of male-specific dsx, which led to the production of wasp haploid male offspring. Furthermore, we found that E. formosa tra is truncated and non-functional, and Wolbachia has a functional tra homolog, termed piff, with an insect origin. Wolbachia PIFF can colocalize and interact with wasp TRA2. Moreover, Wolbachia piff has coordinated expression with tra2 and dsx of E. formosa. Our results demonstrate the bacterial symbiont Wolbachia has acquired an insect gene to manipulate the host sex determination cascade and induce parthenogenesis in wasps. This study reveals insect-to-bacteria horizontal gene transfer drives the evolution of animal sex determination systems, elucidating a striking mechanism of insect-microbe symbiosis.


Subject(s)
Gene Transfer, Horizontal , Symbiosis , Wasps , Wolbachia , Animals , Wolbachia/physiology , Wolbachia/genetics , Wasps/physiology , Wasps/microbiology , Wasps/genetics , Symbiosis/genetics , Female , Male , Parthenogenesis/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Sex Determination Processes/genetics
20.
Oecologia ; 205(1): 215-227, 2024 May.
Article in English | MEDLINE | ID: mdl-38801540

ABSTRACT

Mutualisms are consumer-resource interactions, in which goods and services are exchanged. Biological market theory states that exchanges should be regulated by both partners. However, most studies on mutualisms are one-sided, focusing on the control exercised by host organisms on their symbionts. In the brood-site pollination mutualism between fig trees and their symbiont wasp pollinators, galled flowers are development sites for pollinator larvae and are exchanged for pollination services. We determined if pollinator galls influenced resource allocation to fig inflorescences called syconia and considered feedbacks from the host tree. We experimentally produced syconia containing only seeds (S), only pollinator galls (G) or seeds and galls (SG) with varying number of introduced female pollinator wasps, i.e., foundress wasps. Biomass allocation to syconia was affected by foundress numbers and treatment groups; SG treatments received highest biomass allocation at low foundress numbers, and both G and SG treatments at high foundress numbers. Seeds are important determinants of allocation at low foundress numbers; galls are likely more influential at high foundress numbers. Most allocation in the G and SG treatment was to the syconium wall, likely as protection from parasitoids and temperature/humidity fluctuations. Dry mass of individual seeds and wasps (except at low foundress numbers) was unchanged between treatment groups, indicating seeds and wasps regulate resource flow into them, with lower flow into galls containing the smaller males compared to females commensurate with sexual dimorphism. We demonstrate the importance of considering the direct role of symbionts in accessing resources and controlling exchanges within mutualisms.


Subject(s)
Ficus , Pollination , Symbiosis , Wasps , Wasps/physiology , Animals , Plant Tumors , Seeds , Female , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL
...