Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34.504
1.
J Water Health ; 22(5): 811-824, 2024 May.
Article En | MEDLINE | ID: mdl-38822461

Wastewater surveillance has been a tool for public health officials throughout the COVID-19 pandemic. Universities established pandemic response committees to facilitate safe learning for students, faculty, and staff. These committees met to analyze both wastewater and clinical data to propose mitigation strategies to limit the spread of COVID-19. This paper reviews the initial efforts of utilizing campus data inclusive of wastewater surveillance for SARS-CoV-2 RNA concentrations, clinical case data from university response teams, and mitigation strategies from Grand Valley State University in West Michigan (population 21,648 students) and Oakland University in East Michigan (population 18,552 students) from November 2020 to April 2022. Wastewater positivity rates for both universities ranged from 32.8 to 46.8%. Peak viral signals for both universities directly corresponded to variant points of entry within the campus populations from 2021 to 2022. It was found that the organization of clinical case data and variability of wastewater testing data were large barriers for both universities to effectively understand disease dynamics within the university population. We review the initial efforts of onboarding wastewater surveillance and provide direction for structuring ongoing surveillance workflows and future epidemic response strategies based on those that led to reduced viral signals in campus wastewater.


COVID-19 , SARS-CoV-2 , Wastewater , Universities , Wastewater/virology , Wastewater/analysis , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Michigan/epidemiology , Public Health
2.
J Water Health ; 22(5): 887-895, 2024 May.
Article En | MEDLINE | ID: mdl-38822467

Etomidate (ET), a hypnotic agent used for the induction of anesthesia, is rapidly metabolized to etomidate acid (ETA) in the liver. Recently, ET has become one of the most serious alternative drugs of abuse in China. Therefore, an urgent need exists to develop a fast and convenient analysis method for monitoring ET. The current work presents a simple, fast, and sensitive direct injection method for the determination of ET and ETA in wastewater. After the optimization of the ultra-performance liquid chromatography-tandem mass spectrometry and sample filtration conditions, the method exhibited satisfactory limits of detection (1 ng/L) and good filtration loss. The validated method was successfully applied to determine the concentrations of ET and ETA in wastewater samples (n = 245) from several wastewater treatment plants in China. The concentrations of the targets in positive samples ranged from less than the lower limits of quantitation to 47.71 ng/L. The method can meet ET monitoring and high-throughput analysis requirements.


Etomidate , Tandem Mass Spectrometry , Wastewater , Water Pollutants, Chemical , Etomidate/analysis , Tandem Mass Spectrometry/methods , Wastewater/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Chromatography, High Pressure Liquid/methods , China , Hypnotics and Sedatives/analysis , Limit of Detection
3.
J Water Health ; 22(5): 825-834, 2024 May.
Article En | MEDLINE | ID: mdl-38822462

Hospital wastewater has been identified as a hotspot for the emergence and transmission of multidrug-resistant (MDR) pathogens that present a serious threat to public health. Therefore, we investigated the current status of antibiotic resistance as well as the phenotypic and genotypic basis of biofilm formation in Pseudomonas aeruginosa from hospital wastewater in Dhaka, Bangladesh. The disc diffusion method and the crystal violet assay were performed to characterize antimicrobial resistance and biofilm formation, respectively. Biofilm and integron-associated genes were amplified by the polymerase chain reaction. Isolates exhibited varying degrees of resistance to different antibiotics, in which >80% of isolates showed sensitivity to meropenem, amikacin, and gentamicin. The results indicated that 93.82% of isolates were MDR and 71 out of 76 MDR isolates showed biofilm formation activities. We observed the high prevalence of biofilm-related genes, in which algD+pelF+pslD+ (82.7%) was found to be the prevalent biofilm genotypic pattern. Sixteen isolates (19.75%) possessed class 1 integron (int1) genes. However, statistical analysis revealed no significant association between biofilm formation and multidrug resistance (χ2 = 0.35, P = 0.55). Taken together, hospital wastewater in Dhaka city may act as a reservoir for MDR and biofilm-forming P. aeruginosa, and therefore, the adequate treatment of wastewater is recommended to reduce the occurrence of outbreaks.


Anti-Bacterial Agents , Biofilms , Drug Resistance, Multiple, Bacterial , Hospitals , Pseudomonas aeruginosa , Wastewater , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/genetics , Wastewater/microbiology , Bangladesh/epidemiology , Anti-Bacterial Agents/pharmacology , Integrons , Microbial Sensitivity Tests
4.
Water Sci Technol ; 89(10): 2646-2660, 2024 May.
Article En | MEDLINE | ID: mdl-38822605

The objective of this study was to assess, through simulation, conductivity variations in pulp and paper circuits when recycling waste water treatment plant (WWTP) effluent with a view to reducing fresh water use in a tissue mill. WWTP effluent was recycled in the process for different uses. A PS2000 digital model coupled with the PHREEQC chemical simulation engine was used to identify and quantify the main sources of conductivity: caustic soda, sodium bisulphite and acetate production through anaerobic microbial activity. Recycling WWTP effluent enables fresh water uptake to be reduced by 50% when used for pulp dilution or white water, by 81% when used in paper machine showers, and up to 96% for all uses combined. As fresh water use decreases, circuit closure increases along with, consequently, COD and conductivity. COD build-up can be controlled by best available techniques application. Recycling WWTP effluent has a strong impact on conductivity. However, the impact of high conductivity levels on additives performance is limited in the case of the mill studied. Acetate concentration could be controlled by better agitation of tanks or the introduction of air by pumps. Furthermore, limiting acetate production can reduce the need for caustic soda to control the pH.


Industrial Waste , Paper , Recycling , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Recycling/methods , Electric Conductivity , Models, Theoretical , Wastewater/chemistry
5.
Water Sci Technol ; 89(10): 2661-2675, 2024 May.
Article En | MEDLINE | ID: mdl-38822606

The treatment of wastewater is highly challenging due to large fluctuations in flowrates, pollutants, and variable influent water compositions. A sequencing batch reactor (SBR) and modified SBR cycle-step-feed process (SSBR) configuration are studied in this work to effectively treat municipal wastewater while simultaneously removing nitrogen and phosphorus. To control the amount of dissolved oxygen in an SBR, three axiomatic control strategies (proportional integral (PI), fractional proportional integral (FPI), and fuzzy logic controllers) are presented. Relevant control algorithms have been designed using plant data with the models of SBR and SSBR based on ASM2d framework. On comparison, FPI showed a significant reduction in nutrient levels and added an improvement in effluent quality. The overall effluent quality is improved by 0.86% in FPI in comparison with PI controller. The SSBR, which was improved by precisely optimizing nutrient supply and aeration, establishes a delicate equilibrium. This refined method reduces oxygen requirements while reliably sustaining important biological functions. Focusing solely on the FPI controller's performance in terms of total air volume consumption, the step-feed SBR mechanism achieves an excellent 11.04% reduction in consumption.


Bioreactors , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Wastewater , Phosphorus/analysis , Water Purification/methods , Nitrogen/analysis , Water Pollutants, Chemical/analysis , Oxygen/analysis
6.
Water Sci Technol ; 89(10): 2685-2702, 2024 May.
Article En | MEDLINE | ID: mdl-38822608

This paper evaluates the performance and potential of a full-scale hybrid multi-soil-layering (MSL) system for the treatment of domestic wastewater for landscape irrigation reuse. The system integrates a solar septic tank and sequential vertical flow MSL and horizontal flow MSL components with alternating layers of gravel and soil-based material. It operates at a hydraulic loading rate of 250 L/m2/day. Results show significant removal of pollutants and pathogens, including total suspended solids (TSS) (97%), chemical oxygen demand (COD) (88.57%), total phosphorus (TP) (79.93%), and total nitrogen (TN) (88.49%), along with significant reductions in fecal bacteria indicators (4.21 log for fecal coliforms and 3.90 log for fecal streptococci) and the pathogen Staphylococcus sp. (2.43 log). The principal component analysis confirms the effectiveness of the system in reducing the concentrations of NH4, COD, TP, PO4, fecal coliforms, fecal streptococci, and fecal staphylococci, thus supporting the reliability of the study. This work highlights the promising potential of the hybrid MSL technology for the treatment of domestic wastewater, especially in arid regions such as North Africa and the Middle East, to support efforts to protect the environment and facilitate the reuse of wastewater for landscape irrigation and agriculture.


Wastewater , Morocco , Wastewater/microbiology , Waste Disposal, Fluid/methods , Soil/chemistry , Phosphorus/analysis , Water Purification/methods , Nitrogen/analysis , Cities , Water Pollutants, Chemical
7.
Water Sci Technol ; 89(10): 2716-2731, 2024 May.
Article En | MEDLINE | ID: mdl-38822610

The anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) is challenging due to its toxic effect on the microbes. Microbial electrolysis cells (MECs), with their excellent characteristics of anodic and cathodic biofilms, can be a viable way to enhance the biodegradation of PAHs. This work assessed different cathode materials (carbon brush and nickel foam) combined with bioaugmentation on typical PAHs-naphthalene biodegradation and analyzed the inhibition amendment mechanism of microbial biofilms in MECs. Compared with the control, the degradation efficiency of naphthalene with the nickel foam cathode supplied with bioaugmentation dosage realized a maximum removal rate of 94.5 ± 3.2%. The highest daily recovered methane yield (227 ± 2 mL/gCOD) was also found in the nickel foam cathode supplied with bioaugmentation. Moreover, the microbial analysis demonstrated the significant switch of predominant PAH-degrading microorganisms from Pseudomonas in control to norank_f_Prolixibacteraceae in MECs. Furthermore, hydrogentrophic methanogenesis prevailed in MEC reactors, which is responsible for methane production. This study proved that MEC combined with bioaugmentation could effectively alleviate the inhibition of PAH, with the nickel foam cathode obtaining the fastest recovery rate in terms of methane yield.


Biodegradation, Environmental , Electrolysis , Polycyclic Aromatic Hydrocarbons , Wastewater , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Bioreactors , Bacteria/metabolism , Electrodes , Biofilms
8.
Water Sci Technol ; 89(10): 2732-2745, 2024 May.
Article En | MEDLINE | ID: mdl-38822611

In this work, microalgae cultivation trials were carried out in a membrane bioreactor to investigate fouling when the cultures of Chlorellavulgaris were grown under mixotrophic, heterotrophic, and phototrophic cultivation regimes. The Chlorella cultures were cultivated in wastewater as a source of nutrients that contained a high concentration of ammonium. In mixotrophic cultivation trials, the results showed that the elevated contents of carbohydrates in the soluble microbial product and proteins in extracellular polymeric substances probably initiated membrane fouling. In this case, the highest protein content was also found in extracellular polymeric substances due to the high nitrogen removal rate. Consequently, transmembrane pressure significantly increased compared to the phototrophic and heterotrophic regimes. The data indicated that cake resistance was the main cause of fouling in all cultivations. Higher protein content in the cake layer made the membrane surface more hydrophobic, while carbohydrates had the opposite effect. Compared to a mixotrophic culture, a phototrophic culture had a larger cell size and higher hydrophobicity, leading to less membrane fouling. Based on our previous data, the highest ammonia removal rate was reached in the mixotrophic cultures; nevertheless, membrane fouling appeared to be the fundamental problem.


Ammonium Compounds , Bioreactors , Membranes, Artificial , Microalgae , Wastewater , Microalgae/metabolism , Microalgae/growth & development , Wastewater/chemistry , Ammonium Compounds/metabolism , Heterotrophic Processes , Waste Disposal, Fluid/methods , Biofouling , Chlorella/growth & development , Chlorella/metabolism , Phototrophic Processes
9.
Water Sci Technol ; 89(10): 2839-2850, 2024 May.
Article En | MEDLINE | ID: mdl-38822618

Antibiotics release into the water environment through sewage discharge is a significant environmental concern. In the present study, we investigated the removal of ciprofloxacin (CIP) in simulated sewage by biological aeration filter (BAF) equipped with Fe3O4-modified zeolite (Fe3O4@ZF). Fe3O4@ZF were prepared with impregnation method, and the Fe3O4 particles were successfully deposited on the surface of ZF in an amorphous form according to the results of XPS and XRD analysis. The modification also increased the specific surface area (from 16.22 m²/g to 22 m²/g) and pore volume (from 0.0047 cm³/g to 0.0063 cm³/g), improving the adsorption efficiency of antibiotics. Fe3O4 modified ZF improved the treatment performance significantly, and the removal efficiency of CIP in BAF-Fe3O4@ZF was 79%±2.4%. At 10ml/L CIP, the BAF-Fe3O4@ZF reduced the relative abundances of antibiotics resistance genes (ARGs) int, mexA, qnrB and qnrS in the effluent by 57.16%, 39.59%, 60.22%, and 20.25%, respectively, which effectively mitigate the dissemination risk of ARGs. The modification of ZF increased CIP-degrading bacteria abundance, such as Rhizobium and Deinococcus-Thermus, and doubled bacterial ATP activity, promoting CIP degradation. This study offers a viable, efficient method to enhance antibiotic treatment and prevent leakage via sewage discharge.


Anti-Bacterial Agents , Ciprofloxacin , Wastewater , Water Pollutants, Chemical , Zeolites , Zeolites/chemistry , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Wastewater/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Filtration/methods , Water Purification/methods , Waste Disposal, Fluid/methods , Adsorption , Drug Resistance, Microbial/genetics , Genes, Bacterial , Drug Resistance, Bacterial/genetics
10.
Microbes Environ ; 39(2)2024.
Article En | MEDLINE | ID: mdl-38839365

Shigella species are a group of highly transmissible Gram-negative pathogens. Increasing reports of infection with extensively drug-resistant varieties of this stomach bug has convinced the World Health Organization to prioritize Shigella for novel therapeutic interventions. We herein coupled the whole-genome sequencing of a natural isolate of Shigella flexneri with a pangenome ana-lysis to characterize pathogen genomics within this species, which will provide us with an insight into its existing genomic diversity and highlight the root causes behind the emergence of quick vaccine escape variants. The isolated novel strain of S. flexneri contained ~4,500 protein-coding genes, 57 of which imparted resistance to antibiotics. A comparative pan-genomic ana-lysis revealed genomic variability of ~64%, the shared conservation of core genes in central metabolic processes, and the enrichment of unique/accessory genes in virulence and defense mechanisms that contributed to much of the observed antimicrobial resistance (AMR). A pathway ana-lysis of the core genome mapped 22 genes to 2 antimicrobial resistance pathways, with the bulk coding for multidrug efflux pumps and two component regulatory systems that are considered to work synergistically towards the development of resistance phenotypes. The prospective evolvability of Shigella species as witnessed by the marked difference in genomic content, the strain-specific essentiality of unique/accessory genes, and the inclusion of a potent resistance mechanism within the core genome, strengthens the possibility of novel serotypes emerging in the near future and emphasizes the importance of tracking down genomic diversity in drug/vaccine design and AMR governance.


Anti-Bacterial Agents , Genome, Bacterial , Genomics , Shigella flexneri , Wastewater , Shigella flexneri/genetics , Shigella flexneri/isolation & purification , Shigella flexneri/classification , Shigella flexneri/drug effects , Genome, Bacterial/genetics , Wastewater/microbiology , Anti-Bacterial Agents/pharmacology , Phylogeny , Whole Genome Sequencing , Drug Resistance, Multiple, Bacterial/genetics , Virulence/genetics
11.
Sci Rep ; 14(1): 12641, 2024 06 02.
Article En | MEDLINE | ID: mdl-38825663

In many countries with wastewater irrigation and intensive use of fertilizers (minerals and organics), heavy metal deposition by crops is regarded as a major environmental concern. A study was conducted to determine the impact of mineral fertilizers, cow manure, poultry manure, leaf litter, and sugarcane bagasse on soil's trace Pb content and edible parts of vegetables. It also evaluated the risk of lead (Pb) contamination in water, soil, and food crops. Six vegetables (Daucus carota, Brassica oleracea, Pisum sativum, Solanum tuberosum, Raphanus sativus, and Spinacia oleracea) were grown in the field under twelve treatments with different nutrient and water inputs. The lead concentrations in soil, vegetables for all treatments and water samples ranged from 1.038-10.478, 0.09346-9.0639 mg/kg and 0.036-0.26448 mg/L, The concentration of lead in soil treated with wastewater in treatment (T6) and vegetable samples was significantly higher, exceeding the WHO's permitted limit. Mineral and organic fertilizers combined with wastewater treatment reduced lead (Pb) concentrations in vegetables compared to wastewater application without organic fertilizers. Health risk indexes for all treatments except wastewater treatment (T6) were less than one. Pb concentrations in mineral fertilizers, cow manure, poultry manure, leaf litter, and sugarcane bagasse treated were determined to pose no possible risk to consumers.


Fertilizers , Lead , Manure , Vegetables , Wastewater , Fertilizers/analysis , Vegetables/metabolism , Vegetables/chemistry , Manure/analysis , Wastewater/chemistry , Wastewater/analysis , Lead/analysis , Lead/metabolism , Animals , Soil Pollutants/analysis , Soil/chemistry , Cattle , Crops, Agricultural/metabolism , Crops, Agricultural/growth & development , Crops, Agricultural/chemistry , Minerals/analysis
12.
J Environ Sci (China) ; 145: 216-231, 2024 Nov.
Article En | MEDLINE | ID: mdl-38844321

Catalytic ozonation is an effective wastewater purification process. However, the low ozone mass transfer in packed bubble columns leads to low ozone utilization efficiency (OUE), poor organic degradation performance, and high energy consumption. Therefore, there is an urgent need to develop efficient supported catalysts that can enhance mass transfer and performance. However, the reaction mechanism of the support on ozone mass transfer remains unclear, which hinders the development of catalytic ozonation applications. In this study, lava rocks (LR)-supported catalysts, specifically CuMn2O4@LR and MnO2Co3O4@LR, were proposed for catalytic ozonation of IBP degradation due to their superior catalytic activity, stability, and high OUE. Addition of CuMn2O4@LR or MnO2Co3O4@LR increased IBP removal efficiency from 85% to 91% or 88%, and reduced energy consumption from 2.86 to 2.14 kWh/m3 or 2.60 kWh/m3, respectively. This improvement was attributed to LR-supported catalysts enhancing mass transfer and promoting O3 decomposition to generate •OH and •O2-, leading to IBP degradation. Furthermore, this study investigated the effects of ozone dose, supporter sizes, and catalyst components on ozone-liquid mass transfer. The results revealed that the size of the supporter influenced stacked porosity and consequently affected ozone mass transfer. Larger-sized LR (kLa= 0.172 min-1) exhibited better mass transfer compared to smaller-sized supports. Based on these findings, it was concluded that both CuMn2O4@LR and MnO2Co3O4@LR are potential catalysts for catalytic ozonation in residual IBP degradation of pharmaceutical wastewater, and LR showed good credibility as a catalyst supporter. Understanding the effects of supporters and active components on ozone mass transfer provides a fundamental principle for designing supported catalysts in catalytic ozonation applications.


Ibuprofen , Ozone , Waste Disposal, Fluid , Water Pollutants, Chemical , Ozone/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Ibuprofen/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Purification/methods
13.
Mikrochim Acta ; 191(7): 374, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847878

The combination of silica nanoparticles with fluorescent molecularly imprinted polymers (Si-FMIPs) prepared by a one-pot sol-gel synthesis method to act as chemical sensors for the selective and sensitive determination of captopril is described. Several analytical parameters were optimized, including reagent ratio, solvent, concentration of Si-FMIP solutions, and contact time. Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and the ninhydrin assay were used for characterization. The selectivity was evaluated against molecules belonging to other drug classes, such as fluoroquinolones, nonacid nonopioids, benzothiadiazine, alpha amino acids, and nitroimidazoles. Under optimized conditions, the Si-FMIP-based sensor exhibited a working range of 1-15 µM, with a limit of detection (LOD) of 0.7 µM, repeatability of 6.4% (n = 10), and suitable recovery values at three concentration levels (98.5% (1.5 µM), 99.9% (3.5 µM), and 99.2% (7.5 µM)) for wastewater samples. The sensor provided a working range of 0.5-15 µM for synthetic urine samples, with an LOD of 0.4 µM and a repeatability of 7.4% (n = 10) and recovery values of 93.7%, 92.9%, and 98.0% for 1.0 µM, 3.5 µM, and 10 µM, respectively. In conclusion, our single-vessel synthesis approach for Si-FMIPs proved to be highly effective for the selective determination of captopril in wastewater and synthetic urine samples.


Captopril , Limit of Detection , Nanoparticles , Wastewater , Captopril/urine , Captopril/analysis , Captopril/chemistry , Wastewater/analysis , Nanoparticles/chemistry , Molecularly Imprinted Polymers/chemistry , Fluorescent Dyes/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/urine , Silicon Dioxide/chemistry , Molecular Imprinting , Humans
14.
BMC Biotechnol ; 24(1): 29, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720285

This research investigates the efficacy of a high-performance pilot-scale Internal Circulation Anaerobic Reactor inoculated with Granular Sludge (ICAGSR) for treating cattle slaughterhouse wastewater while concurrently generating biogas. The primary objective is to assess the efficiency and performance of ICAGSR in terms of organic pollutant removal and biogas production using granular anaerobic sludge. The research methodology entails operating the ICAGSR system under ambient conditions and systematically varying key parameters, including different Hydraulic Retention Times (HRTs) (24, 12, and 8 h) and Organic Loading Rates (OLRs) (3.3, 6.14, and 12.83 kg COD/m³. d). The study focuses on evaluating pollutants' removal and biogas production rates. Results reveal that the ICAGSR system achieves exceptional removal efficiency for organic pollutants, with Chemical Oxygen Demand (COD) removal exceeding 74%, 67%, and 68% at HRTs of 24, 12, and 8 h, respectively. Furthermore, the system demonstrates stable and sustainable biogas production, maintaining average methane contents of 80%, 76%, and 72% throughout the experimental period. The successful operation of the ICAGSR system underscores its potential as a viable technology for treating cattle slaughterhouse wastewater and generating renewable biogas. In conclusion, this study contributes to wastewater treatment and renewable energy production by providing a comprehensive analysis of the ICAGSR system's hydrodynamic properties. The research enhances our understanding of the system's performance optimization under varying conditions, emphasizing the benefits of utilizing ICAGSR reactors with granular sludge as an effective and sustainable approach. Identifying current gaps, future research directions aim to further refine and broaden the application of ICAGSR technology in wastewater treatment and renewable energy initiatives.


Abattoirs , Biofuels , Bioreactors , Sewage , Wastewater , Animals , Cattle , Sewage/microbiology , Wastewater/chemistry , Anaerobiosis , Waste Disposal, Fluid/methods , Methane/metabolism , Biological Oxygen Demand Analysis
15.
Environ Microbiol Rep ; 16(3): e13272, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692845

Native microbial consortia have been proposed for biological wastewater treatment, but their diversity and function remain poorly understood. This study investigated three native microalgae-bacteria consortia collected from the Amazon, Highlands, and Galapagos regions of Ecuador to assess their metagenomes and wastewater remediation potential. The consortia were evaluated for 12 days under light (LC) and continuous dark conditions (CDC) to measure their capacity for nutrient and organic matter removal from synthetic wastewater (SWW). Overall, all three consortia demonstrated higher nutrient removal efficiencies under LC than CDC, with the Amazon and Galapagos consortia outperforming the Highlands consortium in nutrient removal capabilities. Despite differences in α- and ß-diversity, microbial species diversity within and between consortia did not directly correlate with their nutrient removal capabilities. However, all three consortia were enriched with core taxonomic groups associated with wastewater remediation activities. Our analyses further revealed higher abundances for nutrient removing microorganisms in the Amazon and Galapagos consortia compared with the Highland consortium. Finally, this study also uncovered the contribution of novel microbial groups that enhance wastewater bioremediation processes. These groups have not previously been reported as part of the core microbial groups commonly found in wastewater communities, thereby highlighting the potential of investigating microbial consortia isolated from ecosystems of megadiverse countries like Ecuador.


Bacteria , Metagenomics , Microbial Consortia , Wastewater , Ecuador , Wastewater/microbiology , Microbial Consortia/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Microalgae/classification , Microalgae/metabolism , Water Purification , Biodegradation, Environmental , Metagenome
16.
Sci Rep ; 14(1): 10245, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702453

In Rhineland-Palatinate, Germany, a system of three data sources has been established to track the Covid-19 pandemic. These sources are the number of Covid-19-related hospitalizations, the Covid-19 genecopies in wastewater, and the prevalence derived from a cohort study. This paper presents an extensive comparison of these parameters. It is investigated whether wastewater data and a cohort study can be valid surrogate parameters for the number of hospitalizations and thus serve as predictors for coming Covid-19 waves. We observe that this is possible in general for the cohort study prevalence, while the wastewater data suffer from a too large variability to make quantitative predictions by a purely data-driven approach. However, the wastewater data and the cohort study prevalence are able to detect hospitalizations waves in a qualitative manner. Furthermore, a detailed comparison of different normalization techniques of wastewater data is provided.


COVID-19 , Hospitalization , SARS-CoV-2 , Wastewater , COVID-19/epidemiology , Germany/epidemiology , Humans , SARS-CoV-2/isolation & purification , Hospitalization/statistics & numerical data , Wastewater/virology , Cohort Studies , Pandemics , Prevalence , Information Sources
17.
PLoS One ; 19(5): e0301624, 2024.
Article En | MEDLINE | ID: mdl-38713678

Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of Typhoid fever. Blood culture is the gold standard for clinical diagnosis, but this is often difficult to employ in resource limited settings. Environmental surveillance of waste-impacted waters is a promising supplement to clinical surveillance, however validating methods is challenging in regions where S. Typhi concentrations are low. To evaluate existing S. Typhi environmental surveillance methods, a novel process control organism (PCO) was created as a biosafe surrogate. Using a previous described qPCR assay, a modified PCR amplicon for the staG gene was cloned into E. coli. We developed a target region that was recognized by the Typhoid primers in addition to a non-coding internal probe sequence. A multiplex qPCR reaction was developed that differentiates between the typhoid and control targets, with no cross-reactivity or inhibition of the two probes. The PCO was shown to mimic S. Typhi in lab-based experiments with concentration methods using primary wastewater: filter cartridge, recirculating Moore swabs, membrane filtration, and differential centrifugation. Across all methods, the PCO seeded at 10 CFU/mL and 100 CFU/mL was detected in 100% of replicates. The PCO is detected at similar quantification cycle (Cq) values across all methods at 10 CFU/mL (Average = 32.4, STDEV = 1.62). The PCO was also seeded into wastewater at collection sites in Vellore (India) and Blantyre (Malawi) where S. Typhi is endemic. All methods tested in both countries were positive for the seeded PCO. The PCO is an effective way to validate performance of environmental surveillance methods targeting S. Typhi in surface water.


Environmental Monitoring , Escherichia coli , Salmonella typhi , Salmonella typhi/genetics , Salmonella typhi/isolation & purification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Environmental Monitoring/methods , Wastewater/microbiology , Typhoid Fever/microbiology , Typhoid Fever/epidemiology , Typhoid Fever/diagnosis , Typhoid Fever/prevention & control , Humans , Water Microbiology
18.
PLoS One ; 19(5): e0302000, 2024.
Article En | MEDLINE | ID: mdl-38709720

Wastewater surveillance represents an alternative approach to regulating contamination and the early detection of infectious agents and outbreaks of diseases of public health importance. This study evaluated domestic wastewater effects on recreational waters in estuarine and seawater bodies in Guayas and Santa Elena provinces in Ecuador, South America. Fecal indicator bacteria (thermotolerant coliforms) served as key indicators for evaluation. Physical, chemical, and microbiological quality markers following the Ecuadorian environmental quality standard and the discharge of effluents to the water resource were analyzed. Samples were collected from 44 coastal sites and 2 oxidation lagoons during the dry and rainy seasons of 2020 and 2021, respectively. SARS-CoV-2 RNA was detected in samples with higher E. coli concentrations using reverse transcription quantitative PCR to detect the genes N and ORF1ab. All samples analyzed for SARS-CoV-2 showed Ct ˂ 40 for at least one gene. Four samples showed at least 20 genome copies of gene N per reaction. These were at an artisanal fishing port, an estuarine area (Palmar), a recreational bay, and an oxidation lagoon. A moderate correlation was found between SARS-CoV-2 RNA, thermotolerant coliform and E. coli (p-value ≤ 0.0037), and a strong and positive correlation between thermotolerant coliform and E. coli. (p-value ≤ 0.00001), highlighting the utility of these established parameters as a proxy of the virus. Significant differences were found in the concentrations of thermotolerant coliforms between seasons (p-value = 0.016) and sites (p-value = 0.005). The highest levels of coliforms were found in the dry season (63000 MPN/100 mL) in Anconcito and during the rainy season (14000 MPN/100 mL) at Esterillo in Playas County. It is recommended that the decentralized autonomous governments of the surveyed provinces in Ecuador implement urgent corrective actions and establish medium-term mechanisms to minimize a potential contamination route. Additional parameters must be included in the monitoring, such as Enterococcus and intestinal parasites, due to their public health implications. In the oxidation lagoons, maintenance actions must be carried out, including the dissolution of sediments, an increase in water retention times, and in situ treatment of the sludge, to improve the system's performance.


COVID-19 , RNA, Viral , SARS-CoV-2 , Sewage , Water Quality , Ecuador , Sewage/virology , Sewage/microbiology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , RNA, Viral/genetics , RNA, Viral/isolation & purification , RNA, Viral/analysis , COVID-19/epidemiology , COVID-19/virology , Humans , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/genetics , Water Microbiology , Environmental Monitoring/methods , Seawater/virology , Seawater/microbiology , Escherichia coli/genetics , Escherichia coli/isolation & purification , Wastewater/virology , Wastewater/microbiology
19.
J Environ Manage ; 361: 121194, 2024 Jun.
Article En | MEDLINE | ID: mdl-38820794

This study provides a comprehensive analysis of the potential impact of hydrothermal pretreatment (HTP) on municipal thickened waste-activated sludge (TWAS) and its integration with anaerobic digestion (AD). The research demonstrates that HTP conditions (170 °C, 3 bars for 30 min) can increase the solubilization of macromolecular organic compounds by 41%, which enhances biodegradability in semicontinuous bioreactors. This treatment also results in a 50% reduction in chemical oxygen demand (COD) and a 63% increase in the destruction of volatile solids (VS). The combination of HTP with AD significantly boosts methane yields by 51%, reaching 176 ml/g COD, and improves the digestate dewaterability, doubling the solid content in the dewatered cake. However, a higher polymer dose is required compared to conventional AD. Microbial community analysis correlates the observed performance and alterations; it indicates that HTP enhances resilience to stress conditions such as ammonia toxicity. This comprehensive study provides valuable insights into the transition from wastewater treatment plants (WWTPs) to resource recovery facilities (RRF) in line with circular economy principles.


Bioreactors , Sewage , Waste Disposal, Fluid , Anaerobiosis , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis , Biodegradation, Environmental , Methane , Wastewater/chemistry
20.
Water Sci Technol ; 89(9): 2538-2557, 2024 May.
Article En | MEDLINE | ID: mdl-38747966

Electroplating wastewater contains heavy metal ions and organic matter. These contaminants not only endanger the environment but also pose risks to human health. Despite the development of various treatment processes such as chemical precipitation MBR, electrocoagulation (EC) ceramic membrane (CM), coagulation ultrafiltration (UF) reverse osmosis (RO), and CM RO. These methods are only effective for low concentrations of heavy metals and struggle with high concentrations. To address the challenge of treating electroplating wastewater with high heavy metal content, this study focuses on the wastewater from Dongfang Aviation Machinery Processing Plant. It introduces an EC and integrated membrane (IM) treatment process for electroplating wastewater. The IM comprises microfiltration (MF) membrane, nanofiltration (NF) membrane, and RO membrane. Results indicated that under specific conditions, such as a pH of 8, current density of 5 A/dm2, electrode plate spacing of 2 cm, 35 min of electrolysis time, and influent pH of 10 for the IM, removal rates of Zn2+, Cu2+, Ni2+, and TCr in the wastewater exceeded 99%. The removal rates of chemical oxygen demand (COD), suspended solids (SS), total phosphorus (TP), total nitrogen (TN), and petroleum in wastewater exceed 97%. Following a continuous cleaning process, the membrane flux can consistently recover to over 94.3%.


Membranes, Artificial , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Electroplating , Water Purification/methods , Metals, Heavy , Electrocoagulation/methods
...